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Free Vibration of Magnetic Gear with Intersecting Axes

Xiuhong Hao, Wenbin Hao, Qingkan Wang, and Deng Pan*

Abstract—The dynamic performance optimization of magnetic gear devices is essential to their
industrialization. In this study, upon considering the magnetic field coupling characteristics of different
components of a field modulated magnetic gear with intersecting axes (FMMGIA), we first obtained
the magnetic coupling stiffnesses of these components via the finite element method. On this basis,
we further established a dynamic model as well as the corresponding differential equations for the
magnetic gear. Thereafter, we analyzed the modal characteristics and the influences of the primary
design parameters on the modal frequency of the FMMGIA system. The results indicated that the
magnetic coupling stiffnesses among the FMMGIA components were significantly lower than the meshing
stiffnesses of the mechanical gears. In addition, the magnetic gear system consisted of three orders of
torsional modals as well as three orders of horizontal vibration modals, among which the torsional
modal frequencies of both the input and output rotors were substantially lower than others. Finally,
parameters such as the minimum axial length and the permanent magnet remanence demonstrated
considerable have impacts on the modal frequencies of the FMMGIA system.

1. INTRODUCTION

The magnetic gear transmission system is capable of motion and power transmission through magnetic
field coupling, featuring advantages including no contact, no wear, no lubrication, and overload
protection. This system overcomes the mechanical gear drawback of gear teeth breakage due to contact
fatigue, making it one of the best alternatives to mechanical gear transmission [1].

Compared to conventional magnetic gears with parallel axes that adopt the topological structure
of mechanical gears, the field modulated magnetic gear (FMMG) presents advantages including efficient
utilization of permanent magnets (PMs) and large output torque. The higher torque density of the
FMMG is up to 147 kN ·m/m3, and transmission capacity is comparable to that of the mechanical
gear [2, 3]. Thus, over the past two decades, the FMMG has attracted substantial attention from
various industries, resulting in emerging research achievements such as novel magnetic gear devices and
integrated motors [4, 5]. However, despite a large number of in-depth investigations on transmission
mechanism [6], transmission efficiency [7], parameter optimization [8], component deformation, etc. [9]
of these devices and integrated motors, relatively few studies exist on the dynamics of the magnetic
gear [10]. Studies by Hao et al. and Montague et al. indicated that the magnetic coupling stiffnesses of the
components of a magnetic gear system were much smaller than the meshing stiffnesses of the mechanical
gears [10, 12], resulting in slower transient resonant attenuation of the system upon certain excitation,
which aggravated the dynamic behavior of the system to a certain extent. Frank et al. inserted damping
coils into the rotor to increase the electromagnetic damping and consequently accelerate the vibrational
attenuation of the components. However, their study failed to address the decrease in the output
torque and transmission efficiency of the system [11]. As the service indicators of motion and power
transmission devices rely heavily on their dynamic performance, their optimization is essential to the
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industrialization of these devices. Compared with mechanical gears, the dynamic characteristics of
magnetic gears are poor. Especially, when the output torque suddenly increases and does not exceed
the maximum output torque, there are larger overshoot and longer transient time from one steady
running state to another steady running state [13].

The most suitable design for the magnetic field modulation mechanism of the magnetic gear is
a coaxial structure, which also facilitates integration with motors [14]. Therefore, other types of
implementations, such as the field modulated magnetic gears with the intersecting axes (FMMGIA),
have received significantly less attention, although they have higher output torque and torque density
than the traditional intersecting shaft magnetic gears and are equally important as an alternative to
mechanical bevel gears [15, 16]. Based on our previous work on transmission mechanisms and structural
optimization, we established a three-dimensional dynamic model and the corresponding differential
equations of the magnetic gear system, analyzed the modal characteristics of the system, and identified
the effects of different design parameters on the modal frequency. This work provides a theoretical basis
for the structural optimization and dynamic performance enhancement of the FMMGIA.

2. DYNAMIC MODEL AND DIFFERENTIAL EQUATION SET

Figure 1 shows the structure of the FMMGIA, which mainly consists of ferromagnetic pole-pieces (FP),
an input rotor, and an output rotor. Both the input and output rotors are composed of a back iron and
PMs, which are magnetized via axial magnetization so that N-poles and S-poles are layered at regular
intervals on the back iron. The linear FP is composed of permeable and non-permeable magnetic strips
at alternating intervals that form an elliptical cross section, and the two end-faces of the pole pieces
opposite to the PMs have a ring-shape and an intersection angle of 90◦. By changing this angle or
the cross-sectional shape of the FP, the intersection angle between the input and output shafts can
be tailored. An air gap also exists between the input/output rotors and the two end-faces of the pole
pieces. The primary function of the FP is to regulate the main harmonics in the air gap at each of the
two sides so as to achieve equal magnetic pole coupling of the magnetic gear, thereby generating motion
and power.

Figure 1. Structure of the FMMGIA.

2.1. Dynamic Model and Differential Equation Set

The dynamic model of the FMMGIA system consists of models for two subsystems, i.e., the input
rotor/FP subsystem and FP/output rotor subsystem. The dynamic models of the two subsystems are
established individually; then, the dynamic model of the entire transmission system can be established
by combining them. When establishing the dynamic model, the following assumptions are made based
on the actual structure of the system:
(1) The main components are rigid; in particular, the PM and the back iron form an integrated rigid

body without internal sliding. Subtle elastic deformations of the components are ignored during
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the transmission process.
(2) Only the rotational vibration of the components and their lateral vibrations on the rotational plane

are considered, whereas vibrations at other degrees of freedom are ignored.
(3) The friction between moving components as well as the time-varying portion of the magnetic

coupling stiffnesses due to magnetic field modulation are ignored.
(4) The magnetic couplings between the PMs and FP on both the input and output rotors are simplified

as linear springs along the tangential and lateral directions. In addition, the support between the
input/output rotors and the substrate can also be represented by a linear spring along the lateral
direction. Lastly, the constraint between the FP and the substrate can be simplified as linear spring
constraints along the tangential and lateral directions.

(5) The system does not experience issues such as desynchronizing due to overload.
(6) The manufacturing and assembling errors of all components are ignored. The PMs on the input

and output rotors are assumed to have identical sizes and performance parameters, so are the
permeable and non-permeable parts of the FP.

(7) The effects of eddy-current loss among the components of the FMMGIA system on the magnetic
coupling stiffness are ignored.

(8) Fluctuations in the input and output loads may cause low-frequency or high-frequency resonance
but will not change the modal characteristics of the FMMGIA system.

The resultant dynamic model of the magnetic gear system based on the spatial structure and the
established dynamic assumptions are shown in Fig. 2. Subsequently, the dynamic equations of the
two subsystems were established individually and then combined to derive the equation of the overall
transmission system.

When establishing the dynamic model of the FMMGIA system, to simplify calculations, the
torsional angular displacements θI , θs, and θo of the input rotor, FP, and output rotor, respectively,

(a)

(b) (c)

Figure 2. Dynamic model of the entire transmission system: (a) The dynamic models; (b) The input
rotor/FP subsystem; (c) The FP/output rotor subsystem.
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were replaced with the corresponding torsional linear displacements uI , us, and uo, i.e.,

ui = Riθi, i = I, s, o (1)

where RI , Rs, and Ro denote the rotational radius of the input rotor, pole-pieces, and output rotor,
respectively.

By representing the vibrational displacement of the input rotor, FP, and output rotor along the
lateral support direction by yI , ys, and yo, respectively, the displacements of the FMMGIA system at
each degree of freedom can be expressed by the following matrix:

x = [ uI yI us ys uo uo ]T (2)

2.1.1. Input Rotor/FP Subsystem

The dynamic model of the input rotor/FP subsystem is shown in Fig. 2(a). The differential equations
of the model can be expressed as follows:⎧⎪⎪⎨

⎪⎪⎩

MI üI + kIxI cos βI = TI/RI

mI ÿI + kIxI sin βI + kIyyI = 0
Msüs sin ϕ − kIxI cos βI + ksus sin ϕ = 0
msÿs − kIxI sin βI sin ϕ + ksyys = 0

(3)

where MI and Ms are the equivalent masses (kg) of the input rotor and FP, respectively, when rotating
about their axes, and MI = JI/R

2
I and Ms = Js/R

2
s , where JI and Js are the rotational inertia (kg ·m2)

of the input rotor and the FP when rotating along their axes, respectively; mI and ms are the masses
(kg) of the input rotor and the FP, respectively; kIy and ksy are the lateral support stiffnesses (N/m)
of the input rotor and FP, respectively; ks is the torsional support stiffness (N/m) of the FP; kI is the

magnetic coupling stiffness (N/m) between the input rotor and the FP, and kI =
√

k2
Ir + k2

It; kIr and
kIt are the radial and tangential components (N/m) of the magnetic coupling stiffness between the input
rotor and the FP, respectively; xI is the relative displacement (m) between the input rotor and FP;
βI is the intersection angle (◦) between the radial and tangential components of the magnetic coupling
stiffness between the input rotor and FP, βI = arctan(kIr/kIt); ϕ is the intersection angle (◦) between
the end-face of the FP and central axis, and TI is the fluctuation torque (N/m) on the input rotor.

The relative displacement xI between the input rotor and the FP is given by

xI = (uI − us) cos βI + (yI − ys) sin βI (4)

By substituting Equation (4) into the dynamic differential Equation (3), we get⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MI üI + kI(uI − us) cos2 βI + kI(yI − ys) sin βI cos βI = TI/RI

mI ÿI + kI(uI − us) sin βI cos βI + kI(yI − ys) sin2 βI + kIyyI = 0
Msüs sin ϕ − kI(uI − us) cos2 βI − kI(yI − ys) sin βI cos βI + ksus sin ϕ = 0
msÿs − kI(uI − us) sin βI cos βI sin ϕ − kI(yI − ys) sin2 βI sin ϕ + ksyys = 0

(5)

2.1.2. FP/output Rotor Subsystem

The dynamic model of the FP/output rotor subsystem is shown in Fig. 2(b). The differential equations
of the model can be expressed as follows:⎧⎪⎪⎨

⎪⎪⎩

Msüs sin ϕ − koxo cos βo + ksus sin ϕ = 0
msÿs − koxo sin βo sin ϕ + ksyys = 0
Moüo + koxo cos βo = To/Ro

moÿo + koxo sin βo + koyyo = 0

(6)

where Mo is the equivalent mass (kg) of the output rotor when rotating along its axis Mo = Jo/R
2
o; Jo

is the rotational inertial (kg ·m2) of the output rotor when rotating along its axis; mo is the mass (kg)
of the output rotor; koy is the lateral support stiffness (N/m) of the output rotor; ko is the magnetic
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coupling stiffness (N/m) between the output rotor and FP, and ko =
√

k2
or + k2

ot; kor and kot are the
radial and tangential components (N/m) of the magnetic coupling stiffness between the output rotor
and the FP, respectively; xo is the relative displacement (m) between the output rotor and the FP; βo

is the intersection angle (◦) between the radial and the tangential components of the magnetic coupling
stiffness between the output rotor and the FP, βo = arctan(kor/kot), and To is the fluctuation torque
(N/m) on the output rotor.

The relative displacement xo between the output rotor and the FP can be calculated by

xo = (uo − us) cos βo + (yo − ys) sin βo (7)

By substituting Equation (7) into the dynamic differential Equation (6), we then obtain the dynamic
equation set for the FP/output rotor subsystem:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Msüs sin ϕ − ko(uo − us) cos2 βo − ko(yo − ys) sin βo cos βo + ksus sin ϕ = 0
msÿs − ko(uo − us) sin βo cos βo sin ϕ − ko(yo − ys) sin2 βo sin ϕ + ksyys = 0
Moüo + ko(uo − us) cos2 βo + ko(yo − ys) sin βo cos βo = To/Ro

moÿo + ko(uo − us) sin βo cos βo + ko(yo − ys) sin2 βo + koyyo = 0

(8)

2.1.3. Overall System

By combining Equations (5) and (8), we obtain the differential equations of the FMMGIA system in
the matrix form, which can be expressed as

mẍ + kẍ = F (9)

where m is the mass matrix, k is the stiffness matrix, and F is load vector matrix, individually defined
as follows:

m = diag ([ MI mI Ms ms Mo mo ])
F = [ TI/RI 0 0 0 To/Ro 0 ]

k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kI cos2 βI kI sin βI cos βI −kI cos2 βI

kI sinβI cos βI kI sin2 βI + kIy −kI sin βI cos βI

−kI cos2 βIcscϕ −kI sin βI cos βIcscϕ ko cos2 βocscϕ + ks + kI cos2 βIcscϕ
−kI sin βI cos βI sin ϕ −kI sin2 βI sin ϕ (kI sinβI cos βI + ko sin βo cos βo) sin ϕ

0 0 −ko cos2 βo

0 0 −ko sinβo cos βo

−kI sinβI cos βI 0 0
−kI sin2 βI 0 0

(kI sin βI cos βI + ko sinβo cos βo)cscϕ −ko cos2 βo −ko sin βo cos βo

kI sin2 βI sinϕ + ksy + ko sin2 βo sin ϕ −ko sinβo cos βo sin ϕ −ko sin2 βo sin ϕ

−ko sinβo cos βo ko cos2 βo ko sin βo cos βo

−ko sin2 βo k0 sinβo cos βo ko sin2 βo + koy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2.1.4. Magnetic Coupling Stiffness Calculation

Table 1 lists the parameters of the example FMMGIA system. A three-dimensional finite element model
was built for the magnetic gear. In this model, the back iron materials of the input and output rotors
were set to Q235 steel and 23TW250 silicon steel sheets, the FP material to 23TW250 silicon steel
sheets, and the material of the gap between the input/output rotor and the FP to air. There were
a total of 10 silicon steel sheets in the back iron, each with a thickness of 0.5 mm. Upon initiating
the magnetic gear system, the input rotor, output rotor, and FP were all stationary, and the relative
positions between the input/output rotor and the end-face of the FP at that instant were set as the
initial position.
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Table 1. Parameters of the linear field modulated magnetic gear with intersecting axes.

Name of parameter Value Name of parameter Value
Number of pole pairs of the
PMs on the input rotor p1

4
Number of pole pairs of the
PMs on the output rotor p2

17

Number of magnetic
stripes of the FP

21
Internal radius of PMs of the
input/output rotors R1 (mm)

110

External radius of the PMs of
the input/output rotors R2 (mm)

125
Axial thickness of the PMs of

the input/output rotors hm (mm)
10

Thickness of the Q235 back iron
of the input/output rotors (mm)

15
Thickness of the air gaps at the
input/output rotors ha (mm)

1

Thickness of the silicon steel back
iron of the input/output rotors (mm)

5
Minimum axial length

of the FP If (mm)
15

Diameter of the back iron of
the input/output rotors d (mm)

250
Intersection angle between the
input and output rotors (◦)

90

Transmission ratio 4.25 Remanence of PMs Br/T 1.3
Coercive force of the PMs Hc/KOe 11.6

If, for a circular area originating at the center of the air gaps of the input/output rotors and having
a radius R, the radial, tangential, and axial components of its magnetic flux density are assumed to
be BrI , BtI , BaI and Bro, Bto, Bao, respectively, then the radial and tangential force densities of the
magnetic stresses on the input and output rotors can be expressed as⎧⎪⎪⎨

⎪⎪⎩
fIt =

BrIBtI

μ0
fot =

BroBto

μ0

fIr =
B2

rI − B2
tI

2μ0
for =

B2
ro − B2

to

2μ0

(10)

where μ0 is the permeability of vacuum.
Subsequently, by selecting the integration path as the same area that originates at the center of

the lateral air gaps and has a radius of R, the magnetic coupling stiffnesses between the input/output
rotor and the FP can be derived based on the radial and tangential magnetic pulls on the input and
output rotors, as given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kIt =
∫ R2

R1

∫ 2π

0

R

μ0

∂ (BrIBtI)
∂uI

dθIdR =
∫ R2

R1

∫ 2π

0

R

μ0

∂ (BrIBtI)
R∂θI

dθIdR

kot =
∫ R2

R1

∫ 2π

0

R

μ0

∂ (BroBto)
∂uo

dθodR =
∫ R2

R1

∫ 2π

0

R

μ0

∂ (BroBto)
R∂θo

dθodR

kIr =
∫ R2

R1

∫ 2π

0

R

2μ0

∂
(
B2

rI − B2
tI

)
∂uI

dθIdR =
∫ R2

R1

∫ 2π

0

R

2μ0

∂
(
B2

rI − B2
tI

)
R∂θI

dθIdR

kor =
∫ R2

R1

∫ 2π

0

R

2μ0

∂
(
B2

ro − B2
to

)
∂uo

dθodR =
∫ R2

R1

∫ 2π

0

R

2μ0

∂
(
B2

ro − B2
to

)
R∂θo

dθodR

(11)

Next, by selecting circular areas which originate at the center of the air gaps but have different
radii (R1 � R � R2), we can derive the axial, tangential and radial magnetic flux densities of the
different radii R, R1, and R2 through finite element simulation, as shown in Fig. 3. It can be seen
that although the arc length of the PM’s location varies with different radii, because the PMs all share
the same size, material and fan shape, and are layered at regular intervals, the axial and tangential
magnetic flux densities of different radii are almost identical, whilst the radial magnetic flux densities
differ only slightly.
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Figure 3. Magnetic flux densities under different radii: (a) Air gaps near the input rotor; (b) Air gaps
near the input rotor; (c) Air gaps near the input rotor; (d) Air gaps near the output rotor; (e) Air gaps
near the output rotor; (f) Air gaps near the output rotor.

If we ignore subtle differences in the magnetic flux distribution at the middle of the air gaps, the
magnetic coupling stiffnesses between the input/output rotor and the FP can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kIt =
∫ 2π

0

(R2 − R1)
μ0

∂ (BrIBtI)
∂θI

dθI

kot =
∫ 2π

0

(R2 − R1)
μ0

∂ (BroBtao)
∂θo

dθo

kIr =
∫ 2π

0

(R2 − R1)
2μ0

∂
(
B2

rI − B2
tI

)
∂θI

dθI

kor =
∫ 2π

0

(R2 − R1)
2μ0

∂
(
B2

ro − B2
to

)
∂θo

dθo

(12)
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For a stationary input rotor, the magnetic coupling stiffness curves of the components in the
FMMGIA system when the output rotor rotates to different angles relative to the initial position are
shown in Fig. 4.
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Figure 4. Magnetic coupling stiffness curves of the magnetic gear.

It can be seen from Fig. 4 that the magnetic coupling stiffnesses between the input/output rotor and
the FP change with the rotational angle of the output rotor. Specifically, when the rotational angle is
0◦ — that is, when the output torque of the magnetic gear is 0 N·m — the tangential magnetic coupling
stiffness is zero. On the contrary, when the rotational angle is 22.5◦, that is, the output torque of the
FMMGIA is the largest, the tangential magnetic coupling stiffness reaches its maximum. Therefore,
the tangential magnetic coupling stiffness increases with increasing output load. Similarly, the radial
magnetic coupling stiffness also increases with the rotational angle of the output rotor, or the output
torque; however, the initial radial stiffness is never zero, which indicates the constant presence of an
unbalanced radial magnetic pull. Furthermore, the radial and tangential magnetic coupling stiffnesses
between the output rotor and the FP are consistently larger than those between the input rotor and
FP, and both values are considerably smaller than the meshing stiffness of the mechanical gear at 2–3
orders of magnitude [17].

3. MODAL ANALYSIS OF THE FMMGIA SYSTEM

Table 2 shows the corresponding stiffness and mass parameters of the example system shown in Table 1
when is at maximum load.

Table 2. Stiffness and mass parameters of the fully loaded example magnetic gear system.

MI/Mo (kg) mI/mo (kg) Ms (kg) ms (kg) kIt (N/m) kIr (N/m)
5.92 10.72 2.91 7.45 1.9823 × 104 9.2130 × 103

kot (N/m) kor (N/m) kIy (N/m) koy (N/m) ksy (N/m) ks (N/m)
7.1363 × 104 2.9631 × 104 1.5 × 107 1.5 × 107 1.7 × 107 1.0 × 107

The modal frequency of each order and the corresponding modal shapes of the FMMGIA system
can be derived by substituting the parameters in Table 2 into differential Equation (9) and ignoring the
external load fluctuation. The results are shown in Table 3.

An analysis of the characteristics of the modal frequencies and shapes suggests that the transmission
system of the FMMGIA has the following features:
(1) The FMMGIA system has 6 orders modal. Among them, two order modalds have smaller

frequencies, while the rest have substantially larger frequencies. For different orders modal, while
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Table 3. Modal frequencies and corresponding modal shapes of the FMMGIA system.

IRTM IRLM FPTM FPLM ORTM ORLM
Frequency (rad/s) 55.0 1183.1 1864.8 1513.6 105.1 1183.3

Modal shapes

1.0000 −0.0010 −0.0009 0.0006 0.0029 −0.0000
−0.0006 −1.0000 −0.0004 0.0004 −0.0000 −0.0064
0.0025 −0.0020 1.0000 0.0147 −0.0065 0.0045
0.0007 −0.0008 0.0057 −1.0000 −0.0023 0.0024
0.0039 −0.0000 −0.0032 0.0020 −1.0000 0.0033
−0.0000 −0.0085 −0.0012 0.0012 0.0018 1.0000

the vibration displacement is relatively large at one degree of freedom, it is significantly smaller at all
the other degrees of freedom, indicating a weak coupling between different degrees of freedom. This
is because different components are connected by magnetic coupling, and therefore, the torsional
magnetic coupling stiffnesses between the input/output rotors and the FP are substantially smaller
than the lateral support stiffnesses of the input/output rotors and the torsional and lateral support
stiffnesses of the FP. According to the characteristics of the modal shapes corresponding to different
modal frequencies, we have named each modal as the torsional or the lateral modal of the input
rotor, FP, and output rotor (IRTM, IRLM, FPTM, FPLM, ORTM, and ORLM).

(2) Because of their structural similarity, the input and output rotors of the FMMGIA system have
identical physical masses as well as equivalent masses when rotating around the axis. However,
as the tangential magnetic coupling stiffness between the output rotor and FP increases, the
corresponding inherent frequency of the ORTM also increases. Changing the number of PM pole
pairs of the input and output rotors can change the input/output torque ratio, which in turn alters
the magnetic coupling stiffnesses between the input/output rotors and FP and thus, the natural
frequencies.

(3) As the input and output rotors adopt the same support mode and material, their torsional
and lateral support stiffnesses are fundamentally consistent. However, different lateral magnetic
coupling stiffnesses between the components and identical masses of the input and output rotors
result in approximately similar lateral vibration frequencies between the input and output rotors.

4. EFFECTS OF PRIMARY DESIGN PARAMETERS ON THE NATURAL
FREQUENCY OF THE FMMGIA SYSTEM

The modal frequency of the FMMGIA system is of great significance to its dynamic characteristics.
Investigation into the effects of the primary design parameters on the modal frequency of the FMMGIA
system can provide references to optimize its design as well as to enhance its stability.

As shown in Fig. 5(a), when the masses of the back irons of the input and output rotors gradually
increase, their lateral modal frequencies decrease sharply, whilst their torsional modal frequencies
decrease slowly. However, both the torsional and lateral modal frequencies of the FP remain almost
unchanged. This is because with the simultaneous increase of mI and mo, the equivalent masses of the
two rotors along the rotational direction increase, but the magnetic flux densities of the air gaps are
scarcely influenced at the same time. Therefore, only the magnetic coupling stiffness increases slowly.

As shown in Fig. 5(b), as the remanence of the PMs gradually increases, the magnetic coupling
stiffnesses between the input/output rotor and the FP increase. More specifically, the torsional magnetic
coupling stiffnesses between the input/output rotor and FP increase to a larger extent than the lateral
magnetic coupling stiffnesses. Therefore, the modal frequencies of the torsional modes of the input
rotor, output rotor, and FP increase accordingly, whereas the lateral modal frequencies do not change
significantly.
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Figure 5. Effects of primary design parameters on natural frequency: (a) mI/mo; (b)Br; (c) hm; (d)la;
(e) η.

As the PM thickness increases, the magnetic flux densities of the air gaps increase correspondingly.
Simultaneously, the maximum static output torque of the magnetic gear system is escalated, which in
turn increases the magnetic coupling stiffnesses between the input/output rotor and FP. However, after
the thicknesses of the PMs reach a certain value, increase in the magnetostatic energy is compensated
by the magnetoresistance loss. Consequently, the increase in the maximum static output torque of the
FMMGIA and the magnetic coupling stiffnesses between different components almost halts despite the
constantly growing volume of the PMs. Therefore, as shown in Fig. 5(c), the modal frequencies of the
torsional modes of the input and out rotors in the magnetic gear system first increase, then decrease,
while the modal frequency of the torsional modal of the FP tends to stabilize after a certain period of
growth.

As shown in Fig. 5(d), when the minimum axial length of the FP increases, besides a rapid increase
in the masses of the FP, the magnetoresistance also escalates, which leads to a decreased maximum
static torque of the magnetic gear system as well as reduced magnetic coupling stiffnesses between
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components. Consequently, each order of modal frequency decreases. Among all the modal frequencies,
the frequencies of the torsional and lateral modals of the FP demonstrate the most significant reduction,
followed by those of the torsional vibration modes of the input and output rotors. On the contrary, the
modal frequencies of the lateral modal of the two rotors do not change significantly.

If the ratio between the current output load and the maximum output load of the FMMGIA system
is defined as the load factor η, then the tangential and radial magnetic coupling stiffnesses between
different components increase with increasing η. Out of these, increase in the tangential magnetic
coupling stiffness is the most obvious, contributing to considerable increases in various torsional modal
frequencies, as shown in Fig. 5(e). On the contrary, as increase in the lateral magnetic coupling stiffness
is negligible compared to the lateral support stiffness, the modal frequencies of the various lateral modals
remain almost unchanged.

5. MODAL EXPERIMENT OF THE EXAMPLE FMMGIA SYSTEM

Experimental verification of the modal of the magnetic gear system is of great importance for validating
the established dynamic model. In this study, we adopted the hammering method to measure the
modal frequencies of the example magnetic gear system. A prototype of the example system described
in Table 1 is shown in Fig. 6; it consisted of a driving motor, the magnetic gear prototype, a magnetic
powder loader, and a hammering vibration measurement system. A wireless torque sensor was installed
between the output shaft of the FMMGIA and the magnetic powder loader to display the output
torque in real time by transferring the data to the computer program via a wireless torque receiver.
The magnetic powder loader was used to apply a fixed load to the output shaft exceeding the maximum
output torque for the magnetic gear system. A frequency-transducer was used to adjust the rotational
speed of the three-phase AC motor to 100 r/min. The magnetic gear system was discontinuously
started several times by motor, after which braking was performed by the voltage reversal braking
until the intersection angle between the input and output shafts approached 22.5◦, so that the system
could operate at approximately the maximum output load. Subsequently, the modal frequencies of
the components at different degrees of freedom were measured using the multi-point excitation and
single-point response method; the measurement results are listed in Table 4.

Motor

Prototype Wireless torque sensor

Magnetic powder loader

Compute
Signal acquisition

instrument+charge amplifier

Force hammer Acceleration sensor

Computer

Wireless signal receiver

Figure 6. Modal experiment platform for the example magnetic gear system.

Table 4 clearly displays a good agreement between the measured and theoretically predicted modal
frequencies, thereby validating the dynamic model of a magnetic gear system. However, there are still
discrepancies between the experimental and theoretical results, the largest of which can be observed in
the frequencies corresponding to the torsional vibration modals of the input and output rotors. These
can be explained as follows:
(1) The theoretical predication of the torsional modal frequencies of both the input and output rotors

are higher than the measured values. This is mainly because the magnetic coupling stiffnesses
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Table 4. Measured modal frequencies and errors.

Modal IRTM IRLM FPTM FPLM ORTM ORLM
Theoretical value (rad/s) 55.0 1183.1 1864.8 1513.6 105.1 1183.3
Measured value (rad/s) 53.2 1325.6 1786.9 1687.3 102.5 1353.6

Error (%) 17.39 12.05 4.43 11.49 19.48 14.39

between different components are derived based on the finite element method, whereas factors such
as the magnetic flux leakage of the components, magnetoresistance loss, incomplete magnetizing
of the PMs, and structural inhomogeneity of the material are not considered, thereby leading to
higher theoretically predicted values of magnetic coupling stiffnesses.

(2) The magnetic coupling stiffness between different components of the FMMGIA is not always linear,
which introduces errors between theoretical calculations and experimental measurements.

(3) The lateral support stiffness of each component is derived from finite element simulation, which
differs from that of the actual structure, thereby introducing errors.

(4) In this study, we used a motor to set the intersectional angle between the input and output rotors
of the example magnetic gear system to 22.5◦. However, as the inertia of the magnetic power loader
was significant, in the actual measurements, the intersection angle was not exactly 22.5◦.

6. CONCLUSION

In this study, we developed a three-dimensional dynamic FMMGIA model and corresponding differential
equations, analyzed the modal characteristics of the system, and identified the effects of different
design parameters on the modal frequency. It was found that the weak magnetic coupling stiffnesses
between different components of the FMMGIA vary with the output torque, which relies on the relative
intersection angle between the input and output rotors, and the maximum magnetic coupling stiffnesses
are reached when the output torque is the largest. It is seen that the FMMGIA can be divided into
6 orders modals based on their characteristics, including the torsional and lateral modals of the input
rotor, FP, and output rotor. Although the coupling of all modals between different degrees of freedom
was found relatively weak, the torsional modal frequencies of the input and output rotors are the lowest
and are more easily affected by design parameters such as the remanence of the PMs.

The lower natural frequencies caused by the weak magnetic coupling stiffnesses between different
components will be easy to result in the low frequency resonances of the FMMGIA system. These will
slowly decay and deteriorate dynamic behavior of the FMMGIA system. In order to enhance the service
performance and consider the nonlinear of the magnetic coupling stiffness, it will be necessary to study
the nonlinear dynamic characteristics and vibration control of the FMMGIA system.
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