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On the EM Field Generated in the Air-Space by a Vertical Magnetic
Dipole Situated on a Plane Conducting Medium

Marcello Salis1, * and Marco Muzi2

Abstract—This work presents a hybrid analytical-numerical approach to evaluate the integral
representations for the time-harmonic electromagnetic (EM) field components produced in the air space
by a vertical magnetic dipole (VMD) placed on a plane homogeneous conducting medium. Explicit
expressions for the fields are derived by substituting a rational approximation, generated by the vector
fitting algorithm, for the non-analytic part of the integrand of the electric vector potential. This permits
to rewrite the representation for the electric vector potential as a combination of simple closed-contour
integrals around the pole singularities of the rational approximation, which may be directly evaluated.
As a result, each field component is given as a sum of cylindrical Hankel functions depending on the
radial distance between source and field points, plus an exponential term that is a function of the total
distance of the field point from the dipole.

1. INTRODUCTION

It is well established that information about the structure of an earthbound territory may be achieved by
measuring the EM field generated by a current-carrying insulated coil of wire placed in close proximity
to it [1–27]. Specifically, if the properties of the material medium do not change spatially, the nearness of
shallow buried items like metals, mines, or mineral assets may be inferred from the discrepancy between
the recorded measurement data and the theoretical outcomes arising from treating the soil as if it
were homogeneous. In the last decades, several approaches have been proposed that allow to compute
the time-harmonic EM field generated by a loop source positioned near the surface of homogeneous
ground [1, 2, 4, 5, 7, 9, 28–30]. However, most of them cast the complete integral representations for the
fields into forms amenable to numerical integration and, as a consequence, are typically time consuming.
An attempt at developing an analytical solution to the problem has been presented in [2]. Here, the
proposed explicit expressions for the fields are not subject to simplifying assumptions, but exhibit the
disadvantage of being tailored to the special case where both the source loop and the observation point
lie on the surface of the semi-infinite material medium. The aim of this paper is to derive new explicit
expressions for the time-harmonic EM field components of a circular loop source located on a lossy
ground, which are valid not only at the air side of the ground top surface, but also in the whole air-
space. This feature makes it possible to overcome the restrictive hypothesis, underlying the previous
approach, that the whole EM prospecting system must be situated on the soil to be explored. For the
purposes of the present derivation, the loop source is regarded as a vertical magnetic dipole. This is a
reasonable assumption in practical applications, as the perimeter of the loop is frequently much smaller
than both the free-space wavelength and the spacing between emitter and receiver.

The field expressions are obtained starting from the integral representation for the vertical
component of the electric vector potential, by replacing the non-analytic part of the integrand with
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a rational function representation according to the least squares-based vector fitting algorithm. This
leads to expressing the electric vector potential as a combination of simple closed-contour integrals
around the poles of the rational approximation, which may be easily analytically evaluated. As a result,
the field components are given as a sum of Hankel functions depending on the radial distance between
source and field points, plus an exponential function of the total distance of the field point from the
dipole. Numerical tests are performed to show the validity of the developed method and its advantages
in terms of time cost with respect to numerical algorithms used to evaluate Sommerfeld-type integrals.

2. THEORY

Consider a vertical magnetic dipole of moment mejωt situated at the air-side of the interface between
the air and a homogeneous lossy ground, as shown in Fig. 1. The dielectric permittivity and electric
conductivity of the ground are indicated with ε1 and σ1, respectively, while the magnetic permeability
is assumed to be constant everywhere and equal to that of free space μ0. Since the dipole is a magnetic
point source, the electric and magnetic field vectors in the air-space (n = 0) and in the region occupied
by the medium (n = 1) may be expressed in terms of an electric vector potential F, as follows [29]

En = −∇ × Fn, Hn = −(σn + jωεn)Fn +
1

jωμ0
∇ (∇ · Fn) . (1)

Because of the vertical orientation of the dipole, the scalar components of the vector Equation (1),
describing the EM field components, assume a simplified form. In fact, the currents in the conducting
medium flow only horizontally, and the electric field has no vertical component [29]. The electromagnetic
field is thus transverse electric (TE) with respect to z, and, in virtue of the first equation in Eq. (1),
the components Fx and Fy must be identically zero. As a consequence, the non-null electromagnetic
field components, written in the cylindrical coordinate system (ρ, ϕ, z) sketched in Fig. 1, read

Eϕn =
∂Fn

∂ρ
, Hρn =

1
jωμ0

∂2Fn

∂ρ∂z
, Hzn = − 1

jωμ0

1
ρ

∂

∂ρ

(
ρ
∂Fn

∂ρ

)
, (2)

where Fn = Fzn is the vertical component of the electric vector potential, which satisfies the Helmholtz
equation

∇2Fn + k2
nFn = 0. (3)

The solution of Eq. (3) in the air space is made up of two terms, which are the primary field, excited by
the source in the absence of any boundary, and the secondary (scattered) field representing the effects
of the air-medium interface. For a dipole placed at the air-ground interface, it reads [29]

F0 = Fp +
∫ ∞

0
b0(λ)eu0zJ0(λρ)dλ, (4)

where the primary field Fp is given by [29, 31, 32]

Fp = c
e−jk0

√
ρ2+z2√

ρ2 + z2
= c

∫ ∞

0

e−u0|z|

u0
J0(λρ)λdλ, (5)
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Figure 1. Sketch of a vertical magnetic dipole on a homogeneous ground.



Progress In Electromagnetics Research M, Vol. 91, 2020 137

with un =
√

λ2 − k2
n, k2

n = ω2μ0εn − jωμ0σn, c = jωμ0m/(4π), and J0(·) being the zeroth-order Bessel
function. On the other hand, since the ground is not lower bounded, the fields here can only propagate
downwards. Hence, the electric potential in the material medium may be expressed as

F1 =
∫ ∞

0
a1(λ)e−u1zJ0 (λρ) dλ (6)

where the unknown function a1(λ), as well as b0(λ), may be determined by imposing the continuity of
the tangential electric and magnetic fields across the interface at z = 0. This leads to the identities

F0|z=0− = F1|z=0+ ,
∂F0

∂z

∣∣∣∣
z=0−

=
∂F1

∂z

∣∣∣∣
z=0+

, (7)

which, after substituting Eqs. (4) and (6), may be solved for b0 to give

b0 = c
λ

u0

u0 − u1

u0 + u1
. (8)

As a consequence, Equation (4) for the total electric vector potential in the air space (z ≤ 0) is turned
into

F0 = c

∫ ∞

0

[
e−u0|z| +

u0 − u1

u0 + u1
eu0z

]
λ

u0
J0(λρ)dλ = 2c

∫ ∞

0

eu0z

u0 + u1
J0(λρ)λdλ. (9)

The purpose of this work is to derive explicit formulas for the EM field components produced above
the ground. The task may be accomplished by evaluating the integral representations for F0 and its
first-order z-derivative, and then substituting the obtained expressions into the right-hand sides of (2).
To evaluate F0, we first multiply the numerator and denominator of the fraction of the integrand in
Eq. (9) by u0 − u1, so as to obtain

F0 =
jωμ0m

2π(k2
1 − k2

0)

[∫ ∞

0
u0e

u0zJ0(λρ)λdλ −
∫ ∞

0
u1e

u0zJ0(λρ)λdλ

]
=

jωμ0m

2π(k2
1 − k2

0)
(S0 − S1), (10)

and notice that the integral S0 has an explicit form, since it is related to Eq. (5). In fact, it is found
that

S0 =
∂2

∂z2

∫ ∞

0

eu0z

u0
J0(λρ)λdλ =

∂2

∂z2

(
e−jk0r

r

)
=

[−r2(1 + jk0r) + z2(3 + 3jk0r − k2
0r

2)
] e−jk0r

r5
, (11)

with r =
√

ρ2+z2. On the other hand, to evaluate S1 it suffices to extend its range of integration to
the negative real axis. This may be done through substitution of the identity [8, 33]

J0(λρ) =
1
2

[
H

(2)
0 (λρ) − H

(2)
0 (λ̄ρ)

]
, (12)

where λ̄ = λ exp(−jπ) and H
(2)
0 (·) is the zeroth-order Hankel function of the second kind. It yields

S1 =
1
2

{∫ ∞

0
u1(λ)eu0(λ)zH

(2)
0 (λρ)λdλ−

∫ ∞e−jπ

0
u1(λ̄)eu0(λ̄)zH

(2)
0 (λ̄ρ)λ̄dλ̄

}

=
1
2

∫ ∞

∞e−jπ

u1e
u0zH

(2)
0 (λρ)λdλ, (13)

where the final contour of integration consists of the lower shore of the negative real λ-axis and the
positive real λ-axis. The idea now is to replace the non-analytic part of the integrand in Eq. (13) with
an accurate rational approximation in pole-residue form. In order to perform this task with maximum
efficiency, the function to be approximated must be chosen so that it decays as quickly as possible as λ
is increased. Hence, it is convenient to move the factor u1 of the integrand to the denominator. To this
goal, we rewrite Eq. (13) as follows

S1 =
1
2

∫ ∞

∞ e−jπ

λ2 − k2
1

u1
eu0zH

(2)
0 (λρ)λdλ. (14)
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Then, application of the least squares-based fitting algorithm proposed in [34] allows to obtain the
following rational approximation in terms of partial fractions

eu0z

u1

∼=
L∑

l=1

rl

jλ2 − p l
, Re [p l] < 0, (15)

where L is the order of the approximation. Performing the substitution of Eq. (15) permits to deform
the contour of integration to a new path, constituted by the lower infinite semi-circle and a set of circles,
the latter enclosing the poles of the sum of partial fractions in Eq. (15) that lie in the lower half of the
complex λ-plane. Since the integrand vanishes as |λ| is increased in the lower half of the complex plane,
it is concluded that the infinite semi-circle does not contribute to the contour integral, and Eq. (14) is
simplified to

S1 = − j

2

L∑
l=1

rl

∫
Cl

λ2 − k2
1

λ2 + jp l
H

(2)
0 (λρ)λdλ (16)

Cl is the infinitesimal circumference surrounding the pole λl = −√−jp l, lying on the lower half of
the complex λ-plane. The lth integral along the circle Cl can thus be evaluated analytically through
application of Cauchy’s integral formula. It yields∫

Cl

λ2 − k2
1

λ2 + jp l
H

(2)
0 (λρ)λdλ = −2πj lim

λ→λl

(λ − λl)
λ2 − k2

1

λ2 − λ2
l

H
(2)
0 (λρ)λ = −πj(λ2
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1)H

(2)
0 (λlρ), (17)

hence, the integral S1 in Eq. (16) assumes the explicit form

S1 = −π

2

L∑
l=1

rl

(
λ2

l − k2
1

)
H

(2)
0 (λlρ), (18)

which may be substituted together with Eq. (11) into Eq. (10) to give

F0 =
jωμ0m

2π(k2
1 − k2

0)

{[−r2(1 + jk0r)+z2(3 + 3jk0r − k2
0r
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. (19)

Analogously, an explicit formula for the first-order z-derivative of F0 may also be derived. In fact, from
Eq. (10) it follows that

∂F0

∂z
=

jωμ0m

2π(k2
1 − k2

0)
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3r2(3 + 3jk0r − k2
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}
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where the z-derivative of S1 may be obtained from Eq. (18) by multiplying the lth term on the right-

hand side by u0(λl) =
√

λ2
l − k2

0 , since ∂eu0z/∂z = u0e
u0z. Hence, the z-derivative of S1 assumes the

form
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which, used together with Eqs. (20) and (19) in Eq. (2), leads to the explicit expressions for the
electromagnetic field components in air, namely

Eϕ0 =
jωμ0m

2π(k2
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0)
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Hz0 =
m
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.(24)

3. VALIDATION OF THE FORMULATION

As validation of the theoretical development, Equation (24) is used to calculate the vertical magnetic
field component that a dipole with moment m = 1 A ·m2 produces at a plane 1m apart from the
interface between air and a clay soil, with σ1 = 10 mS/m and ε1 = 10 ε0 [10]. At first, the Hz-field is
computed against the radial distance ρ between the source and field points, assuming that the operating
frequency is equal to 10 kHz. The length chosen for the sum of partial fractions in Eq. (15) is L = 10,
and the poles and residues are determined through an iterative process which consists of repeatedly
applying the fitting procedure in [34], until the root mean square relative error of the approximation
of Eq. (15) falls below the tolerable error of 10−4. The process is started by assuming that the guess
values for the poles of the approximation are p l = (−1+ jql)m−2 (l = 1, 2, . . . , 10), with the ql’s linearly
distributed in the interval [−15, 15]. With the above assumptions, the iterative process terminates after
16 iterations, when the RMS relative error of the approximation of Eq. (15) with L = 10 is slightly
more than 10−7. The corresponding ρ-profile provided by Eq. (24) is shown in Fig. 2, which also
illustrates the trends associated with lower-order rational approximations, as well as the results arising
from numerically evaluating the integral representation for Hz, which comes from substituting Eq. (9)
into the last of Equation (2). Numerical integration is carried out through a Gauss-Kronrod G7-K15
scheme, originating from the combination of a 7-point Gauss rule with a 15-point Kronrod rule. From
the analysis of the plotted curves it emerges that increasing the order of the rational approximation
L improves the accuracy of the result of the computation. In fact, if L grows up the curves provided
by Eq. (24) approach the outcomes from numerical quadrature, and when L = 10 excellent agreement
is achieved as expected. Thus, the proposed series-form approximate solution converges to the exact
solution. This is confirmed by the curves plotted in Fig. 3, which shows the relative error of the outcomes
from Eq. (24) as compared to numerical integration data. As seen, except for large values of ρ, the error
monotonically decreases as L is increased. On the other hand, when ρ is large, the error quickly drops
with increasing L only if L is also sufficiently large.

Thus, the accuracy of the result of the computation significantly depends on the value of ρ, and
in particular, Fig. 3 shows that for a given value of L the relative error may vary by three orders of
magnitude within the considered ρ-interval. Significant variations in accuracy are instead not observed
while changing the electrical conductivity σ1 of the lossy ground. This aspect is illustrated by Figs. 4
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and 5, which show, respectively, profiles of |Hz| versus the ratio σ1/(ωε1), and the relative error resulting
from using Eq. (24) instead of G7-K15 scheme. Here, it is assumed that the source is a unit-moment
dipole which operates at 10 MHz, and that ε1 = 10ε0, ρ = 1m, and z = −50 cm. Fig. 4 tells us that the
sequence of trends generated by the partial sums in Eq. (24) converges to the profile provided by the
G7-K15 scheme, and that excellent agreement is achieved starting from L = 8. On the other hand, a
glance at the curves plotted in Fig. 5 leads to the conclusion that the error by the outcomes from the
proposed approach weakly depends on the normalized conductivity σ1/(ωε1). In the good-conductor
limit (σ1 � ωε1), the error is not affected by conductivity changes. One might ask how changing the
vertical distance of the field point from the air-ground interface affects the accuracy of the outcomes
from the proposed approach. This aspect is illustrated by Fig. 6, which shows z-profiles of the Hz-field
strength corresponding to distinct values of L, calculated by assuming that the unit-moment dipole still
operates at 10 MHz, and that σ1 = 1mS/m, ε1 = 10ε0, and ρ = 2 m. The plotted curves clearly point
out that, as the vertical distance grows up, the length of the sum in Eq. (15) must be progressively,
although moderately, increased in order to maintain a good level of accuracy. As previously anticipated,
for a fixed value of L application of the fitting algorithm in [34] has been iterated until the RMS relative
error of Eq. (15) falls below a specified threshold. However, the relative error is lower bounded, and it
cannot be decreased as much as desired. This point is clarified by Fig. 7, which depicts, for a wide set
of values of L, the error achievable by repeating the execution of the fitting process N times, with N
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taken as a parameter. The electromagnetic and geometric parameters are the same as those assumed in
the example of Fig. 2. As seen, the number of iterations required to reach the lower limit of the error
strongly depends on L, and it is smaller when L is small or large. For intermediate values of L, about
100 iterations are required in order to approach the minimum error. On the other hand, the minimum
achievable error decreases with increasing L, and for L > 25 about 20 iterations are enough to achieve
an RMS relative error smaller than 10−14.

With accuracy being equal, the proposed method makes it possible to save computation time
compared to G7-K15 numerical scheme. In fact, the average CPU time taken by Eq. (24) to generate
the profile of |Hz| associated with L = 8 in Fig. 4 is equal to 1.57 ms, while about 9 s are taken by
numerical integration to produce the same outcome. This means that the speed-up offered by Eq. (24),
which is the ratio of the time taken by Gaussian integration to that required by the proposed approach,
about 5.7 · 103.

4. CONCLUSIONS

This paper has presented an efficient hybrid analytical-numerical approach for evaluating the integral
expressions for the EM field components generated in the air space by a vertical magnetic dipole
placed on a homogeneous earth. The approach consists of deriving explicit expressions for the field,
by replacing the non-oscillating-part of the integrand of the electric vector potential with a rational
approximation arising from applying a least squares-based fitting algorithm. This leads to turning the
integral representation for the electric vector potential into a sum of closed-contour integrals about the
poles of the rational function, which may be easily evaluated. The proposed method is useful in practical
applications like, for instance, electromagnetic sounding technique for ground exploration. In such a
context, it may be integrated in the signal or data processing unit of measurement/testing devices.
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