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Adaptive Polarimetric Detection for MIMO Radar and Its Optimal
Polarimetric Design in Compound-Gaussian Clutter

Zhikun Chen1, * and Yinan Zhao2

Abstract—This study addresses the problem of adaptive polarimetric detector (APD) and optimal
polarimetric design for the distributed multiple-input-multiple-output radar in compound-Gaussian
clutter with inverse-gamma distributed texture component. We derive the APD by maximizing a
posteriori estimation and performing a generalized likelihood ratio test. The false alarm probability for
the detector is analyzed to validate the corresponding constant false alarm rate property. Furthermore,
based on the concepts of game theory, we formulate an optimal polarimetric design as a two players
zero-sum game, which further improves the performance of the proposed detector. Simulation results
show that the proposed detector outperforms its counterparts, and the optimal polarimetric design
algorithm can efficiently enhance the detection performance.

1. INTRODUCTION

Multiple-input-multiple-output (MIMO) radar with widely separated transmitting and receiving
antennas is a new radar system that enables the viewing of the target from different angles. The
echoes received by the antennas of a MIMO radar are approximately independent of each other (i.e.,
distributed MIMO radar) [1, 2]. Considering that the radar cross section (RCS) of a target is a function of
the aspect angle, a distributed MIMO radar system can utilize spatial diversity to improve the detection
performance. Several researchers have stated that MIMO radar is superior to other radar systems, such
as phased array and single-input multiple-output radars in terms of detecting targets embedded in
Gaussian clutter [3–11]. However, real-life clutter does not usually follow the Gaussian distribution for
high-resolution radar in low-grazing angle [12, 13]. Therefore, several studies have developed detectors
that are effective against K-distributed clutter [14–17].

To further improve the detection performance, researchers have introduced a new type of radar,
which is the combination of polarimetric and distributed MIMO radars [18, 19]. To obtain the target
polarimetric scattering information, polarimetric radar systems can transmit arbitrary polarization
waveform matched with target’s polarization [20]. The incorporation of the polarimetric diversity
improves the performance of the MIMO radar [21–24]. One of the unique capabilities of the
polarimetrically distributed MIMO radar is that each transmitter can choose its own polarimetric
vector, and the properly designed vectors can improve the signal-to-noise ratio. For the APD, the
polarization characteristics of the target can be changed according to the clutter. In this situation,
the selection of polarization in such a MIMO radar remains a notable challenge. A polarimetric design
method based on game theory is proposed in [25–27]. Unlike traditional adaptive polarimetric design
methods, this kind of methods based on game theory does not need training data and can be easily
implemented. However, the analysis on the optimal polarimetric design for distributed MIMO radar in
compound-Gaussian (CG) clutter is seldom reported in relative publications.
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In this study, we develop a generalized likelihood ratio test (GLRT) detector for polarimetric
distributed MIMO radar in a CG clutter with inverse-gamma (iΓ) distributed texture component.
First, we establish the signal model of the polarimetrically distributed MIMO radar. Second, an adaptive
polarimetric detector (APD) is derived on the basis of this signal model. The combination of polarimetric
and spatial diversity further improves the detection performance. Third, an optimal polarimetric design
algorithm is incorporated to further improve the performance. Finally, several numerical examples are
provided and evaluated to demonstrate the effectiveness of the proposed detector.

2. PROBLEM FORMULATION

2.1. Clutter Model

The CG family delivers an effective modeling of non-Gaussian clutter [28–30]. The general form of a
CG vector can be expressed as

c =
√

τχ, (1)

where τ ∈ (0,∞) is the texture component that has composite Gaussian distribution, and χ ∼
CN (0,Σ) ∈ C

N is the speckle. The texture is changing slowly, whereas the speckle is changing fast;
these components are assumed to be independent.

For different members of the CG family, the texture components follow different distributions. This
study adopts the iΓ distribution, and the corresponding model is named CG-iΓ. The PDF of the texture
is defined as

fτ (τ ; ν, β) =
βν

Γ (ν)
τ−(ν+1) exp

(
−β

τ

)
1(0,∞) (τ) . (2)

where ν and β are the shape and rate parameters, respectively. Both are real positive numbers. To
simplify the notation and derivation, we assume that the mean of the texture is equal to one (i.e.,
ν = β), and the PDF can be simplified as follows:

fτ (τ ; ν) =
1

Γ (ν)
νντ−(ν+1) exp

(
−ν

τ

)
1(0,∞) (τ) . (3)

Given that the speckle is Gaussian-distributed with mean 0, see Equations (A7) and (A8) in Appendix
A, the conditional PDF of the clutter vector can be expressed as

fc|τ (c |τ ) =
(
det (πτΣ) exp

(
‖c‖2

(τΣ)−1

))−1
. (4)

Combining Equations (3) and (4) yields

fc|τ (c |τ ) fτ (τ ; ν) =
νντ−ν−1

Γ (ν) det (πτΣ)
exp

(
−‖c‖2

Σ−1 + ν

τ

)
1(0,∞) (τ) , (5)

One of CG-iΓ’s advantages is that the closed form of the clutter’s PDF can be obtained.

fc (c; ν) =
∫ ∞

−∞
fc|τ (c |τ ) fτ (τ ; ν) dτ =

Γ (ν + N)
det (πΣ) νNΓ (ν)

(
1 +

‖c‖2
(τΣ)−1

ν

)−ν−N

. (6)

2.2. Signal Model

Assume that the target is a stationary point-like target with a scattering matrix that depends on
the observing angle. The distributed MIMO radar comprises widely separated M transmitter and N
receivers (Figure 1). Each transmitter and receiver have an antenna, which consists of a horizontally
and a vertically polarized channel. The waveforms of the polarization channels are orthogonal to each
other for any mutual delay to help the receivers separate the signals transmitted by the horizontally
and vertically polarized antennas [31].

For each receiver, a bank consisting of M matched filters is used to separate the signals from
different transmitters on the assumption that the waveforms transmitted by the M transmitters are
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Figure 1. Distributed MIMO radar system.

orthogonal. Considering that each N receiver has two polarization channels, 2N matched filter banks
are utilized in total, and the output of the filter banks corresponding to the lth range cell and kth pulse
forms a vector on C

2MN , which is represented as

yk,l = PSak,l + ck,l, (7)

where ck,l is the clutter vector (the corresponding probability distribution function [PDF] is represented
by Equation (3), and the speckle components of ck,l, k = 1, 2, . . . ,K are mutually independent [30]. P
is the polarimetric matrix, which is defined as

P = Diag
(
IN ⊗ P̃m

)
, m = 1, 2, . . . ,M, (8)

where P̃m can be expressed as

P̃m = Diag (pm)
(

1 1 0 0
0 0 1 1

)
; (9)

pm denotes the polarimetric vector of the mth transmitter, which satisfies ‖pm‖ = 1 for each
m ∈ {1, 2, . . . ,M}. Matrix S represents the polarimetric property of the target, which is defined
as

S = Diag
(
vec
(
S̃1,1

)
, . . . , vec

(
S̃1,N

)
, . . . , vec

(
S̃M,1

)
, . . . , vec

(
S̃M,N

))
, (10)

where S̃m,n ∈ C
2×2 is the polarimetric scattering matrix (PSM) of the target corresponding to the mth

transmitter and nth receiver, and ak is the complex magnitude of the target echo.

ak = (a1,1, . . . , a1,N , . . . , aM,1, . . . , aM,N )T . (11)

where aM,N denotes the complex magnitude of the signal transmitted by the mth transmitter, reflected
by the target, and received by the nth receiver. To simplify the notation, we specify that the index of
the cell under test (CUT) is l = 1 (i.e., yk,1 is the primary data from the CUT). We also adopt the data
from the L range cells, which are spatially adjacent to the CUT and denoted by {yk,l : l = 2 . . . L + 1},
in which no target is present. Moreover, the spectral properties of the clutter are the same to that of
CUT.

3. APD FOR MIMO RADAR AND OPTIMAL POLARIMETRIC DESIGN IN
COMPOUND-GAUSSIAN CLUTTER

Based on the signal model provided in the previous section, the detection of a point target embedded
in the CG-iΓ clutter can be modeled as a binary hypothesis test. The hypothesis is defined below.

Hλ : yk,l = λδl−1PSak,l + ck,l. (12)
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where l ∈ {1, 2, . . . , L + 1} , k ∈ {1, 2, . . . K} , λ ∈ {0, 1}, and Hλ denotes the null hypothesis if λ = 0
or the alternative hypothesis if λ = 1. From Equation (A8) in Appendix A, the conditional PDF of yk,1

is expressed as

f (yk,1 |ak, τk;Hλ ) =
(
det (πτkΣ)

(
exp ◦dist2M(τkΣ)

)
(yk,1, λPSak)

)−1
. (13)

where τk is the texture component corresponding to the kth pulse. The corresponding PDF is shown
in Equation (3).

3.1. GLRT Derivation

In this section, we utilize the two-step GLRT method to derive the APD, and the unknown parameters
are replaced with the estimated values.

Step 1: Assume that the texture component is known, and the detector can be expressed as follows:
K∏

k=1

f (yk,1 |âk , τk;H1)
f (yk,1 |τk;H0 )

H1

≷
H0

ln γ. (14)

where âk is the maximum likelihood estimation (MLE) of ak. Considering that the signal model in [32] is
linear, the MLE is equivalent to the generalized least squares, which can be expressed by the projection
problem in Appendix A

PSâk = projM(Σ) (yk,1, col (PS)) . (15)

By substituting Equation (A13) in Appendix A, into Equation (15), the estimator is defined as

âk =
(
(PS)H Σ−1PS

)−1
(PS)H Σ−1yk,1. (16)

By substituting Equations (13) and (15) into Equation (14), the detector can be equivalently written
as

K∑
k=1

1
τk

(
‖yk,1‖2

Σ−1 − dist2M(Σ)

(
yk,1,projM(Σ) (yk,1, col (PS))

))H1

≷
H0

ln γ. (17)

On the basis of Theorem II in Appendix A, the expression can be further simplified as

K∑
k=1

∥∥∥projM(Σ) (yk,1, col (PS))
∥∥∥2

Σ−1

τk

H1

≷
H0

ln γ. (18)

Step 2: Determine the maximum posteriori estimator of τk by solving the following equation:

{τ̂k : k = 1 . . . K} = max
{τ̂k ;k=1...K}

K∏
k=1

f (yk,1 |ak, uk;Hλ ) fτk
(τ̂k) . (19)

By assuming that τk, k = 1 . . . K are mutually independent, the estimator can be obtained by solving
the following equation:

∂f (yk,1 |ak, τk;Hλ ) fu (τk; ν)
∂τk

= 0 , k = 1 . . . K . (20)

Substituting Equations (3), (A8), and (13) into the left-hand side (LHS) of Equation (20) yields
∂f (yk,1 |ak, τk;Hλ ) fu (τk; ν)

∂τk

=
∂

∂τk
Γ−1 (ν) νν det−1 (πΣ) τ−2MN−ν−1

k exp

(
−

dist2M(Σ) (yk,1, λPSak) + ν

τk

)

= Γ−1 (ν) νν det−1 (πΣ) exp

(
−

dist2M(Σ) (yk,1, λPSak) + ν

τk

)

×
(

dist2M(Σ) (yk,1, λPSak) + ν − (2MN + ν + 1) τk

τ2MN+ν+3
k

)
.

(21)
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Substituting Equation (21) into Equation (20), the solution of the equation is as follows:

τ̂k;Hλ
=

dist2M(Σ) (y (k) , λPSak) + ν

2MN + ν + 1
. (22)

Unknown covariance matrix
∑

can be estimated using secondary data [32].

Σ̂ =
1

KL

L+1∑
l=2

K∑
k=1

yk,lyH
k,l

‖yk,l‖2 . (23)

Substituting τ̂k;H0 and Σ̂ into Equation (18), we obtain

K∑
k=1

∥∥∥projM(Σ̂) (yk,1, col (PS))
∥∥∥2

Σ̂−1

‖yk,1‖2
Σ̂−1 + ν

H1

≷
H0

γ′. (24)

where γ′ = ln γ/2MN + ν + 1. According to Theorem I in Appendix A, the numerator of the LHS of
Equation (24) can be simplified as follows:∥∥∥projM(Σ̂) (yk,1, col (PS))

∥∥∥2

Σ̂−1
=
〈
yk,1,projM(Σ̂) (yk,1, col (PS))

〉
Σ̂−1

= yH
k,1Φyk,1, (25)

where
Φ = Σ̂−1projM(Σ̂) (yk,1, col (PS)) = Σ−1PS

(
(PS)H Σ−1PS

)−1
(PS)H Σ−1. (26)

3.2. Constant False Alarm Rate (CFAR) Analysis

The PDF of the test statistic should be derived to analyze the CFAR property of the proposed detector.
Assuming that the covariance matrix of the speckle is a known priori information, according to Theorem
IV in Appendix A, we can obtain∥∥∥projM(Σ) (yk,1, col (PS))

∥∥∥2

Σ−1
∼ χ2 (2rank (PS)) . (27)

However, the covariance matrix is unknown in the scenario in this study, and the estimated value from
Equation (23) is used, which is complicated for the problem. For simplicity, we denote the test statistic
in Equation (24) as Δ, where

Δ =
K∑

k=1

∥∥∥projM(Σ̂) (yk,1, col (PS))
∥∥∥2

Σ̂−1

‖yk,1‖2
Σ̂−1 + ν

. (28)

According to Equation (A8) in in Appendix A, if K = 1 and ν = 1, then Δ can be equivalently written
as

Δ = g (ζ) , g (ζ) = (1 + ζ)−1 , (29)

where random variable ζ follows the F distribution, that is, ζ ∼ F(2(L − 2MN + 1), 4MN). The
corresponding PDF is defined as

fζ (ζ) =
Γ
(

n1 + n2

2

)

Γ
(n1

2

)
Γ
(n2

2

) (n1)
n1/2 (n2)

n2/2 ζn1/2−1

(n1ζ + n2)
n1+n2

2

1[0,∞) (ζ) , (30)

where n1 = 2(L− 2MN + 1) and n2 = 4MN . Considering that the Δ from Equation (29) is a function
with respect to ζ, the PDF is then expressed as

fΔ (Δ) = fζ

(
g−1 (Δ)

) ∣∣∣∣dg−1 (Δ)
dΔ

∣∣∣∣ = fζ

(
1 − Δ

Δ

)
Δ−2. (31)
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According to [28], the PDF of the test statistic for an arbitrary K is represented by the following
expression on the assumption that yk,1, k = 1 . . . K is mutually independent.

fΔ (Δ) = fζ

(
1 − Δ

Δ

)
Δ−2 ∗ fζ

(
1 − Δ

Δ

)
Δ−2 ∗ · · · ∗ fζ

(
1 − Δ

Δ

)
Δ−2. (32)

Thus, the false alarm probability can be calculated as follows:

PFA = Pr
(
Δ > γ′ |H1

)
=
∫ ′∞

γ
fΔ (Δ) dΔ =

∫ 1−γ′
γ′

0
fζ (ζ) dζ, (33)

which is independent of the clutter power and the structure of the clutter’s covariance matrix, that
is, the proposed detector has a CFAR. However, random variable ζ is not guaranteed to follow the F
distribution for arbitrary ν, indicating that the PFA of the proposed detector depends on the shape
parameter of the clutter. Thus, the detector does not have a CFAR with respect to ν, which is consistent
with a previous report [33]. Fortunately, ν is usually constant in a given scenario with a fixed grazing
angle and sea state.

3.3. Optimal Polarimetric Design

Considering that the transmitters and receivers have horizontal and vertical polarization channels,
promoting the system performance by transmitting a polarized waveform, where the polarimetric vector
matches the PSM of the target, is possible. However, the PSM of the target in the current scene is an
unknown priori information in many practical applications. Therefore, many traditional polarimetric
design methods estimate the PSM of the target by utilizing training data. The authors of [20] suggested
that the polarimetric design problem for detecting targets embedded in Gaussian clutter can be solved
using a game theory-based algorithm without using training data. In this study, we demonstrate that
game theory can also be used in iΓ-CG clutter scenarios.

In the context of game theory, two players are present for the optimal polarimetric design problem.
Player 2 is the radar engineer who intends to maximize the radar performance, whereas player 1 is the
opponent who degrades the radar performance. This game is classified as a two-person zero-sum game,
in which the sum of the players’ payoff function is zero for a given strategy pair. As defined by the
Game Theory, the two zero sum has the following rules:

Rule 1: The number of players is assumed as a prior information;
Rule 2: As a result of the game, the total profit of the single objective is not required to be a

constant (non-zero-sum).
In our approach, there are two players. They separately have their own profit (objective) to be

maximized under their cooperation. The process can be described in detail as follows:
Given that M transmitters can independently choose the polarimetric vector, the optimal

polarimetric design comprises M independent games. For the mth transmitter, the strategy set of
player 2 is a group of polarimetric vectors for each transmitter.

S2 = {pm (x2) : x2 = 1, 2, . . . ,X2} . (34)
where X2 is the total number of vectors. For player 1, we assume that the PSM of the target is random
and follows the Gaussian distribution with covariance matrix Ξ, that is, vec(S̃m,n) ∼ CN (0,Ξ)). If the
X1 types of targets with different polarization characteristics exist, then the strategy set of player 1 is
a group of covariance matrices.

S1 = {Ξm,n (x1) : m = 1, 2, . . . ,M, n = 1, 2, . . . , N, x1 = 1, 2, . . . ,X1} , (35)

where Ξm,n(x1) denotes the covariance matrix of vec(S̃m,n) of target type a. The payoff function of
player 2 corresponding to the mth transmitter is defined by the power of the signal component.

u2 (Ξm (x1) ,pm (x2))=E

⎧⎪⎪⎨
⎪⎪⎩

∥∥∥∥IN ⊗ Diag (pm (x2))
(

1 1 0 0
0 0 1 1

)

×Diag
(
vec
(
S̃m,1

)
, . . . , vec

(
S̃m,N

)) [
αm,1 αm,2 . . . αm,N

]T∥∥∥∥
2

⎫⎪⎪⎬
⎪⎪⎭ .

(36)
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The game is a zero-sum game. Hence, the payoff function of player 1 corresponding to the mth
transmitter is expressed as

u1 (Ξm (x1) ,pm (x2)) = −u2 (Ξm (x1) ,pm (x2)) . (37)

When the critical components of a game, including the players, strategies, and payoff functions, have
been defined, the optimal polarimetric design problem can be solved by the method as in [23].

4. SIMULATION ANALYSIS

Several numerical examples are provided in this section to evaluate the performance of the proposed
detector. The software platform for the simulation is MATLAB, and the operations are performed
using double precision floating point numbers. The number of the pulses during an observation time is
K = 40; and the number of the training data is L = 20. The false alarm probability of the detector is
set to PFA = 10−3, and the number of independent repeated trails is 100/PFA. The target-to-clutter
ratio (TCR) is defined as

TCR =
1

2K

K∑
k=1

‖PSak‖2

E {τk} tr (Ψ)
, (38)

where Ψ is the spatial covariance matrix of the speckle components, which are defined as follows:

Ψ = Diag (Ψ1,Ψ2, . . . ΨM ) , (39)

(Ψm)p,q = ρ|p−q|
s , m = 1, 2, . . . ,M , p, q = 1, 2, . . . , N , (40)

where ρs = 0.01 is the spatial correlation coefficient.

4.1. Performance Analysis

In this example, two transmitters and four receivers are involved. The covariance matrices of the target’s
PSM are expressed as

Ξ1,1 =

⎛
⎜⎝

0.6 0.1ε 0.1ε 0.1ε
0.1ε∗ 0.3 0.1ε 0.1ε
0.1ε∗ 0.1ε∗ 0.2 0.1ε
0.1ε∗ 0.1ε∗ 0.1ε∗ 0.4

⎞
⎟⎠ , Ξ1,2 =

⎛
⎜⎝

0.4 0.05ε 0.05ε 0.05ε
0.05ε∗ 0.2 0.05ε 0.05ε
0.05ε∗ 0.05ε∗ 0.5 0.05ε
0.05ε∗ 0.05ε∗ 0.05ε∗ 0.4

⎞
⎟⎠ ,

Ξ1,3 =

⎛
⎜⎝

0.3 0.1ε 0.1ε 0.1ε
0.1ε∗ 0.4 0.1ε 0.1ε
0.1ε∗ 0.1ε∗ 0.3 0.1ε
0.1ε∗ 0.1ε∗ 0.1ε∗ 0.5

⎞
⎟⎠ , Ξ1,4 =

⎛
⎜⎝

0.3 0.05ε 0.05ε 0.05ε
0.05ε∗ 0.5 0.05ε 0.05ε
0.05ε∗ 0.05ε∗ 0.4 0.05ε
0.05ε∗ 0.05ε∗ 0.05ε∗ 0.2

⎞
⎟⎠ ,

Ξ2,1 =

⎛
⎜⎝

0.2 0.1ε 0.1ε 0.1ε
0.1ε∗ 0.4 0.1ε 0.1ε
0.1ε∗ 0.1ε∗ 0.3 0.1ε
0.1ε∗ 0.1ε∗ 0.1ε∗ 0.4

⎞
⎟⎠ , Ξ2,2 =

⎛
⎜⎝

0.6 0.05ε 0.05ε 0.05ε
0.05ε∗ 0.3 0.1ε 0.05ε
0.05ε∗ 0.05ε∗ 0.4 0.05ε
0.05ε∗ 0.05ε∗ 0.05ε∗ 0.4

⎞
⎟⎠ ,

Ξ2,3 =

⎛
⎜⎝

0.5 0.1ε 0.1ε 0.1ε
0.1ε∗ 0.3 0.1ε 0.1ε
0.1ε∗ 0.1ε∗ 0.3 0.1ε
0.1ε∗ 0.1ε∗ 0.1ε∗ 0.4

⎞
⎟⎠ , Ξ2,4 =

⎛
⎜⎝

0.3 0.05ε 0.05ε 0.05ε
0.05ε∗ 0.4 0.05ε 0.05ε
0.05ε∗ 0.05ε∗ 0.5 0.05ε
0.05ε∗ 0.05ε∗ 0.05ε∗ 0.3

⎞
⎟⎠ .

where ε = 1 +
√−1. The polarimetric vector of the transmitters is expressed as

pm = [ 1 0 ]T , m = 1, 2 . (41)

First, we compare the detection performance of the proposed APD and a non-adaptive polarimetric
detector (NAPD) with prior knowledge on the clutter. The detection probability with respect to
TCR (Equation (38)) is illustrated in Figure 2, which shows that the APD can obtain high detection
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performance even in a strong clutter environment. APD is inferior to NAPD due to the lack of clutter
knowledge. However, clutter knowledge is usually unknown in practical scenarios, which means that the
former is more suitable for practical use than the latter. Second, we compare the performance of the
APD with the corresponding single-polarized version. The number of the receivers is N = 2, 3, 4, and
the shape parameter is ν = 1. The detection probability with respect to TCR is displayed in Figure 3.
The performance improves as the number of receiver increases. The detection performance increases by
approximately 3 dB when many receivers are used, and the horizontal and vertical polarization channels
are utilized. Finally, we analyze the CFAR property of the APD against fluctuating clutter. The PDF
of texture component τ is defined in Equation (2), and the false alarm probability with respect to E{τ}
is illustrated in Figure 4. The obtained curves imply that the APD has a CFAR for a fixed-shape

-20 -15 -10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v=3

v=2

v=1

P
d

TCR (dB)

Figure 2. Detection probability of the APD (solid line) and NAPD (dashed line).
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Figure 3. Detection probability of the dual-(solid line) and single-polarized (dashed line) APDs.
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Figure 4. False alarm probability versus the mean of texture component.
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Figure 5. Detection probability of the APD using different polarimetric vectors.

parameter, which is consistent with the derivation in Subsection 3.2.

4.2. Example of an Optimal Polarimetric Design based on Game Theory

The numbers of the transmitters and receivers are M = N = 2, and five candidates for the optimal
polarimetric vector are considered.

pm (1) = ( 1 0 )T

pm (2) = ( 0 1 )T

pm (3) = (0.4082 + j0.5774, 0.4082 + j0.5774)T

pm (4) = (0.4954 + j0.6396, 0.3055 + j0.5022)T

pm (5) = (0.3166 + j0.5351, 0.4522 + j0.6395)T .

(42)

For player 1, two possible types of target are available, and the corresponding covariance matrix is
provided in [23]. The probabilities of the two types of target are 0.3046 and 0.6954. By utilizing
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the technique on the basis of game theory, the optimal polarimetric vector can be determined as the
mixture of pm(1) and pm(2). The detection probability is displayed in Figure 5. The result shows that
the designed polarimetric vector is superior to the candidates in the detecting targets.

5. CONCLUSIONS

Unlike conventional radars, a polarimetric distributed MIMO radar can utilize spatial and polarimetric
diversity. In this study, we attempt to realize the full potential of polarimetric diversity by deriving the
APD combined with a game theory-based optimal polarimetric design method. The derivation of the
detector is based on a Mahalanobis projector, which whitens the clutter, and a CG model, which allows
the proposed detector to deal with non-Gaussian clutter. In scenarios where the PSM of the target is
unknown, the method based on game theory can help the radar identify the most suitable polarimetric
vector from several candidate vectors. The numerical examples have demonstrated the usage of the
detector, and the result reveals that the detection performance is satisfactory on the specified radar
scene.
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APPENDIX A.

Important mathematical operator’ notation and theorems

Assuming that j denotes the imaginary unit of vectors, we let ε = 1 + j. The gamma function is
denoted by Γ(·), and E{·} denotes the statistical expectation operation. For a set S, card (S) denotes
its cardinality, and 1S denotes its indicator function, defined as follows:

1S (x) =
{

1 x ∈ S
0 x /∈ S

(A1)

By utilizing the indicator function, we define the Kronecker delta as follows:

δn = 1{0} (n) , n ∈ Z. (A2)

For functions/operators f and g, f ◦ g denotes the composition, shown as follows:

(f ◦ g) (x) = f (g (x)) . (A3)

The iterative function is denoted by (f)K , defined as follows:

(f)K(x) =

{ (
(f)K−1 ◦ f

)
(x) K > 0

x K = 0
. (A4)

We denote vector and matrices with boldface lower and upper case letters, respectively. The
operator ⊗ denotes the Kronecker product. The transpose operator is denoted by (·)T , while the
element-wise conjugate and Hermitian transpose operation are denoted by (·)∗ and (·)H , respectively.
The operator tr {·} represents the trace of a given square matrix, and rank (·) denotes the given matrix’s
rank. The operator Diag (·) is used to construct diagonal or block diagonal matrices; if the parameter
of Diag (·) is a vector, Diag (·) forms a diagonal matrix from the elements of the vector; Diag (·) forms
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a block diagonal matrix if its parameters are several vectors or matrices. The operator vec (·) denotes
a vector formed by stacking the column vectors of the given matrix. IN is an N × N identity matrix.
The element of matrix X located at the nth row and mth column is denoted by (X)m,n.

The Euclidian norm of a vector is denoted by ‖·‖, while ‖·‖C denotes the weighted norm, defined
as follows:

‖y‖C =
√

〈y, y〉C, (A5)

where C is a positive definite Hermitian matrix, i.e., C � 0, and 〈·, ·〉C denotes the weighted inner
product, defined as follows:

〈x,y〉C = xHCy (A6)
Based on the weighted norm, we introduce the Mahalanobis distance which is a powerful tool for
describing Gaussian and compound-Gaussian problems:

distM(C) (x,y) = ‖x− y‖C−1 =
√

(x − y)H C−1 (x − y). (A7)

By utilizing the Mahalanobis distance [27], the probability density function (PDF) of the complex
circular Gaussian distribution CN (μ,C) can be expressed as:

f (x) =
(
det (πC)

(
exp ◦dist2M(C)

)
(x, μ)

)−1
, (A8)

where det(·) denotes the determinant of a given square matrix.
For a space in which the distance dist (·, ·) is defined, we can introduce the concept of projection,

defined as follows:
proj (b, col (G)) = arg min

g∈col(G)
dist (b,g) . (A9)

where G is a complex matrix; col(G) denotes the column space of G, and g is a complex vector on
col(G), which means that g is the linear combination of the column vectors of G, i.e.,

g = Gα, (A10)
where α is a complex vector. The definition shown in Equation (9) is abstract since the distance is not
defined explicitly. By substituting Euclidean distance into Eq. (9), we have the projector on Euclidean
space, shown as follows:

projE (b, col (G)) = arg min
g∈col(G)

‖b− g‖ = G
(
GHG

)−1
GHb. (A11)

Another expression of the projector can be obtained by substituting the Mahalanobis distance into Eq.
(9), shown as follows:

projM(C) (b, col (G)) = arg min
g∈col(G)

distM(C) (b,g) . (A12)

To solve the equation shown in Eq. (A12), substituting Eq. (A10) into Eq. (A12), we have the following
generalized least squares (GLS) problem:

min
α

(b− Gα)H C−1 (b− Gα) , (A13)

and the solution is α = (GHC−1G)−1GHC−1b; substituting the solution into Eq. (A10), we obtain the
closed form of the projector, shown as follows:

projM(C) (b, col (G)) = G
(
GHC−1G

)−1
GHC−1b. (A14)

The given projector is a powerful tool for solving non-white Gaussian problems, and we name it
Mahalanobis projector hereafter. The properties of Mahalanobis projector are listed as follows.
Theorem I: Similar to its counterpart in Euclidean space, Mahalanobis projector is idempotent and
self-adjoint in the sense of weighted inner product, shown as follows:(

projM(C) (·, col (G))
)2

(x) = projM(C) (x, col (G)) . (A15)〈
projM(C) (x, col (G)) ,y

〉
C−1

=
〈
x,projM(C) (y, col (G))

〉
C−1

, (A16)
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Theorem II: The Pythagorean Theorem on Mahalanobis distance. Mahalanobis projector can
decompose a vector in the sense of weighted inner product, shown as follows:∥∥∥projM(C) (y, col (G))

∥∥∥2

C−1
+ dist2M(C)

(
y,projM(C) (y, col (G))

)
= ‖y‖2

C−1 . (A17)

Theorem III: The Mahalanobis projector can be equivalently written as the combination of a pre-
whitening filter and the projector in Euclidean space, shown as follows:

projM(C) (b, col (G)) = C1/2projE
(
C−1/2b, col

(
C−1/2G

))
. (A18)

Theorem IV: Given that the projectors are idempotent, according to [28], the projector on Euclidean
space satisfies the following condition that the random vector follows b ∈ CN (0, I):

‖projE (b, col (G))‖2 ∼ χ2 (2rank (G)) . (A19)

where χ2(p) denotes the chi-square distribution with p degrees of freedom. Based on Theorem III, we
have an analogue of Eq. (A19) shown as follows:∥∥∥projM(C) (d, col (G))

∥∥∥2

C−1
∼ χ2 (2rank (G)) , (A20)

where d is a random vector follows CN (0,C).
The theorems listed above can be proved with ease by substituting Eqs. (A5)–(A14) into Eqs. (A16)–

(A20).
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