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Abstract—To predict the residual electric field inside an electromagnetic (EM) shield under
illumination of different HEMP waveforms, a method based on NARX neural network is proposed
in this paper. The model can be established from input-output data of EM shield without knowing
enclosure and internal structural details. To evaluate the precision of the prediction method, two error
criteria based on energy and field amplitude are provided in this paper. As a numerical example, the
double exponential pulse with 10% to 90% rise time of 2.5 ns, the pulse width at half maximum of 23 ns,
and the corresponding residual electric field are taken as the training data. The EM simulation is used
to establish the model of residual electric field inside the shield. The NARX neural network is then
built and trained. Other double exponential pulses, with different rise times and pulse widths, and their
residual field are taken as the checking data. The results show that the error of the prediction method
is sufficiently small for actual use.

1. INTRODUCTION

High-altitude Electromagnetic Pulse (HEMP) can cause interference and even serious damage to
electronic systems [1]. With the development of electronic technology, integrated circuit size shrinks
from micrometers into nanometers. The integrated circuit with lower power consumption becomes more
complicated in scale. HEMP poses a greater threat to electronic systems, such as radar [2] and electronic
systems [3].

Shielding is one of the most widely used and effective HEMP protection methods [4]. The internal
residual electric field of EM shield is commonly used to characterize the protection effect on HEMP.
Obviously, it is better to have a smaller residual electric field. Material, structure, and characteristics of
EM shield will affect the residual electric field [5]. At present, the residual electric field inside EM shield
is obtained mainly by HEMP field tests or numerical simulations. However, for traditional numerical
methods, such as FDTD [6, 7], MOMs [8], FEM [9], and analytical geometry methods [10], the precise
results are based on the assumption that the aperture can be measured and modeled precisely which in
fact is difficult due to the complexity of welds and other actual non-ideal factors. For HEMP field tests,
only limited results can be provided. The tests of the shield rely on large-scale HEMP simulators [11]
which are scarce resources with high costs and long test cycles. If the prediction of the residual electric
field under other illumination environment is required, the shielding effectiveness curve of the shield is
calculated in frequency domain by the measurement result, and then the minimum phase method is
used to predict. The method produces deviation due to the loss of phase information during the data
processing.

Artificial neural network has a strong ability of solving complex and nonlinear problems. [12]
and [13] have already applied artificial neural network (ANN) to handle the shielding effectiveness (SE)
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of rectangular enclosure with apertures. In [12], the authors use ANN to predict the electric field
strength inside a metallic shield. The electric field strength of different rotation angles and radiation
power levels can be predicted with the method. In [13], two kinds of neural networks (MLP and RBF)
are proposed to simultaneously estimate the SE. The models have good generalization capability and
show a good estimation accuracy. However, in these methods, ANN is only applicable to the estimation
of one or two parameters of the shield. The waveform inside the enclosure cannot be estimated. And
the information provided is very limited.

In this paper, EM shields are modeled by NARX neural network. The experimental measurement
results are used to train the model. It can be used to predict the residual electric field inside the shield
under the illumination of other HEMP or EMP waveforms. To evaluate the precision of the prediction
method, two error criteria are proposed in this paper. The results show that the prediction results
of the NARX neural network are basically consistent with the electromagnetic results of numerical
simulations or HEMP field tests, and the error is sufficiently small for application. The NARX neural
network based method combines the advantages of HEMP field test and numerical simulation. It can
provide prediction without the requirement of accurate modeling due to the use of real experimental
measurement results.

2. HEMP ENVIRONMENT

HEMP is in the form of a double exponential wave, as shown in Eq. (1) [14].

E(t) = K
(
e−αt − e−βt

)
(t ≥ 0) (1)

where parameters K, α, β are constant, regardless of time t. There is 0 < α < β to ensure that E(t) is
positive.

The normalized waveform of HEMP is shown in Fig. 1. The 10–90% rise time and pulse width at
half maximum of the waveform are represented by tr and tw, respectively.

The different HEMP waveform parameters involved in this paper are: (1) The waveform parameters
of the IEC 61000-2-9 [14]: tr = 2.5 ns, tw = 23 ns, the corresponding parameters are: α = 4.0 × 107,
β = 6.0 × 108, K = 6.5 × 104; (2) Bell HEMP waveform parameters [15]: tr = 4.1 ns, tw = 184 ns,
the corresponding parameters are: α = 4.0 × 106, β = 4.76 × 108, K = 5.25 × 104; (3) The waveform
parameters of the international academic publications in 1976 [16]: tr = 7.8 ns, tw = 483 ns, the
corresponding parameters are: α = 1.5× 106, β = 2.6× 108, K = 5.2× 104. Various HEMP waveforms
are shown in Fig. 2.

HEMP environment is generated by an HEMP simulator. In an HEMP field test, the system under
test (SUT) is placed in the working volume of the HEMP simulator. During the test, EM environment,
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Figure 1. Normalized waveform of HEMP.
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coupling current and voltage on cables, and coupling field inside shields are measured. Field, current
and voltage sensors are placed at certain predesigned locations. Before and after each illumination of
the simulated HEMP, the state and operating data of the SUT are checked and documented. All the
test data will be used for evaluation of the SUT.

3. PREDICTION MODEL BASED ON NARX NEURAL NETWORK

The method in this paper is based on an Artificial Neural Network (ANN), which is a combination
of testing and theoretical modeling. The method uses experimental data for modeling and predicting,
without the requirement to accurately model the structure of EM shield. The whole modeling process
regards EM coupling in actual problem as “black box”. Under a specified neural network structure, the
parameters of the network are trained from the input and output of the actual system. Compared to
the traditional EM method, it does not require the detail information about the EM shield.

3.1. NARX Neural Network

Dynamic neural network is a commonly used time series prediction algorithm. The NARX neural
network is a nonlinear autoregressive with exogenous inputs model. For the approximation ability of
dynamic systems, the NARX neural network is much stronger than general static neural networks. Its
dynamic behavior is shown in Eq. (2) [17].

y′(t+1) = f(x(t), · · · , x(t − m), y(t), · · · , y(t − n)) (2)

where f(·) is a nonlinear function of all independent variables, and x(t) and y′(t) are the input and
output signals of the neural network. The structure of NARX neural network is shown in Fig. 3, where
m and n are the time delays of x(t) and y(t), respectively.

...

Input layer Hidden layer Output layer

...
...

y(t)

y(t − n)

x(t)

x(t − m)

y'(t+1)

Figure 3. Schematic diagram of NARX neural network.

In this paper, the nonlinear activation function of the hidden layer uses the logsig function
y = log sig(x) = 1/(1 + e−x). The nonlinear activation function of the output layer is chosen as purelin,
which is the most common linear transfer function. The structure of NARX neural network uses a
series-parallel architecture. The learning algorithm adopts Bayesian Regularization (BR) algorithm
[18]. It possesses good ability of generalization capacity. In the training process, the algorithm regards
the network weight and node threshold as random variables. The parameters are adjusted according to
their probability density function. On the one hand, the algorithm makes the network error as small as
possible. On the other hand, it reduces the scale of the network. If the sample size is set as constant,
the network scale is much smaller than the sample size, which effectively reduces the possibility of
over-fitting. The generalization performance of neural networks is also enhanced.

Since NARX neural network [19] and BR algorithm [20–22] are mature methods, the detailed
descriptions are not elaborated in this paper.
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3.2. NARX Neural Network Modeling Process

Step 1: Obtain training data.

The waveform of the simulated HEMP field and the corresponding internal residual electric field
signal are respectively used as input and output training data of the network. According to the basic
theory of signal, it is required that the training signals satisfy Nyquist sampling theorem; otherwise,
the waveforms cannot be correctly represented due to aliasing. In one test, the sampling intervals
of the input and output training data are commonly same with each other. At the same time, the
spectrum of the training illumination waveform should cover the spectrum of the illumination waveform
in prediction. Otherwise, the neural network will not be able to correctly complete the prediction due
to lack of information of the corresponding spectrum. In this paper, this basic requirements of spectrum
coverage can be met between the different HEMP waveforms, as shown in Fig. 4.
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Figure 4. Spectrum coverage between the different HEMP waveforms.

Step 2: Establish a NARX neural network.

In order to establish the NARX neural network, there are several works to do: select the time delay,
determine the number of neurons in each layer and the connection of neurons. The longer the time
delay is, the stronger the network’s ability to model complex systems will be, and the more accurate
the prediction results will be. However, the system complexity and training time are increased at the
same time. With the same number of iterations, performance can deteriorate. On the contrary, the
shorter the time delay is, the simpler the network will be, and the shorter the training time will be.
However, the modeling ability is correspondingly poorer because of the difficulty in convergence and
under-learning. Therefore, it is necessary to repeatedly analyze the process and results of simulations,
and gradually select the appropriate time delay and the number of neurons in each layer.

Step 3: Complete the training.

The Bayesian regularization algorithm is used as the learning algorithm for training.

Step 4: Verify the model.

The model is validated using different illumination waveforms and their corresponding internal
residual electric fields. The verification signal requires to meet the sampling rate and spectral
relationship described in Step 1.
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3.3. Evaluation of Prediction Accuracy

In HEMP test analysis and effect evaluation, the most commonly used signal parameter is the amplitude
of waveform. For the internal residual electric field, another parameter is the energy of the signal.
Therefore, according to the research requirement of HEMP, this paper proposes the following two
prediction accuracy evaluation parameters.

(1) The energy deviation is represented by err energy as shown in Eq. (3).

errenergy =
∑

t

[y2(t) − y′2(t)]/
∑

t

y2(t) (3)

where y(t) is the real output of the system, and y′(t) is the training output of the neural network.
(2) The peak deviation is represented by errmax as shown in Eq. (4), where || ||∞ represents an

infinite norm.

errmax =
∣∣‖y(t)‖∞ − ∥∥y′(t)

∥∥
∞

∣∣ / ‖y(t)‖∞ =
∣∣∣max

t
(|y(t)|) − max

t
(
∣∣y′(t)∣∣)

∣∣∣ /max
t

(|y(t)|) (4)

4. INTERNAL RESIDUAL ELECTRIC FIELD MODELING BASED ON
SIMULATION DATA

In this section, the EM simulation software CST is used to calculate the residual electric field inside the
shield under specific illumination of HEMP. The training data for modeling and the validation data for
model validation can then be obtained.

4.1. EM Simulation Modeling

In the simulation, the model is a metal shield with a square slot. To simulate a complex situation, a
metal box is located near the aperture. The model is shown in Fig. 5. The shield is a perfect electric
conductor (PEC) cube having a size of 1m × 1 m × 1 m and a thickness of 0.001 m. The coordinate
origin O is the geometric center of the shield. In the middle of a face parallel to the xOz plane, there is
a square slot of 0.6 m × 0.6 m, and the slot is 0.005 m in width. Inside the shield, there is a PEC cube
placed near the aperture, having a size of 0.3 m × 0.3 m × 0.3 m. The geometric center of the inner
cube is (0.2,−0.2,−0.2).

(a) (b)

Figure 5. Structure modeling of the shield. (a) Model of the shield. (b) Cutting position x = 0.4.

The simulation frequency range is 0–300 MHz. The internal residual electric field measurement
point takes the inner geometric center of the shield.

The direction of incident EM wave is along the +y direction. The direction of electric field is along
the −z direction. They are shown in Fig. 6.

The incident EM wave is the HEMP defined in IEC 61000-2-9, with tr = 2.5 ns, tw = 23 ns, as
shown in Fig. 7(a). The HEMP waveform and internal residual electric field waveform, as shown in
Fig. 7(b), obtained by EM simulation constitute the training data of the neural network.
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Figure 6. EM wave illumination direction and electric field direction.
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Figure 7. Simulation data obtained by HEMP illumination in accordance with IEC 61000-2-9. (a)
Incident EM wave. (b) Internal residual electric field.

In the NARX neural network of this paper, the time delay of input and output signals is chosen
as 10. The network has one hidden layer with 20 neurons. The determination of the values of these
two parameters will be discussed later. The learning algorithm is BR algorithm. The iterative training
completes the establishment of the NARX neural network.

To verify the model, parameters of the incident EM wave respectively satisfy Bell HEMP waveform
and 1976 article waveform. The predicted and EM simulation waveforms are shown in Fig. 8. It can
be seen from the results that NARX neural network can model the HEMP residual electric field inside
EM shield. The prediction results are in good agreement with the simulation ones.

4.2. Prediction Accuracy

err energy and errmax of the predicted residual electric field under different HEMP waveforms are shown
in Table 1. For the convenience of expression, err energy and errmax are given by percentage.

Analyzing the data in Table 1, it can be obtained that:
a. The errmax are all less than 5%. In actual analysis of the shielding performance of EM shield, the

ratio of peak value of the electric field inside and outside EM shield is generally considered and
expressed in the form of dB. Therefore, the impact of errmax on shielding performance analysis is
less than 0.42 dB and can be ignored.
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Table 1. Prediction accuracy of internal residual electric field under different HEMP waveforms.

Error Bell 1976 article
err energy 3.5% 22.8%
errmax 3.7% 3.1%

b. The err energy is less than 5% for Bell. It can meet the requirement of various HEMP analysis. The
prediction error of the 1976 article is relatively large and a little more than 20%.
In summary, the two deviation indicators of Bell are sufficiently small to meet the general

requirement of prediction accuracy. Although the err energy of 1976 article is 22.8%, the errmax is
sufficiently small for actual use. Thus, it can be seen from Fig. 8 and Table 1 that the generalization
ability of the NARX neural network is strong in solving this problem. It is suitable for solving this kind
of problems.

(a) (b)

Figure 8. Comparison of predicted waveforms and simulated waveforms of residual electric field inside
EM shield under the illumination of different HEMP waveforms. (a) Bell HEMP. (b) 1976 literature.

4.3. Determination of the Time Delay and Number of Neurons

In order to choose the proper time delay and number of neurons for the NARX neural network in this
paper, the above simulations with different neural networks are carried out.

For the neural network in each simulation, time delay is chosen from 1 to 30, and number of neurons
is chosen from 5 to 50. The verification with Bell HEMP waveform and 1976 article waveform is carried
out to find the best value of the parameters, respectively. The simulations with different waveforms,
time delays or numbers of neurons are regarded as different test statuses. The simulations are iterated
for 100 times in one test status. The maximum errmax and err energy of each test status are calculated
to distinguish the proper value of time delay and number of neurons, as shown in Fig. 9.

After the analysis of Fig. 9 and the simulation data, 10 and 20 are chosen as the time delay and
number of neurons respectively to get lower errmax and err energy.

The typical number of iterations of the training is shown in Fig. 10. On average, it only requires
less than 10 epochs for the network to be trained. The relative training performance is shown in Fig. 11.
From the regression analysis of real and predicted values in Fig. 11, it can be seen that the regression
line is close to y = x. There is almost no deviation from the straight line. The training performance is
good for actual use.

The hardware configurations of the programs are: CPU: Intel i7-3770 3.4 GHz, RAM: 4GB. The
running time of the program is about 15 seconds.
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(c) (d)

(a) (b)

Figure 9. (a) errmax of Bell vs. time delay and number of neurons. (b) errenergy of Bell vs. time delay
and number of neurons. (c) errmax of 1976 article vs. time delay and number of neurons. (d) errenergy

of 1976 article vs. time delay and number of neurons.
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Based on these CST simulation data, it can be seen that the prediction error of the method base on
NARX neural network is sufficiently small for actual use. As the value of the time delay and number of
neurons are not very big, running speed of the programs is faster than the CST simulation mentioned
above.

5. VERIFICATION BASED ON EXPERIMENT DATA

In this section, HEMP field test is carried out to verify the method proposed. All the waveforms of the
incident EM environment are written as HEMP for simplicity in the following paragraphs.

A simple metal shield with a square slot is placed in the working volume of the HEMP simulator,
illuminated by the HEMP environment, as shown in Fig. 12(a) and Fig. 12(b). The size of the shield
is 1 m × 1 m × 1 m, and the thickness is 0.001 m. The size of the square slot is 0.6 m × 0.6 m, and it
is 0.005 m in width. A metal box and a metal plate are randomly placed inside the shield, as shown in
Fig. 12(c).

(a) (b)

(c)

Figure 12. Experiment photographs of the EMP field test. (a) The metal shield with a square slot.
(b) The shield placed in the working volume of the HEMP simulator. (c) The field sensor and other
metal objects inside the shield.

A field sensor is placed in the geometric center of the shield to monitor only the z component of
the EM environment inside the shield. Another field sensor placed outside the shield is used to monitor
the HEMP environment and calculate the incident HEMP environment at the location of the shield.

The HEMP field tests of three different HEMP waveforms are carried out. The parameters of the
incident HEMP waveforms are shown in Table 2. The HEMP waveforms are shown in Fig. 13. The basic
requirements of spectrum coverage can be met between different incident HEMP waveforms, as shown
in Fig. 14. The high-frequency component above 100 MHz is very small to the field sensor, compared
to the low-frequency component. Hence, the high frequency part of the waveform is almost all noise.
The waveforms inside the shield are shown in Fig. 15. The waveforms in frequency domain are shown
in Fig. 16. In the three tests, the EM waveforms inside the shield are quite different from each other
both in time domain and frequency domain.

In the NARX neural network of this section, the time delays of input and output signals are also
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Table 2. Parameters of the different EMP waveforms.

Test ID
Amplitude of the incident
HEMP waveform (kV/m)

tr (ns) tw (ns)

Test 1 10.1 1.8 21.6
Test 2 10.8 1.9 36.0
Test 3 10.6 2.1 46.3

chosen as 10. The network has one hidden layer with 20 neurons. The learning algorithm is BR
algorithm. The iterative training completes the establishment of the NARX neural network.

The data of the three tests are composed of the EMP environment Eos at the location of the shield
and the EM environment Eis at the center inside the shield. Eos and Eis of Test 1 are used as the
training data of the NARX neural network. Eos is the input data. Eis is the output data. The data
of Test 2 and Test 3 are input into the trained NARX neural network respectively for verification. The
output of the network is compared with Eis of Test 2 and Test 3.

The comparison of Test 2 is shown in Fig. 17. Fig. 17(a) is partially enlarged for a better view, as
shown in Fig. 17(b). The prediction accuracy is: err energy = 0.5% and errmax = 3.0%. The comparison
of Test 3 is shown in Fig. 18. Fig. 18(a) is partially enlarged for a better view, as shown in Fig. 18(b). The
prediction accuracy is: err energy = 1.4% and errmax = 0.9%. As shown in Figs. 17–18, the prediction
waveforms are in good agreement with the test data. The two deviation indicators are sufficiently small
to meet the general requirement of prediction accuracy.

This research has a very important role in HEMP coupling analysis of complex EM shields and
even the situation of “black box”. Compared to numerical simulation, the proposed method can predict
the results through the measured data, without the information about the structure of EM shield. Due
to the use of test data, it can be more accurate than EM numerical methods. The comparison between
the measurement data of Test 2 and CST simulation data is shown in Fig. 19. The parameters of the
illuminated waveform in CST simulation are the same as in Test 2. The model is built with reference
to the real shield. However, some details are omitted, as can be seen from Fig. 12 and Fig. 20. The
difference of the two waveforms in Fig. 19 is mainly caused by the missing of these details.

Compared to HEMP field tests, the prediction error of the method proposed in this paper is
acceptable. It is common that the fluctuation of the illuminated HEMP environment sometimes
can reach 10%–20%. The uncertainty of the measurements of coupling currents and electric fields
is commonly about 5% or higher. So the prediction accuracy of the NARX neural network can meet the
actual requirements. Compared to real tests, there is another advantage of the method. Changing
parameters of the illuminated waveform to a specific value is difficult for HEMP simulator. It is
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Figure 15. The waveforms of the monitored EM environment inside the shield. (a) Test 1. (b) Test
2. (c) Test 3. (d) The comparison of the waveforms with t from 2.6–2.8 × 10−7 s. (e) The comparison
with t from 4.3–4.5 × 10−7 s. (d) The comparison with t from 5.0–5.2 × 10−7 s.

Figure 16. The waveforms of the monitored EM environment inside the shield in frequency domain.
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Figure 17. The predicted waveform of NARX neural network and the real test measurement data Eis

of Test 2. (a) The normal view. (b) The partially expanded view.
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Figure 18. The predicted waveform of NARX neural network and the real test measurement data Eis

of Test 3. (a) The normal view. (b) The partially expanded view.
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expensive and time consuming. However, the model based on NARX neural network can easily solve
these problems.

6. CONCLUSION

This paper mainly studies the prediction of residual electric field inside EM shield under the illumination
of different HEMP waveforms. Based on NARX neural network, the prediction model is established
according to the data of a HEMP waveform and its corresponding residual electric field. The model is
then used to predict the residual electric field inside EM shield under the illumination of other HEMP
waveforms. The verification of the model is completed through EM simulation and HEMP field test.

However, the series-parallel architecture of NARX neural network can only predict the output of
the next one time step. Compared to series-parallel architecture, the NARX neural network based on
parallel architecture can be directly used in test analysis, evaluation of HEMP residual electric field
test, and EM shield design. However, it is commonly not stable and hard to train. So in practice,
establishing the series-parallel architecture is commonly the first step. The second step is closing the
loop of series-parallel architecture to create the parallel architecture. The network would be retrained
depending on the actual performance. So based on the network proposed in this paper, the future work
will be concentrated on studying the stability of parallel architecture for these problems.
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