
Progress In Electromagnetics Research B, Vol. 87, 1–17, 2020

Optimizing Heating Efficiency of Hyperthermia: Specific Loss Power
of Magnetic Sphere Composed of Superparamagnetic Nanoparticles

Malka N. Halgamuge1, * and Tao Song2, 3

Abstract—Magnetic nanoparticle (MNP) based thermal therapies have shown importance in clinical
applications. However, it lacks a compromise between its robustness and limitations. We developed
theoretical strategies to enhance the heating efficiency, which could be utilized in thermal therapies and
calculated parameter dependence for superparamagnetic MNPs (approximative ellipsoid-shaped) within
a sphere-shaped ball. Then we calculated specific loss power (SLP) for magnetic particles in a magnetic
ball. The dependency of features of the nanoparticles (such as mean particle size, a number of particles,
frequency and amplitude of the exposed field, relaxation time, and volume gap between particles and
a sphere-shaped ball) on the SLP or the heating effect in superparamagnetic MNPs was analyzed.
In this study, optimal parameter values were calculated using Kneedle Algorithm as the optimization
technique to represent the accurate heating efficiency. The influence of a number of particles in a sphere-
shaped ball shows that SLP of magnetic particles increases with the increasing number of particles (N);
however, after N = 10 particles, the SLP increment is insignificant. The most remarkable result arising
from this analysis is that when particles are closer together (less volume gap of a sphere-shaped ball),
high SLP is found for the same number of particles. This model also predicts that the frequency
dependency on the SLP is negligible when the frequency is higher than 10 kHz depending on the size
of a sphere-shaped ball and nanoparticle parameters. This analysis has shown that the SLP of MNPs,
in a sphere-shaped ball, strongly depends on magnetic parameters and properties of the particles. In
brief, we have demonstrated, for the first time, impact on SLP of the accumulation of ellipsoid-shaped
superparamagnetic nanoparticles into a sphere-shaped ball. This finding has essential suggestions for
developing links between heating properties with loose aggregate and dense aggregate scenarios in the
superparamagnetic condition.

Research Highlights

• A theoretical model has been developed to enhance the heating efficiency, which could be
utilized in thermal therapies and calculated parameter dependence for superparamagnetic MNPs
(approximative ellipsoid-shaped) within a sphere-shaped ball.

• When particles are closer together (less volume gap of a sphere-shaped ball), high SLP is found for
the same number of particles.

• The influence of a number of particles in a sphere-shaped ball demonstrates that SLP of magnetic
particles increases with the increasing number of particles (N), and after N = 10 particles, the
SLP increment is insignificant.

• Frequency dependency on SLP of ellipsoid-shaped superparamagnetic nanoparticles is negligible
when the frequency is higher than 10 kHz.
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• The Kneedle Algorithm was utilized to estimate the optimal parameter values, which is established
on points of maximum curvature in a given data set (curve).

• In general, hence, it seems that the SLP of MNPs in a sphere-shaped ball also strongly depends on
the magnetic parameters and properties of the particles.

• Developing links between heating properties with loose aggregate and dense aggregate scenarios in
the superparamagnetic condition are essential.

1. INTRODUCTION

Magnetic nanoparticles (MNP) heating systems had numerous biomedical applications, including
potential use in hyperthermia treatments such as cancer therapy and wound healing and arose as an
efficient approach. Hyperthermia treatment relies on the certainty of the nanoparticle absorbs energy
after absorbing an alternating magnetic field (AMF). Hence, the MNP acts as initiators of the converting
energy from an AMF that could use in hyperthermia treatments.

Taking into account that superparamagnetism has dominated the literature of nanoparticle
hyperthermia, it is beneficial to start computing the generated heat. Besides, views of
“superparamagnetic” performance in hyperthermia have not been completely investigated [1]. The
most of superparamagnetic nanoparticles are artificially synthesized. Superparamagnetism is an
extraordinary feature of the single-domain magnets; however, not all single-domain magnets are
essentially superparamagnetic [1].

The transformation of electromagnetic energy into heat using nanoparticles has been investigated
in a considerable amount of literature [1–9] to be used in applications such as drug release and
disease treatment, including cancer therapies. Nonetheless, less efficiency for this transformation
led to obstruction utilizing this technology from a practical point of view. Hence, questions remain
answered investigating particles with more significant heating properties and efficient transformation of
electromagnetic energy into heat using nanoparticles.

The main aim of the present study is to gain more in-depth insight into the heat generation
mechanisms of MNP and to interpret the particle properties, high-frequency electromagnetic field
parameters, and possible optimization for future purpose in reliable hyperthermia treatments. The
secondary aim is to explain the usability of the magnetic particles in a sphere-shaped ball, more
efficiently. We developed theoretical strategies to enhance the heating efficiency, which could be
utilized in thermal therapies and calculated parameter dependence for sphere-shaped ball consisting
of superparamagnetic nanoparticles.

The remainder of this paper is as follows. In Section 2, we describe the specific loss power
(SLP) in superparamagnetic nanoparticles. The dependency of features of the nanoparticles (such
as mean particle size, number of particles, frequency and amplitude of the exposed field relaxation
time, and volume gap between particles and a sphere-shaped ball) on the SLP or the heating effect
in superparamagnetic MNPs was investigated. SLP for an individual magnetic particle (CASE A)
and SLP for a sphere-shaped ball with N magnetic particles (CASE B) are calculated in Section 3
and Section 4. Additionally, the optimal parameter values are computed using Kneedle Algorithm to
identify the accurate heating efficiency in Section 5, and in Section 6 we discuss the results. Section 7
explains the discussion, and Section 8 concludes the paper.

2. SPECIFIC LOSS POWER OF SUPERPARAMAGNETIC NANOPARTICLES

The heat generation mechanism in MNP can be associated with relaxation loss, which is in two types:
Neel (or hysteresis loss) and Brownian relaxations. The relative influence of each method highly relies
on shape, size, and the anisotropy of nanoparticles. The internal (Neel) and external (Brownian) sources
of friction that drive a phase lag between the used magnetic field and the orientation of the magnetic
moments manage to generate thermal losses. Using linear response models, with known Neel and
Brownian relaxation times, SLP values for MNPs can be easily predicted [2].

The SLP or the heating effect in superparamagnetic nanoparticles depends remarkably on the
magnetic properties of the particles that may change depending on their mean particle size, frequency
and amplitude of the exposed signal as well as the width of the size distribution [3].
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We developed theoretical strategies to enhance the heating efficiency, which could be utilized
in thermal therapies and calculated parameter dependence for ellipsoid-shaped superparamagnetic
nanoparticles.

2.1. Hydrodynamic Volume

The magnetic anisotropy and MNP core size affect the Neel relaxation time, while environmental
influences, for example, the viscosity of the solvent, temperature, and MNP clusters size (hydrodynamic
size) affect the Brownian relaxation time [12]. Hence, here, we calculate the hydrodynamic volume
of MNP particles. Hydrodynamic volume for a particle with ellipsoid-shaped superparamagnetic
nanoparticles is given by

VH =
4π(a + δ)(b + δ)2

3
(1)

where δ is the thickness of a surfactant layer of the particle, and 2a, 2b, 2b are particle axes as shown
in Figure 1.

Figure 1. Magnetic particle with lengths 2a, 2b, 2b axis, and δ thickness.

2.2. Shape Factor

The magnetic property of the magnetic particle is related to its shape factor, and it is given as the ratio
between the length and width of the particle. It is provided by

Sf =
Length

Width
=

2b
2a

=
b

a
. (2)

The shape factor of the ellipsoid shape MNPs can be approximately 1.424, as given in [10].

2.3. Neel and Brownian Relaxation Time

In superparamagnetic particles, the total sum of heat generation depends on the relaxation methods
(Neel losses and Brownian losses). Thermal relaxation in direct response theory by estimating a
relaxation time constant (τ) is invented by two distinct thermal relaxation mechanisms: Brownian
relaxation (τB) in which the nano-particle and magnetic moment rotate concurrently, and Neel relaxation
(τN ) in which the magnetic moment rotates with respect to the crystal.

With reducing particle size, the energy limit for magnetization reversal drops, and as a consequence,
thermal fluctuations lead to relaxation phenomena [13]. Hence, quasi-statically measured hysteresis
loops are narrow, and determined SLP becomes less than data measured direct by calorimetry. This
phenomenon, so-called Neel relaxation [13] due to the variation of the magnetic moment direction,
crossed an anisotropy barrier. The characteristic relaxation time from a nanoparticle, τN , is provided
by the ratio of the anisotropy energy (KuV ) to the thermal energy (kBT ) as

τN = τ0 exp(Γ)
where Γ = KuVM/kBT , τ0 is the constant 10−9 sec, Ku the magnetic anisotropy energy density, VM the
particle volume, kB the Boltzmann’s constant, and T the temperature.

When the angle between the magnetization and applied magnetic field is given by γ as shown in [1],
the Neel relaxation time is given by

τN =
√

π

2
τ0

exp(Γ′)√
Γ′ (3)



4 Halgamuge and Song

where Γ′ = (KuVM − HM cos γ)/kBT .
The second relaxation mechanism happens due to the reorientation of the entire particle if the

particle is freely mobile inside a suspension medium of viscosity η. This mechanism is so-called Brown
relaxation with the characteristic relaxation time given by [14]

τB = 3ηVH/kBT (4)

where η is the viscosity coefficient of the medium, kB the Boltzmann’s constant (1.38 × 10−23), T the
absolute temperature (K), and VH is considered as the hydrodynamic volume of the particle that is
greater than the magnetic volume for particle radius R. Hence VH = 4π(a + δ)(b + δ)2/3 where δ is the
thickness of a surfactant layer of the particle. The Brown mechanism creates the production of heat
due to the viscous friction between the rotating particle and surrounding medium.

In super-paramagnetic MNPs, both Brownian and Neel relaxation processes occur, simultaneously.
Hence, the effective relaxation time which is related to the heat dissipation of MNPs, τr, is given by
using Eqs. (3) and (4) τr = τNτB/(τN + τB).

2.4. Heat Generation Based on Neel and Brownian Relaxation Time

The frequency dependency of the relaxation of the particle method is well examined experimentally.
This is done by including spectra of the complex susceptibility. The imaginary part χ′′(f) that is related
to magnetic losses is given by [15]

χ′′(f) = χ0φ/(1 + φ2).

Here φ = ωτr and χ0 = μ0M
2
s VM/(αkBT ), where Ms is the saturation magnetization. and α is the

constant value between 1 and 3. The heating efficiency of different MNPs can be explained as their SLP,
or the loss power density, or power dissipation P within the valid range of linear response approach.
This is given by [16] P = μ0πχ′′(f)H2f . It can be further simplified as

P =
πμ2

0fH2M2
s VMφ

αkBT (1 + φ2)
. (5)

The most vital property for magnetic hyperthermia treatments is the SLP which describes that the
energy is dissipated into heat once the particle magnetic moments are subject to the external magnetic
field.

3. CASE A — SLP FOR INDIVIDUAL MAGNETIC PARTICLE

Consider individual (single) magnetic particle with ellipsoid-shape, as shown in Figure 2. Using
Equation (1), the hydrodynamic volume for one magnetic particle, VH1, is given as

VH1 =
4π(a1 + δ1)(b1 + δ1)2

3
(6)

where δ1 is the thickness of a surfactant layer of the particle, and 2a1 and 2b1 are the width and length
of a magnetic particle. Using Equation (2), the shape factor for one magnetic particle is given by

Sf1 =
2b1

2a1
=

b1

a1
.

Figure 2. Case A (SLP for Individual Magnetic Particle) - Magnetic particle with ellipsoid-shaped
(2a1, 2b1, 2b1 axis).
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The Neel relaxation (τN1) and Brown relaxation (τB1) with the characteristic relaxation time for one
particle can be determined using Equations (3) and (4), and are given by τB1 = 3ηVH1/kBT and
τN1 =

√
πτ0 exp(Γ′)/(2

√
Γ′) where Γ′ = (KuVM1 − HM cos γ)/kBT .

Now we can apply this to the magnetic particle with ellipsoid-shape, where SLP = P/ρ, where ρ
is the density of magnetic materials. Hence, using Equations (5) and (6), SLP of the magnetic particle
with ellipsoid-shape, SLP1, can be calculated as

SLP1 =
2π2μ2

0f
2H2M2

s VM1τr1

αkBT [1 + (2πfτr1)2]ρ
.

However, since the volume of the ellipsoid-shaped magnetic particle is VM1 = 4πa1b
2
1/3, as shown in

Figure 2, SLP1 can be rewritten as

SLP1 =
8π3μ2

0f
2H2M2

s a1b
2
1τr1

3αkBT [1 + (2πfτr1)2]ρ
(7)

where τr1 = τN1τB1/(τN1 + τB1).

4. CASE B: SLP FOR A SPHERE-SHAPED BALL WITH N MAGNETIC PARTICLES

The magnetic particle hyperthermia has demonstrated effectiveness in clinical trials, which have shown
the potential of magnetic hyperthermia for cancer and proved that patients could take this therapy
without inconvenience or extreme side reactions [7]. The superparamagnetic nanoparticles are easy to
aggregate to form a sphere. Most of the artificially synthesized magnetic particles (100 nm–10um) are
composed of superparamagnetic nanoparticles [1]. In this section, we develop theoretical strategies to
enhance the heating efficiency, which could be utilized in thermal therapies and calculated parameter
dependence for superparamagnetic MNPs (approximative ellipsoid-shaped), within a sphere-shaped ball.

Consider a sphere-shaped ball with N number of magnetic particles, as shown in Figure 3.

Figure 3. Case B (SLP for a Sphere-shaped Ball with N Magnetic Particles): Specific loss power of
magnetic particles in a sphere-shaped ball or magnetic sphere (volume, VM2 = 4πb3

2/3) with N magnetic
particles (2a1, 2b1, 2b1 axis) where Vgap is volume gap between a sphere and N magnetic particles.

4.1. Volume Gap (Vgap) for CASE B

Consider a sphere with N magnetic particles. The magnetic volume of the sphere is VM2 = 4πb3
2/3 and

N magnetic particles with 2a1, 2b1, 2b1 axes. Here we define that the volume gap (Vgap) is the volume
between the sphere and N magnetic particles (Figure 3).

Vgap = N
4πa1b

2
1

3
β, (8)

where we assume that β is about 20%–30%. Using Eq. (8),

VM2 =
4πb3

2

3
= N

4πa1b
2
1

3
+ Vgap. (9)
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Using Eqs. (8) and (9),
b3
2 = (4πNa1b

2
1 + 3Vgap)/4π. (10)

4.2. Hydrodynamic Volume for CASE B

Using Equation (1), the hydrodynamic volume for a sphere-shaped ball with N magnetic particles, VH2 ,
is given by

VH2 =

4π

[(
Na1b

2
1 +

3Vgap

4π

) 1
3

+ δ2

]3

3
(11)

where δ2 is the thickness of a surfactant layer of the volume of N particles.
Neel relaxation time is insensitive to the geometric shape, and instead, it relies on the anisotropy of

the material concerned. A sphere is a special case of an ellipsoid, hence, the formula for ellipsoids could
be used for a sphere. In this study, we use the same Neel relaxation time formula for spherical particles.
Here we assume that there is no relative motion (rotation) among the superparamagnetic nanoparticles
in the sphere. The Neel relaxation (τN1) and Brown relaxation (τB1) with the characteristic relaxation
time for N particles can be determined using Equations (3) and (4), and are given by τB2 = 3ηVH2/kBT

and τN2 =
√

πτ0 exp(Γ′)/(2
√

Γ′) where Γ′ = (KuVM2 − HM cos γ)/kBT . Now we can apply this to a

Table 1. Parameters of SLP calculation of magnetic particles.

Symbol Parameter Values

f Frequency of the AC magnetic field 80 kHz

ρ Density of the magnetic materials 5240 kg/m3 [7]

μ Permittivity = μr × μ0 4π × 10−7

MS Saturation magnetisation 480 kA/m [7]

H Field strength/amplitude of the AC magnetic field 6.9 kA/m

Sf1 Shape factor for the magnetic particle b1/a1 = 1.424 [10]

2b1 Length/Diameter of the magnetic particle 10 nm (6–12) nm

2a1 Width of the magnetic particle 2b1/Sf1 nm

2b2 Width of a sphere-shaped ball with N particles Eq. (10)

β Volume gap percentage between a sphere and particles 20–30%

N Number of magnetic particles 60

T Absolute temperature 293 K

VM1 Magnetic volume for individual (single) magnetic particle 4πa1b
2
1/3

VM2 Magnetic volume for a sphere-shaped ball with N particles 4πb3
2/3 or Eq. (9)

Vgap Volume gap between a sphere and N magnetic particles Eq. (8)

VH1 hydrodynamic volume for one magnetic particle Eq. (6)

VH2 hydrodynamic volume for a sphere-shaped ball with N particles Eq. (11)

δ1 Thickness of a surfactant layer for one magnetic particle 2 nm [2]

δ2 Thickness of a surfactant layer for a sphere-shaped ball with N particles 3 nm

Ku Magnetic anisotropy constant of the particles 32000 J/m3 [6]

kB Boltzman’s constant for particle 1.38 × 10−23 J/K [11]

τ0 Average relaxation time due to thermal fluctuation 10−9 s [4]

τB Brownian relaxation time constant -

τN Neel relaxation time constant -

α Constant 3 (≈ 1–3)

η Viscosity of medium 1 × 10−3 Pa s [5]

γ Angle between the applied magnetic field and magnetisation 1 − π
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sphere-shaped ball with ellipsoid-shaped magnetic particles, where SLP = P/ρ. It should be noticed
that ρ is the density of the ball (not the particles). The densities are the difference between particles and
balls, especially when the gap is enlarged. Hence, using Equation (5) and (11), SLP of a sphere-shaped
ball with N particles, SLP2 can be calculated as

SLP2 =
2π2μ2

0f
2H2M2

s VM2τr2

αkBT [1 + (2πfτr2)2]ρ

where τr2 = 4πη(a2 + δ2)2(b2 + δ2)/kBT . The magnetic volume of a sphere-shaped ball with N particles
can be calculated as VM2 = 4πa2

2b2/3 = 4πa1b
2
1N/3, as shown in Figure 3. Hence, SLP2 can be rewritten

as

SLP2 =
8π3μ2

0f
2H2M2

s a1b
2
1Nτr2

3αkBT [1 + (2πfτr2)2]ρ
(12)

where τr2 = τN2τB2/(τN2 + τB2).

5. OPTIMIZATION TECHNIQUE

We use the Kneedle Algorithm to obtain the optimal point, which is established on points of maximum
curvature in a given data set (curve). The knees are nearly the set of points in a curve that are local
maxima which illustrate valuable points that system designers have selected to best balance inherent
tradeoffs [17].

The Kneedle Algorithm is based on the idea that the points of maximum curvature in a data set,
or the knees, are approximately the set of points in a curve that is local maxima. Let Db be the finite
set of xbi

and ybi
values which defines the smooth curve. Next, we consider that Dbn represents the set

of differences between the x- and y-values. The threshold value is given by Timax.

Algorithm 1 Optimal Point Calculation

Load coordinates of all the points of the curve
Db = (xbi , ybi) ∈ R | xbi , ybi ≥ 0

Get the first point
Get vector between first and last point
Normalize the line vector

Dbn = {xbni , ybni}, where
xbni = (xbi − min{xb})/(max{xb} − min{xb}),
ybni = (ybi − min{yb})/(max{yb} − min{yb}).

Calculate the distance (Dd) from each point to the line
Dd = {xdi , ydi}, where

xdi = xbni ,
ydi = ybni − xbni .

Calculate local maximum (Dimax) points
Dimax = {ximax, yimax}, where

ximax = xdi ,
yimax = ydi | ydi−1 < ydi , ydi+1 < ydi .

Calculate local maximum (Dimax) points

Timax = yimax − S

∑n−1
i=1 (xbn(i−1−xbni

)

n−1
.

Find the local maximum
(xdj , ydj ), where j > i,

y = Timax,∀ (ximax, yimax),
x = ximax.

In this study, we assume that maghemite nanoparticle (MNP) consists of maghemite (Fe3O4), and
parameters are given in Table 1. This calculation is valid for superparamagnetic nanoparticles. The
optimal values for each parameter at the “knee” point is observed.
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6. RESULTS

Observing the optimal parameters for magnetic nanoparticle-based hyperthermia for different diseases
treatment in biomedical applications such as cancer and wound healing is crucial. We developed
theoretical strategies to enhance the heating efficiency that could be utilized in thermal therapies
and calculate parameter dependence for superparamagnetic MNPs. Many studies show that there are
factors which may impact the heating efficiency of magnetic nanoparticles, including both physical and
magnetic properties of the particles and the frequency and magnitude of the applied magnetic field. In
this analysis, properties of several types of relevant magnetite parameters, especially, (i) frequency and
amplitude of the AC magnetic field, (ii) particle diameter, (iii) a number of particles, (iii) relaxation time,
and (iv) volume gap between particles and a sphere-shaped ball are investigated concerning optimizing
thermal therapies for hyperthermia.

6.1. Case A — SLP for Individual Magnetic Particle

We use SLP model as shown in Equation (7) to compare SLP for magnetic with one particle introduced
in Section 3. Dependence of various magnetic parameters and relaxation mechanism on the SLP of one
magnetic particle are observed. For this analysis, we consider: frequency = 300 kHz, field amplitude
= 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm, and a1 = b1/Sf1, unless different values are mentioned in the
subfigures. Other parameters are shown in Table 1. Magnetic relaxation loss is one of the heating
techniques of MNPs. The relationship between Neel relaxation time (τN ) and Brownian relaxation time
(τB) is related to the particle diameter. The Brown relaxation is well studied while Neel relaxation is
limited to the relatively small magnetic particle size. When the particle diameter is less than 20 nm, τN

cannot be ignored. Hence, in this analysis, both τN and τB were observed.
The Brownian relaxation time of fluids is associated with the hydrodynamic particle volume Vh

according to the Equation (4). It is observed that SLP increases with increasing the length of the
magnetic particle between 1 < 2b1 < 12 nm, as shown in Figure 4(a). When the particle length is greater
than 5nm, the significant increment of SLP is found. Dependence of particle diameter of the magnetic
particle (2b1) on SLP with optimal parameters is shown in Figure 5. Based on optimum parameter
settings for each applied field strength or amplitude of the AC magnetic field can be obtained from the
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Figure 4. CASE A (SLP for Individual Magnetic Particle): Dependence of the particle diameter (2b1),
the frequency of the AC magnetic field (f) on SLP with optimal parameters. For this analysis, we
consider: frequency = 300 kHz, field amplitude = 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm and a1 = b1/Sf1,
unless different values are mentioned in the subfigures. Other parameters are shown in Table 1.
(a) Dependence of particle diameter of the magnetic particle (2b1) on SLP. (b) Dependence of the
frequency of the AC magnetic field (f) on SLP for different amplitude (H). (c) Dependence of the
frequency of the AC magnetic field (f) and shape factor (Sf = 2b1/2a1) on the SLP.
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Figure 5. CASE A (SLP for Individual Magnetic Particle): Dependence of amplitude (H), frequency
(f) of the AC magnetic field and shape factor (Sf = 2b1/2a1) on SLP with optimal parameters. For
this analysis, we consider: frequency = 300 kHz, field amplitude = 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm
and a1 = b1/Sf1, unless different values are mentioned in the subfigures. Other parameters are shown
in Table 1. (a) Dependence of amplitude (H) of the AC magnetic field and shape factor (Sf = 2b1/2a1)
on SLP. (b) Dependence of amplitude (H) of the AC magnetic field and frequency (f) on SLP.

“knee” point of the corresponding curves. Finding optimal frequency for the better SLP is important in
MNP hyperthermia. Hence, Figure 4(b) shows the dependence of applied frequency (f) on SLP for the
different applied field strengths (H). This demonstrates the direct impact of the applied field strength
between 1 < H < 18 kA/m on SLP for the same length of the magnetic particle (2b1 = 10 nm). The
frequency versus SLP curve for different fields suggests that operating at higher fields rather than higher
frequencies would be more effective for hyperthermia. This was also observed in previous research by
Muller et al. (2013) [18]. By keeping the same applied field strength (14 kA/m), we varied the length
of the magnetic particle (6 < 2b1 < 12 nm) to observe the changes on SLP. The significant increment of
SLP was found when increasing the particle length. The magnetic property of the magnetic particle is
also related to the frequency on the SLP. Both these concepts are observed in Figure 4(c).

Similarly, Figure 5(a) shows the dependence of the amplitude of the AC magnetic field and
the length of the magnetic particle on the SLP where the frequency of the applied field is constant
(f = 300 kHz). Then we varied the amplitude of the AC magnetic field (0 < H < 18 kA/m) and the
frequency (200 < f < 400 kHz) to observe the impact on SLP for the same length of the magnetic
particle (2b1 = 10 nm) as shown in Figure 5(b). The significant increment was found on SLP.

Recent studies have observed the lack of agreement among experimental studies of concentration
effects on SLP; nonetheless, much of the confusion comes from the varying effect of relaxation time
on SLP in Brownian versus Neel-dominated systems [8]. Moreover, the application of the relaxation
principle to hyperthermia concerns the dependence of field amplitude on SLP.

Our measurements (Table 4) showed that optimal positions of SLP for one magnetic particle (CASE
A) could be adjusted by varying field strength (H) and frequency (f). Generally, SLP of the magnetic
particle increases with an increase of the exposed H and f ; however, using the Algorithm 1 optimal
values (“knee” points) were obtained (set of points in a curve that is local maxima) as shown in Table
4. The Kneedle Algorithm would be invaluable to understand how to regulate the thermal therapies
necessitating magnetic hyperthermia treatments.

Further study should be carried out on the dependence of different magnetic parameters and
relaxation mechanism on SLP when considering a sphere-shaped ball with N magnetic particles instead
of one magnetic particle. We examine this further in the next section.

Table 2 outlines some published (estimated) values on magnetic heating of small nanoparticles with
a width less than or equal to 12 nm.
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Table 2. Published specific loss power (SLP) measurements (CASE A) for several magnetic particles
(diameter d, magnetic field strength H and frequency f).

Study Material

(f)

Frequency

(kHz)

(H)

Field

(kA/m)

(d)

Diameter

(nm)

SLP

(W/g)

Fantechi et al. (2015) [19] Fe3O4 183 12 8 6.5

Fantechi et al. (2014) Ferritin with Fe2O4 183 12.4 6 <0.01

This Study (2019) Fe3O4 300 14 6 0.191

This Study (2019) Fe3O4 300 14 8 0.698

This Study (2019) Fe3O4 300 14 10 2.77

This Study (2019) Fe3O4 300 14 12 13.74

6.2. Case B: SLP for a Sphere-Shaped Ball with N Magnetic Particles

We use Equation (12) to compare SLP for magnetic particles with N particles introduced in Section 4.
Interesting correlation between particle diameter and SLP is observed in superparamagnetic particles
in a sphere-shaped ball, where the SLP increases with increasing magnetic particle diameter up to
2 nm < 2b1 < 4 nm. When the diameter is 2b1 > 5 nm, the slight increment is observed. From
Figure 8(c), it can be noticed that magnetic particles yield the most substantial heating rates with the
particle diameter size range of 4–5 nm.

It is beneficial to manage the temperature improvement needed for a unique application with as
low as possible amount of MNP. Hence, the SLP of the MNP that is measured in watts per gram
of magnetic material to be utilized must be large enough. This is especially critical for applications
when target concentration is very low, for example, in the antibody targeting of tumors [4]. Hence,
we further observed the impact of a number of particles on SLP (Figures 6(a) and (b)) to verify this
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Figure 6. CASE B (SLP for a Sphere-shaped Ball with N Magnetic Particles): Dependence of a
number of particles (N), particle diameter (2b1) and volume gap percentage (β) on SLP with optimal
parameters. For this analysis, we consider: frequency = 300 kHz, field amplitude = 14 kA/m, Sf1 =
1.424, 2b1 = 10 nm and a1 = b1/Sf1, unless different values are mentioned in the subfigures. Other
parameters are shown in Table 1. (a) Dependence of a number of particles (N) and particle diameter
(2b1) on SLP. (b) Dependence of a number of particles (N) and volume gap percentage (β) on SLP. It
should be noticed that the density of the ball is changed with the gap. (c) Dependence of volume gap
percentage (β) between a sphere and particles (β) and a number of particles (N) on SLP.
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Table 3. Dependence of a number of particles (N) and volume gap percentage (β) on SLP.

No of Particles SLP when β = 40% SLP when β = 30% SLP when β = 20% SLP when β = 10%

6 18.06 23.22 32.64 51.74

11 9.91 12.08 15.55 22.04

16 7.08 8.65 11.17 15.94

21 5.53 6.77 8.76 12.55

26 4.54 5.57 7.23 10.39

31 3.86 4.74 6.16 8.87

36 3.36 4.13 5.38 7.75

41 2.98 3.67 4.77 6.89

46 2.68 3.30 4.29 6.21

51 2.43 2.99 3.90 5.65

56 2.23 2.74 3.58 5.19

61 2.06 2.53 3.31 4.80

and found a consistent trend. When particles were close together (less volume gap of a sphere-shaped
ball or less percentage of β), high SLP was observed for the same number of particles as shown in
Table 3. Figure 6(a) shows the SLP increases with an increasing particle diameter when the number of
particles (N) is less than 10, and after this point, SLP decreases with a number of particles (N), and
no significant differences on SLP are found.

We also observe that SLP decreases with an increasing β (volume gap percentage between the
sphere and particles). For all β values, the highest SLP was observed when a number of particles
N = 6. It should be noticed that the density of the ball is changed with the gap. There is a volume gap
between a sphere-shaped ball and superparamagnetic particles which relies upon the particle number.
We modelled the relationship (see Appendix, Figure 10) among a number of particles, sphere volume,
and volume gap for a different particle diameter (2b1 = 6, 8, 10, 12 nm). Consequently, for this study,
we use the volume gap as 20-30% of the total volume of a sphere-shaped ball; however, we observed the
impact on the variation of the volume gap to SLP. Dependence on volume gap percentage between the
sphere and particles (β) shows (Figure 6(c)) the decrement of SLP with the increment of β; however,
SLP increases with the number of particles (N).

These findings further support the idea of dipolar interaction between nanoparticles. Due to the
increment of the mean distance between magnetic nanoparticles, the dipolar interaction energy between
nanoparticles will be decreased. Eventually, particles could decrease their capability to heat their
neighboring medium. Another thinking for this relationship could be the demagnetization field [20].
It is undoubtedly induced inside total magnetization, as it reduces the local magnetic field exposure
(direct) for all particles, which leads, hence, to a reduction of the SLP.

Owing to their small particle sizes due to superparamagnetic behavior, for this study, we observed
the particle diameters 2b1 = 6, 8, 10, 12 nm. Particle size dependence of the magnetic hyperthermia
properties of superparamagnetic nanoparticles was observed with varying frequency. The dependence
of the frequency (f) of the AC magnetic field and particle diameter (2b1) on SLP were observed, as
shown in Figure 7(a), the direct impact of particle diameter (2b1) and frequency on SLP. The optimal
point for frequency versus SLP depends on the particle diameter. These optimal values are shown
in Table 4. The more surprising correlation is with the particle diameter and frequency of the AC
magnetic field on SLP. We observe that SLP does not vary when frequency is higher than 51 kHz for
2b1 = 12 nm particles, 80 kHz for 2b1 = 10 nm particles, 90 kHz for 2b1 = 8nm particles, and 121 kHz
for 2b1 = 6 nm particles (Figure 7(b)). Further analysis shows the frequency (f) dependence of SLP
for different applied field amplitudes (H) (Figure 7(c)). This demonstrates the direct impact of the
applied field amplitude 7 < H < 18 kA/m on SLP; however, SLP does not vary when applied frequency
is higher than 4–20 kHz.

Further, we observe the dependence of the SLP with the amplitude of the applied AC field for
different frequencies. Figure 8(a) shows that the SLP increases with increasing amplitude of the AC
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Figure 7. CASE B (SLP for a Sphere-shaped Ball with N Magnetic Particles): Dependence of the
frequency (f) and the applied field amplitude (H) of the AC magnetic field, and particle diameter (2b1)
on SLP with optimal parameters. For this analysis, we consider: frequency = 300 kHz, field amplitude
= 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm and a1 = b1/Sf1, unless different values are mentioned in
the subfigures. Other parameters are shown in Table 1. (a) Dependence of the frequency (f) of the
AC magnetic field, and particle diameter (2b2) on SLP. (b) Dependence of frequency (f) of the AC
magnetic field and diameter of the magnetic nanoparticle (2b2) on SLP. (c) Dependence of the applied
field amplitude (H) and frequency (f) of the AC magnetic field on SLP.
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Figure 8. CASE B (SLP for a Sphere-shaped Ball with N Magnetic Particles): Dependence of the
frequency (f), the applied field amplitude (H) of the AC magnetic field, and particle diameter (2b1)
on SLP with optimal parameters. For this analysis, we consider: frequency = 300 kHz, field amplitude
= 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm and a1 = b1/Sf1, unless different values are mentioned in the
subfigures. Other parameters are shown in Table 1. (a) Dependence of the applied field amplitude (H)
and frequency (f) of the AC magnetic field on SLP. (b) Dependence of the applied field amplitude (H)
and particle diameter (2b1) on SLP. (c) Dependence of diameter of the particle (2b1) on SLP.

magnetic field (H). However, we find an insignificant impact on the frequency when it is greater than
10 kHz.

We further analyze this relationship for different particle diameters. Figure 8(b) shows the SLP
increases with increasing amplitude of the AC magnetic field (H). However, we find an insignificant
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Figure 9. CASE B (SLP for a Sphere-shaped Ball with N Magnetic Particles): Dependence of diameter
of the particle (2b1), shape factor (Sf1), and relaxation time (τr) on SLP with optimal parameters. For
this analysis, we consider: frequency = 300 kHz, field amplitude = 14 kA/m, Sf1 = 1.424, 2b1 = 10 nm
and a1 = b1/Sf1, unless different values are mentioned in the subfigures. Other parameters are shown
in Table 1. (a) Dependence of diameter of the particle (2b1) on relaxation time (τr). (b) Dependence
of shape factor (Sf1) on relaxation time (τr). (c) Dependence of shape factor (Sf1) on SLP.

impact on the particle diameter (2b1).
It is apparent in superparamagnetic particles that the aggregate sum of heat generation depends

on the relaxation processes. The relaxation time (τr) (Neel losses and Brownian losses) increases with
an increasing particle diameter, as shown in Figure 9(a). Relaxation processes that regulate the heating
properties of superparamagnetic nanoparticles are further observed regarding the shape factor of the
particle. The SLP decreases with an increasing shape factor (Sf1 = b1/a1) of the magnetic particles
which is observed in Figure 9(b). Dependence of shape factor (Sf1) on the relaxation time (τB) is
observed, and SLP decreases with an increasing shape factor of the nanoparticle.

Table 4 shows that optimal positions of SLP with N magnetic particles in a sphere-shaped ball
(CASE B) can be adjusted by varying field strength (H), frequency (f), number of particles (N),
and the volume gap between particles and a sphere-shaped ball. Usually, SLP of magnetic particles
increases with an increase of the exposed H and f ; however, using the Algorithm 1 optimal values
(“knee” points) are obtained as shown in Table 4. These knees typically represent important points
that experimental designers could choose to accomplish the best stability in inherent tradeoffs between
performance and usefulness. Besides this, future studies could explore the multivariable optimization
technique by considering several variables.

7. DISCUSSION

Magnetic nanoparticle (MNP) serves as initiators of the converting energy from the AC magnetic field
(AMF) into heat and arose as an efficient approach for biomedical applications using hyperthermia
technique. This work utilizes well-known models in magnetic fluid science to estimate heating rate
(SLP) in samples exposed to an alternating magnetic field. Superparamagnetic particles are identified
to be efficient and steady transporters of thermoremanent magnetization.

There is a threshold of superparamagnetic particle size that suppresses the thermal activation, and
from our results, it is noticed that the threshold is about 0–3 nm. In contrast, Neel’s (1999) findings [13]
showed that for Fe3O4 [13] threshold was about 0–20 nm. Nonetheless, Neel’s (1999) investigation
was not for the superparamagnetic particles. In contrast, Butler (1975) [21] showed that two-domain
configuration is to be more applicable to fine-grained magnetite than to single-domain particles. The
results of this study indicate that superparamagnetic particles produce the most substantial heating
rates with the particle diameter size range of 4–5 nm. This finding seems consistent with Rosensweig et



14 Halgamuge and Song

Table 4. Optimal parameters for CASE A & B using Algorithm 1.

Figure No Condition Optimal Values (“Knee” Points)

CASE A (SLP for one magnetic particle)
H = 7kA/m f = 150 kHz, SLP = 0.17 W/g

Fig. 5(a) H = 10 kA/m f = 150 kHz, SLP = 0.35 W/g
H = 14 kA/m f = 150 kHz, SLP = 0.69 W/g
H = 18 kA/m f = 150 kHz, SLP = 1.14 W/g
2b1 = 6nm f = 150 kHz, SLP = 0.05 W/g

Fig. 5(b) 2b1 = 8nm f = 150 kHz, SLP = 0.17 W/g
2b1 = 10 nm f = 150 kHz, SLP = 0.69 W/g
2b1 = 12 nm f = 150 kHz, SLP = 3.43 W/g
2b1 = 6nm H = 7 kA/m, SLP = 0.05 W/g

Fig. 6(a) 2b1 = 8nm H = 7 kA/m, SLP = 0.17 W/g
2b1 = 10 nm H = 7 kA/m, SLP = 0.69 W/g
2b1 = 12 nm H = 7 kA/m, SLP = 3.43 W/g
f = 200 kHz H = 7 kA/m, SLP = 0.31 W/g

Fig. 6(b) f = 300 kHz H = 7 kA/m, SLP = 0.69 W/g
f = 350 kHz H = 7 kA/m, SLP = 0.94 W/g
f = 400 kHz H = 7kA/m, SLP = 1.6 W/g

CASE B (SLP for N = 60 magnetic particles in a sphere)
2b1 = 6nm f = 50 kHz, SLP = 2.79 W/g

Fig. 9(a) 2b1 = 8nm f = 50 kHz, SLP = 3.15 W/g
2b1 = 10 nm f = 50 kHz, SLP = 3.35 W/g

2b1 = 12 nm f = 50 kHz, SLP =3.48 W/g
2b1 = 6nm f = 17 kHz, SLP = 2.12 W/g

Fig. 9(b) 2b1 = 8nm f = 11 kHz, SLP = 2.67W/g
2b1 = 10 nm f = 8 kHz, SLP = 3.04 W/g

2b1 = 12 nm f = 5kHz, SLP = 3.18 W/g
H = 7kA/m f = 20 kHz, SLP = 0.82 W/g

Fig. 9(c) H = 10 kA/m f = 20 kHz, SLP = 1.68 W/g
H = 14 kA/m f = 20 kHz, SLP = 3.31 W/g

H = 18 kA/m f = 20 kHz, SLP = 5.47 W/g
2b1 = 6nm H = 7 kA/m, SLP = 0.72 W/g

Fig. 10(b) 2b1 = 8nm H = 7 kA/m, SLP = 0.70 W/g
2b1 = 10 nm H = 7 kA/m, SLP = 0.84 W/g
2b1 = 12 nm H = 7 kA/m, SLP = 0.87 W/g

al. (2002) study [2].
The relaxation time is subject to the aggregate contributions of both Neel and Brownian

relaxation forms. Neel relaxation includes the internal rotation of the magnetic moment and also
has a characteristic time [22]. Relaxation processes that regulate the heating properties of magnetic
nanoparticles are observed.

This study showcases the relationship among the heat generation process with the amplitude and
frequency of the applied AC field, the magnetic nanoparticle relaxation processes, and particle size.
However, considering that there is a volume gap between the sphere and magnetic particles, magnetic
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volume for a sphere-shaped ball with particles depends on a number of particles. As a consequence,
SLP also relies on a number of particles and volume gap in a sphere-shaped ball, and his study has been
able to demonstrate this.

The current results demonstrate considerable differences in magnetic properties of magnetic
particles with the comparable size that are hardly justifiable within present micro-magnetic models
of superparamagnetic particles. Reasons for this difference could be a mean particle size, a number of
particles, frequency and the amplitude of the exposed field, relaxation time, and volume gap between
particles and a sphere-shaped ball.

The most striking result arising from this analysis is that when particles are more close together
(less volume gap of a sphere-shaped ball), high SLP is found for the same number of particles in the
same sphere-shaped ball with the superparamagnetic situation. These results further help the opinion
of dipolar interaction between nanoparticles. In contrast, an experiment carried out by Yadel et al.
(2018) [23] had demonstrated that when iron oxide nanoparticles (coated) were well-distributed into
the aggregates, the specific absorption rate reached 79% of the value measured for the well-dispersed
case. Another experiment by Guibert et al. (2015) [20] (coated and non-coated) observed the role of
aggregation of iron oxide nanoparticles on their heating properties by using dynamic light scattering
(DLS) and hyperthermia experiments. Their results demonstrate that the SLP of nanoparticles in loose
aggregates is compatible with well-dispersed nanoparticles and the arrangement of large and compact
aggregates seen by DLS prompts a decline of the SLP. Reciprocal examinations are as yet essential to
acquire a more quantitative connection between the degree of the volume gap of a sphere-shaped ball of
magnetic particles and the increment of the SLP. Our examination only considers a sphere-shaped ball.
In future work, we plan to investigate the impact of different three-dimensional shapes on SLP with
loose aggregate and dense aggregate conditions. This finding has significant implications for developing
links between heating properties and aggregation. Nevertheless, this investigation will be beneficial for
understanding how to regulate the thermal therapies necessitating magnetic hyperthermia treatments.

8. CONCLUSION

The importance of investigating specific loss power for heating applications is apparent, especially
in cancer treatment by hyperthermia. A theoretical model has been developed to optimize thermal
therapies and calculated parameter dependence for superparamagnetic MNPs (approximative ellipsoid-
shaped) within a sphere-shaped ball. The results of this study indicate that when particles are
closer together (less volume gap of a sphere-shaped ball), high SLP is found for the same number
of particles. This study has found that the influence of a number of particles in a sphere-shaped
ball demonstrates that SLP of magnetic particles increases with increasing the number of particles
(N), and after N = 10 particles, the SLP increment is insignificant. Frequency dependency on SLP
of ellipsoid-shaped superparamagnetic nanoparticles is negligible when the frequency is higher than
10 kHz. The Kneedle Algorithm is utilized to estimate the accurate heating efficiency parameter values.
These “knees” typically represent valuable points that experimental designers could select to achieve the
best balance in inherent tradeoffs between performance and feasibility. In general, therefore, it seems
that the SLP of MNPs in a sphere-shaped ball also strongly depends on the magnetic parameters and
properties of the particles. This study shows optimal parameter values that have impact on SLP of the
accumulation of superparamagnetic nanoparticles (ellipsoid-shaped) into a sphere-shaped ball. In future
investigations, it might be possible to develop links between heating properties with loose aggregate
and dense aggregate scenarios in the superparamagnetic situation. This work will be most beneficial for
understanding how to control the thermal dose using optimal values in therapies necessitating magnetic
hyperthermia.

9. APPENDIX

9.1. CASE B

In this section, we illustrate the relationship among particle numbers, sphere volume, and volume gap
for different particle diameters (2b1 = 6, 8, 10, 12 nm).
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Let us consider a sphere (magnetic ball) with N magnetic particles (Figure 3). The volume of
the magnetic ball is VM2 = 4πb3

2/3 and N magnetic particles with the 2a1, 2b1, 2b1 axes. The volume
gap (Vgap) is the volume between sphere and N magnetic particles, shown in Figure 10. Width of a
sphere-shaped ball with N particles can be derived from Equation (10), and it depends on the number
of magnetic particles (N), width of the magnetic particle (a1), length/diameter of the magnetic particle
(b1), and volume gap between a sphere and N magnetic particles (Vgap).
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Figure 10. Volume gap (Vgap) modelling for Case B (as shown in Figure 3), where β = 10%, 20%, 30%.
Magnetic particles within a sphere (volume, VM2 = 4πb3

2/3) with N magnetic particles (2a1, 2b1, 2b1

axis) where Vgap is volume gap between sphere and N magnetic particles. (a) when 2b1 = 6 nm. (b) when
2b1 = 8 nm. (c) when 2b1 = 10 nm. (d) when 2b1 = 12 nm.
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