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A Narrow Beam, Beam Steerable and Low Side-Lobe Reflectarray
Based on Macro Electro-Mechanical Technique

Reza Asgharian, Bijan Zakeri*, and Mohammad Yazdi

Abstract—In this paper, an X-band, nonuniform and passive beam steering reflectarray antenna is
presented. The beam steering is done with a small movement of a large element, i.e., the ground plane.
The maximum ±7.5◦ beam scanning from the antenna broadside is achieved by only ±0.05λ ground
tilting. In the proposed structure, the beam steering capability is provided by using passive elements
that eliminate the need for active biased circuits. The linearity of beam scanning as a function of
ground tilting is also investigated. Compared to the previous similar works, the antenna’s half-power
beamwidth and side lobe level are improved by about 9◦ and 20 dB, respectively. A primarily proposed
reflectarray is fabricated to validate our claim.

1. INTRODUCTION

Since World War II, the need for beam steering antenna has been increased in radiating systems [1].
Two main procedures for beam steering are mechanical movement of feed or reflecting surface [2, 3]
and the electrical steering of phased arrays [4]. There are some defects in both procedures which force
us to tolerate among cost, speed, reliability, and other RF component issues [1]. The mechanical
rotation has low cost, speed and precision. Active phased array antenna gives more agility and
reliability. Instead, complexities and tight challenges are raised in the feed and bias of active elements.
Moreover, to compensate significant losses, an amplifier is used increasing overall cost. The complexity
of such structures restricts their application in sensitive military industries. Thus, new ideas have been
proposed to implement affordable beam steering antennas. In this regard, reflectarray antenna has been
introduced as a hopeful technique [5–7]. Also, their popularity increases because of their capability of
implementation with new technologies [8, 9].

Reflectarrays use two common techniques to change the phase distribution: the feed tuning and
aperture phase tuning. In the feed tuning technique, the phase distribution is created by displacement
of feeds or switching between multi-feeds, which does not result in a continuous scanning. In the
second category, the elements on a reflectarray aperture are equipped with a phase-tuning mechanism,
essentially utilizing the mechanical nature of the antenna. In recent years, many methods have been
applied to unit-cell designing able to vary phase such as varactor and PIN diodes [10, 11], micro-electro-
mechanical switches (MEMS) [12], functional materials [13], and micro-motors [14, 15].

Varactor diodes and MEMS increase the scanning speed, but they have higher power consumption
than other methods. These systems suffer from low power handling due to the nonlinearity of these
electronically tuneable devices. On the other hand, a typical moderate-size reflectarray includes hundred
to thousand diodes and switches together with their bias circuits, thereby increasing the complexity
and cost of the design. In addition, Ohmic losses, due to bias lines and RF components, decrease the
system efficiency. Functional materials such as liquid crystals [13], ferroelectric dielectrics [16], photonic
controlled materials [17], and graphene [18, 19] are recently introduced for phase changing and beam
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rotating of reflectarrays. Although these technologies have shown interesting properties, they have not
been studied as widely as other technologies, and almost all studies are done on a unit cell. Micro-
motors are new miniaturized devices applied in beam-steerable reflectarray antennas. They can rotate
elements or adjust their height. The application of the micro-rotators is limited to circularly polarized
reflectarrays. Micro height adjustable motors are rarely studied for beam scanning. In addition, these
devices are expensive and should be controlled element by element [14, 15].

In [20], an interesting phase-tuning mechanism is introduced for beam steering that could eliminate
the aforementioned challenges. The researchers of [20] have proposed the idea of tilting the ground
plane instead of applying phase shifter in each unit cell. Since the tilting of one macro-plate could
be done with electromechanical actuators, this system has been nominated macro-electro-mechanical
systems (MÆMS). This method does not require any solid-state phase shifter, varactor diodes, and any
switches. It is really a considerable achievement because 2D beam steering occurs with a bit of the
large element, ground, and movement. It has been shown that it is potentially implementable with fast
electro-mechanical devices such as piezoelectrics [21]. Therefore, many complexities in previous schemes
have been eliminated by separately controlling each unit cell [20].

Despite interesting achievements of [20], there are also some important challenges that should be
addressed. First and foremost is widening beamwidth which makes it unpractical even in the broadside.
High side lobe level is another defect which causes the presented antenna unable to provide the least of
beam steering requirements. Through solving above mentioned challenges, we present a passive beam
steering reflectarray antenna in this paper. By using nonuniform elements in the proposed reflectarray,
the beamwidth and side lobe level are significantly improved. The elements are arranged by fitting the
profile phase. This results in more beam rotating than identical element reflectarray. Therefore, we have
introduced a practical narrow beam antenna with low complexity and high speed steering capability.
In addition, the linearity of the beam scanning is investigated as a function of ground tilting.

2. DESIGN PROCEDURE

In this work, we aim to rotate the antenna radiation pattern by tilting the antenna ground. Thus, an air
gap is placed between the ground and substrate to provide ground moving possibility. Assuming that all
patches are identical, when the antenna ground tilts to one side, each of the elements spaces differently
from the ground plane (Fig. 1). Consequently, the reflected phase of each row of the elements differs
from another one. By controlling the reflected phase and making a progressive profile phase, we can
rotate the antenna’s main beam. In this manner, the reflectarray beam steering problem is simplified
to a linear phase array problem. It is schematically shown in Fig. 1. However, the beam steering is
implemented by this method, and nothing is done on beam form improvement up to now.

Figure 1. Schematic reflectarray and their element phase.

Since classic parabolic antennas are known for their high gain, low HPBW, and low SLL features,
it is interesting to benefit from their features in flat microstrip antennas. The main idea behind a
reflectarray is compensating the reflected wave phase of a flat surface to generate an in-phase wave the
same as parabolic antenna front wave. It happens by adjusting the reflected phase of each element
which varies with physical parameter of unit cell. Therefore, in order to design a practical reflectarray
with narrow beamwidth, we should use nonuniform elements [22].
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Non-similarity of elements in a nonuniform reflectarray causes that the reflected phase depends on
both patch width (w) and gap height (h) parameters. This makes it possible that the relative profile
phase of elements does not decrease progressively, in a general case. As a result, the antenna beam
does not rotate appropriately. Thus, if we tend to design a beam steerable nonuniform antenna, two
conditions should be fulfilled simultaneously: 1) the base element provides sufficient reflected phase
range (profile phase). This is achievef by sweeping the element structural parameters [23]. 2) Elements
with different structural parameters show linear phase variation behaviour versus gap height (h) and
broad phase range. Therefore, the design procedure of the steerable nonuniform reflectarray can be
summarized as shown in Fig. 2.

Figure 2. Design procedure of the steerable non-uniform reflectarray.

Figure 3. The reflectarray general view.

In the following, we present a steerable reflectarray using this procedure. Calculating the
nonuniform reflectarray phase distribution is the primary step of reflectarray designing. According
to local coordinates depicted in Fig. 3, the phase of each element is obtained from Equation (1).

ϕR(xi, yi) = k0 (di − (xi cos ϕb + yi sin ϕb) sin θb) (1)

where ϕR is the requirement phase factor of reflectarray surface, and (θb, ϕb) is the desired main beam
angle coordinates. Also, (xi, yi), di, and k0 are respectively the center of the ith element coordinates,
the distance of feed phase center to the ith element center, and propagation constant in vacuum.
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Equation (1) describes how phase requires each element in order to generate in-phase wave in
the front of reflectarray. In the following we investigate the patch phase properties to implement the
required phase of Equation (1).

a simple square patch is considered as a reflectarray element. A substrate with εr = 3.4 (Rogers
RO4003) and 0.5 mm thickness is considered. The operation frequency is set to 9.5 GHz, and the size
of unit cell is chosen to be 6.5 mm (≈ 0.2λ). After determining element geometry, we should check the
phase range and implementation possibility from the element phase diagram [22]. Here we keep gap
length (h) in a constant value, 0.75 mm, and investigate the element reflected phase as a function of
patch width. As depicted in Fig. 4, the phase is calculated by full-wave simulation versus patch width.

Figure 4. Unit cell and phase diagram as a function of patch width at 9.5 GHz.

It is observed in Fig. 4 that the phase range of selected element is about 300◦ (−150◦ to +150◦).
The phase range is 60◦ less than ideal, which restricts maximum gain of reflectarray. This issue can be
resolved by choosing different geometries of based element [22].

By tilting the ground, different gap lengths (h) are allocated to the nonuniform elements. The
reflected phase dependence on both patch width (w) and gap height (h) parameters cause that we
cannot consider Fig. 4 phase — w diagram as a profile phase of the whole reflectarray. Therefore, as a
solution, we should design a reflectarray such that most of its effective elements’ sizes have nearly the
same patch width. As a result, for a determined region of patch width we could consider one phase —
h curve substitute of many of them.

To investigate the profile phase, we should obtain the reflected phase as a function of gap length
(h). In Fig. 5, phase-h curves are shown for different patch sizes. When the ground tilts around its
center, the gap length varies from 0 to 1.5 mm. Thus, from Fig. 5 we can determine the reflected phase
of each element according to its patch width and the gap length created by ground tilting.

From Fig. 5, more slope of phase-h diagram translates to more rotation of radiation pattern
according to phase array theory. We choose from Fig. 5 the most linear curve with an acceptable
phase range. Broad phase range and more linearity lead to more beam rotation and lower side lobe
level, respectively. It can be seen that the phase profile of w = 6 mm has both of these features. From
phase array theory we can estimate the rotation of radiation pattern [20]:

θb ≈ sin−1

(
λ

2π
Δϕ

D

)
(2)

where D is the whole length of reflectarray, and Δϕ is the phase range of related phase-h diagram
(Fig. 5). The θb for w = 6 mm curve is calculated 7.2◦ when the phase range, reflectarray size, and
operational frequency are considered 250◦, 175 mm, and 9.5 GHz, respectively.
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Figure 5. Phase-h curves for different patch widths.

In the next step, we should consider an error tolerance for desired beam rotation angle (θb). The
tolerance allows designing a nonuniform reflectarray. The tolerance θb = 7.2◦±0.8 is assumed acceptable
for present work. Therefore, from Equation (2) the phase range is restricted between 220 and 270
degrees for assumed tolerance. Also, according to Fig. 5 the corresponding patch width of this range is
5.8 < w < 6.2 mm. It means that if we set the constituent elements in 5.8 < w < 6.2 mm region, we
could design a nonuniform reflectarray in which its pattern rotates by tilting the ground.

The desired “w” region relates to the phase region between −100◦ and 80◦ as can be extracted from
Fig. 4. Therefore, we should design a reflectarray whose required phase of most elements is restricted
in this phase range. The required phase distribution of a reflectarray could be controlled by its size
and feed location. We consider 27× 27 element arrays and place the feed antenna in 180 cm high above
center of the reflectarray surface. These parameters are replaced in Equation (1), and required phase
distribution has been calculated, which is shown in Fig. 6(a). White point in the center shows the feed
location in two dimensions of the coordinate system.

(a) (b)

Figure 6. Phase distribution on the antenna aperture. (a) The required phase distribution on
reflectarray antenna surface. (b) The required phase restricted between −100◦ to 80◦.



78 Asgharian, Zakeri, and Yazdi

Although Fig. 6(a) illustrates that the most constituent elements of reflectarray are in our desired
phase region, we could restrict the phase of elements in exactly desired range as shown in Fig. 6(b). As
a result, we have theoretically estimated that the presented narrow beamwidth reflectarray is rotated
about 14.4◦ (±7.2◦). This is proved by full-wave simulation and fabrication in the next section.

3. RESULTS AND DISCUSSION

The proposed reflectarray is simulated in two states by CST microwave studio [24], with non-tilted and
maximally tilted ground. Also, it is fabricated, and its radiation pattern is measured in both states.
The antenna is installed on a pedestal and is fed by a standard X-band horn antenna. The fabricated
reflectarray and test environment are depicted in Fig. 7.

Figure 7. Prototype of fabricated reflectarray and test setup.

The radiation pattern of fabricated nonuniform reflectarray is compared with simulation in Fig. 8(a)
under horizontal ground condition. It shows that the measured HPBW and first SLL are in good
agreement with simulation results. The radiation of the maximum ground tilting states is depicted in
Fig. 8(b). As can be seen from this figure, measurement results agree with simulation for the HPBW
amount and main beam rotation.

(a) (b)

Figure 8. Simulation and measurement of normalized radiation patterns. (a) Horizontal ground
condition, (b) maximum tilted condition.
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The second SLL is however different between simulation and measurement graphs. This abnormal
SLL of measurement comes from undesired reflections from the metal holder of reflectarray antenna.

The reflectarray cross polarization pattern has too low level when the ground is totally horizontal,
and it is ignored in Fig. 8(a), but when the ground plane tilts maximally, the cross polarization pattern
rises significantly, shown in Fig. 8(b). As can be seen from this figure, the cross polarization is not
considerably relative to co-polarization pattern.

In the following, the simulation achievements of the present work are compared with two similar
works in Table 1. It should be noted that the given HPBW and SLL results are measured in the
horizontal ground condition.

Table 1. Comparison between recent passive beam steering works.

Reference Our work [20] [25]
HPBW (deg) 9 24 10

Beam scanning (deg) ±7.5 ±10 ±8
SLL (dB) 20 11.5 13

Ground movement 0.05λ 0.05λ 0.01λ
Size 5.5λ × 5.5λ 5.5λ × 5.5λ 2.6λ × 2.6λ

It can be seen that the HPBW and SLL respectively improve 15◦ and 8.5 dB in the present work
compared to [20]. The amount of scan angle, however, is reduced by 2.5◦. Compared with [25], the
SLL of our proposed nonuniform reflectarray is improved about 7 dB, but it does have improvement in
HPBW proportional to their sizes. Here, we should note that our work is more similar to [20], in the
movement mechanism of ground structure, whereas the authors in [25] have used more complex movable
ground structure.

Antenna bandwidth is one of the most important parameters of any antennas. The antenna
bandwidth is usually defined by its impedance; however, more other parameters like gain, HPBW,
and SLL should be investigated in the reflectarray. The antenna bandwidths in terms of impedance,
gain, SLL, and HPBW are simulated and depicted in Fig. 9. As can be seen from Fig. 9, the impedance
bandwidth of the antenna is 9.3 GHz to 9.65 GHz. Designing a reflectarray is done at the center of
impedance bandwidth, 9.5 GHz. Across the impedance bandwidth, the gain flatness is 1 dB, and the
SLL and HPBW are about 19 dB and 9◦, respectively. The antenna SLL reaches its maximum value
at the center frequency (9.5 GHz), and it generally decreases when we get far from 9.5 GHz. Moreover,

Figure 9. Antenna gain, HPBW and SLL as a function of frequency.
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Figure 10. The linearity of beam scanning as a function of ground tilting angle.

the HPBW has small changes across antenna bandwidth.
Another important issue in the practical reflectarrays with beam steering capability is the linearity

of beam scanning as a function of variable built in phase shifter. It matters for two reasons: first, we
tend to have a uniform spatial scanning system, and the non-linearity of beam scanning causes that
the beam steers at different speeds which is not desired in tracking systems. The second reason turns
to the fact that a simple linear relation between beam direction and scanning propellant leads to less
time requirement for setting the beam in the desired direction. In Fig. 10 it can be seen that the beam
direction is a linear piecewise function of ground tilting angle. This simple relation gives a practical
property to presented reflectarray.

In order to know the gain degradation with steering beam, the realized gain is shown in Fig. 10 as a
function of ground rotation angle. The antenna realized gain is 21.2 dB in horizontal ground condition,
and it degrades 0.7 dB when the main beam steers maximally.

As seen, the beam scanning range of presented antenna is restricted to ±7.5◦. One way to extend
scanning range several times is segmenting the antenna ground plane [20, 25]. Segmenting technique
is not applied in this paper for the complexity of implementation and measurement. It should be
investigating in future works.

One of the interesting future works following this paper is using the presented idea in OAM
application. It seems that by proper design of element distribution, the reflectarray can be used for
generating different orders of OAM modes [26, 27]. In other words, the reflectarray antenna is an efficient
apparatus to generate and manipulate OAM carrying beams at RF. However, the power considerations
for generating higher order modes should be investigated carefully.

However, we have tried to take a step toward creating a more practical product, but several issues
need to be addressed before commercialization of the proposed antenna: Finding an element with
optimized phase behaviour, investigating the frequency bandwidth, etc.

4. CONCLUSION

An X-band beam steerable nonuniform reflectarray antenna is proposed. By using nonuniform elements,
the HPBW decreases by 9◦, and SLL increases to 20 dB that is significant improvement proportional
to similar previous works. The positioned gap between the substrate and ground allows tilting the
antenna ground. The influence of gap and patch size on reflected phase are investigated, and it is shown
that the main beam of proposed reflectarray is steerable with controlling these two parameters. The
full-wave simulation illustrates that the SLL reaches 20 dB and 12.5 dB respectively for 0◦ and 0.5◦
ground tilting angles. Low SLL and narrow beamwidth make the proposed antenna a good choice for
many applications’ need for beam steerable reflectarrays.
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