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Truncated Circular Microstrip Ultra Wideband Antenna Exhibiting
Wideband Circular Polarization

Kollannore U. Sam* and Parambil Abdulla

Abstract—Circular polarization is manifested by means of truncations on basic circular radiating patch
with precisely designed asymmetric feed. The proposed truncated circular microstrip antenna (TCMA)
yields impedance bandwidth (IBW) of 7.6 GHz, almost covering the FCC approved ultra-wideband
(UWB) frequency and 3-dB axial ratio bandwidth (ARBW) of 5.05 GHz spreading over two bands,
enabling the antenna to be used for multiple applications in UWB frequency range. A peak gain of
5.73 dBi is documented at 5 GHz which is within the circular polarization (CP) band. This single feed
antenna is very simple to design and compact in size.

1. INTRODUCTION

Circularly polarized antenna finds major application in cellular communication, radio detection,
global positioning, and other systems. Nowadays, circularly polarized planar antennas have higher
acceptability because of many significant advantages over linearly polarized ones. Imperceptions towards
regions of polarization, avoidance of Faraday rotation effect prevailing in the ionosphere, reduction in
interference, multi-path reflections, a greater degree of tolerance in terms of orientation angle between
the receiver and the transmitter are a few of them [1]. Planar antennas can be easily adopted with
microwave integrated circuits owing to their compactness, light weight, and easy fabrication procedures.
The purity of the circular polarization of an antenna is measured by its axial ratio. Instead of using
different antennas with narrow axial ratio bandwidth, a single antenna with wide axial ratio bandwidth
can be used for multiple applications. However, the maximum achievable impedance bandwidth and
axial ratio bandwidth are still a bottleneck in the design of circularly polarized planar antennas to be
deployed in FCC approved ultrawide frequency band (3.1–10.6 GHz).

Antennas radiate circularly polarized waves when being excited by two orthogonal field components
with equal amplitude and in phase quadrature. Either coplanar waveguide (CPW) fed or microstrip
fed configuration with single or dual feed arrangements can be imposed in the design of planar antenna
structures. Various design techniques that are implemented to perform circular polarization in the ultra-
wideband (UWB) frequency range exhibiting broad axial ratio bandwidth are reviewed. Many of the
reported works that exhibit broad ARBW do not cover entire ultrawide impedance band. A CPW-fed
rectangular patch antenna which can relay the entire UWB is treated in [2]. Two L-strips placed at the
opposite corners of the ground so as to connect the two adjacent arms is made in. Even though the
antenna covers the complete UWB, the attained ARBW is reduced to 1.952 GHz, and it is not compact.
Two coplanar radiating plates with input signal fed to one of the plates and the other plate connected
to the ground [3] improve the axial ratio bandwidth to 3.65 GHz, but this measurement has been done
with reference taken as AR < 5 dB instead of AR < 3 dB. A single feed asymmetric radiator introduced
in [4] records CP bandwidth of 2.83 GHz. CPW-fed planar antennas with various methods viz. L-shaped
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slot and strip [5], horizontal slit and inverted L-strip on the ground [6], L-shaped slot and partial ground
plane with different heights on either side of the feed line [7] are adopted to improve the ARBW. A
CPW-fed planar antenna having quadrilateral shaped radiating copper and an asymmetric ground plane
is illustrated in [8]. Wide impedance bandwidth is attained by inserting a step-impedance resonator in
the central feed line. This work reflects a fair ARBW of 4.67 GHz. A quasi self-complementary structure
and a stepped stub in the ground plane could only produce a CP bandwidth of 1.6 GHz [9]. Shorting
loads are added on the patch to improve the ARBW in [10]. An antenna with an L-shaped feed line
and a circular aperture with perturbation slots are introduced in [11] to expand the CP band. Many
of the works based on slot antennas could not handle the entire 10-dB impedance bandwidth specified
by UWB. Nevertheless, their axial ratio bandwidth covers 50% of the band except for [12] where a
smooth bent feed line is introduced to attain wide CP operation (ARBW = 4.8 GHz). This antenna
has a moderate gain ranging from 0.81 dBi to 3.56 dBi. Few papers which can handle the entire UWB
band [13–16] could exhibit AR bandwidth of maximum 2.6 GHz. An asymmetric hexagonal shape-based
slot antenna with asymmetric feed reported in [17] records an ARBW of 4.4 GHz with peak gain less
than 4dBi. A microstrip asymmetric slot antenna with asymmetric feed combined with several cuts
integrated both on the slot and feed is discussed in [18]. This antenna produces an ARBW of 7.3 GHz
out of which 6.7 GHz lies in the UWB and has a peak gain of 4.1 dBi. The structure of this antenna
is very complex, and it requires 70 dimensional variables to be carefully designed. Spiral antenna
with integrated tapered microstrip balun [19] and the one with circular cavity placed underneath as a
reflector [20] enormously increases the design complexities. Dual feed configuration can also be adopted
for meeting the requisite criteria of circular polarization. A dual feed system with L-shaped strips and
modified ground [21] exhibiting CP of 5.06 GHz could acquire impedance band from 1.4 to 9.6 GHz
with a peak gain of 3.8 dBi only. Another work proposed in [22] displays an ARBW of 2.15 GHz. Even
though the dual feed arrangements reported in [23, 24] satisfy the impedance bandwidth specified for
UWB band, they could sketch ARBWs of 4 GHz and 3.22 GHz respectively with a moderate gain around
3dBi.

The rationale behind devising this proposed antenna is that all the reported single feed microstrip
UWB patch antennas that claim to exhibit broad impedance bandwidth (IBW) and wide axial ratio
bandwidth (ARBW) do not even attain 75% fractional ARBW covering the UWB range. Besides,
their structures are not as simple as they report. One of the main drawbacks of slot antennas is
that they suffer from reduced gain. The dual feed technique undergoes design complexity and mutual
coupling between the two feed arrangements. Hence, in this paper, a very simple and compact single feed
microstrip antenna designed for UWB applications is developed and presented. The proposed truncated
circular microstrip ultra wideband antenna (TCMA) is simple in the sense that it is based on a basic
circular radiating patch having explicit equations for its design, and it requires only 12 parameters for
its design. The structure is compact with a dimension of 37 × 33 × 1.6 mm. A modified partial ground
plane is utilized to improve the frequency response of circular radiator so as to achieve an IBW of
7.6 GHz. Dissimilar truncations are deployed on either side of the radiator along with the asymmetric
feed develop circular polarization producing an ARBW of 5.05 GHz. The antenna showcases a measured
fractional IBW and ARBW of 105.5% and 85.8%, respectively.

(b)(a) (d)(c)

Figure 1. Geometrical evolution of the proposed antenna (TCMA) (a) circular patch with the modified
partial ground, (b) circular patch with single truncation, (c) patch with asymmetric feed line and (d)
TCMA with dual truncation.



Progress In Electromagnetics Research C, Vol. 99, 2020 113

2. ANTENNA CONFIGURATION AND DESIGN PROCEDURES

The proposed truncated circular microstrip antenna (TCMA) is shaped to operate in UWB frequencies
specified by FCC. The geometrical evolution of TCMA is shown in Figure 1. TCMA comprises a basic
circular shape radiator of radius a printed on a 37 × 33 mm2 FR-4 epoxy substrate having relative
dielectric constant εr of 4.4, height h of 1.6 mm, and loss tangent tan δ of 0.02. The thickness t of the
patch and ground are 0.035 mm. The initial design of TCMA is based on the design formula for radius
a of a circular microstrip antenna as given in Eqs. (1) and (2) [25].
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The signal feed line is composed of a 50 Ω microstrip line. A partial ground plane of length gl and width
gw, with triangular beveling on both the sides of the ground is introduced to enhance the impedance
bandwidth. A small rectangular slot is placed at the upper edge of the partial ground plane where the
circular patch is likely to graze the ground apparently. This is to boost impedance matching and to
exhibit a broadband response. The radiating surface of the proposed antenna is truncated to initiate
circular polarization. The formula for quality factor and percentage of perturbation (3, 4) is utilized to
deduce the design equation for the length of perturbation of a circular patch (5) [26]. The equation for
finding the length of perturbation of a circular patch is attempted here to find the length of truncation
of circular microstrip patch antenna which is schematically shown in Figure 2.
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Now the area of perturbation is equated with the area of truncated minor segment circle.

2l2 = A = a2 arccos
(

a − h

h

)
− (a − h)

√
2ah − h2 (6)

where a is the radius of the patch, and h is the minor segment height.
Minor segment height h is resolved from Eq. (6) using the bisection method. Now the length of

truncation, T , is calculated upon proper substitution of Eq. (7).

a2 =
(

T

2

)2

+ (a − h)2 ; T = 2
√

2ah − h2 (7)

Thus the truncation T1 having length T is placed in +y direction at a distance d1 from the centre of the
radiating surface. The feed line is asymmetrically placed with an offset of distance d3 from the centre
of the circular patch in the +x direction. A smaller truncation T2 is placed in the +y direction at a
distance d2 from the centre of the patch for maintaining a stable circular polarization. An additional 1◦
tilt (θ = 1◦; not shown in Figure 3) in a counter-clockwise direction is given to the smaller truncation
(T2) in order to fine-tune the axial ratio bandwidth. The geometrical parameters of the proposed
antenna for maximum axial ratio bandwidth with improved performance are labeled in Figure 3, and
the same is listed in Table 1. The figure and table depict that there are only a few parameters and
no complicated shapes. Hence, the structure is simple to design. All the dimensions are critical for
producing wide ARBW. The fabricated prototype of TCMA is shown in Figure 4.
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Figure 2. (a) Perturbations on a circular patch and (b) Truncation on a circular patch.

Figure 3. The geometrical layout of TCMA.

Table 1. Geometrical parameters of the proposed antenna.

Parameter Value Parameter Value
L 37 mm gtl 5.8 mm
W 33 mm gtw 6.1 mm
gl 37 mm gcl 3mm
gw 11 mm gcw 0.2 mm
a 9 mm d1 6.4 mm
fl 2.1 mm d2 8.8 mm
θ 1 degree d3 3.4 mm

3. RESULTS AND DISCUSSION

The proposed TCMA has been designed and simulated using Finite Integral Technique (FIT) based CST
Microwave Studio simulation software, fabricated using etching process, and measured using Network
Analyzer ENA (E 5071C).
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Figure 4. The fabricated prototype of the TCMA. (a) Top view. (b) Bottom view and (c) Profile view.

3.1. Return Loss

Simulated return loss plotted in Figure 5 describes that the antenna has an impedance bandwidth
spreading from 3.3 GHz to 12 GHz almost roofing the frequencies of UWB (3.1–10.6 GHz) and resonating
at 4.06 GHz and 10.7 GHz. The measured result displays a radiating band from 3.4 GHz to 11 GHz with
a fractional bandwidth of 105.5%. The graph shows an upward displacement of only 0.14 GHz in the
first resonance frequency. Variation of return loss in the upper operating frequency range is suspected
to be attributed from the anticipated variations on the substrate permittivity at high frequencies and
also may be due to systematic errors during measurement.

Figure 5. Simulated and measured return loss plots.

From the parametric traces drawn in Figure 6(a), it is evident that the lower frequency of resonance
solely depends on the patch area. The diameter of the radiating patch is almost equal to λ/4 at the first
resonating frequency. Increasing the radius of TCMA lowers the first resonant frequency. The radius
of the proposed patch is legitimized to ascertain maximum axial ratio bandwidth. Figure 6(b) reveals
that the effect of feed offset distance d3 improves impedance matching.

3.2. Axial Ratio

The requisite orthogonal modes to manifest circular polarization are developed by making truncations
to either side of the radiating patch and by shifting the feed line towards the major truncation thus
making the whole patch an asymmetric one.

The key geometrical parameters that significantly affect circular polarization are the distance to
the truncations d1 and d2 and the asymmetric feed offset distance d3. Figure 7 depicts the variation of
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Figure 6. Parametric measurements on return loss (a) variation with patch radius and (b) variation
with feed offset distance d3.

Figure 7. Simulated and measured axial ratio plots.

the axial ratio over the entire CP band. The antenna has been designed to exhibit CP from 3.6 GHz
to 9.45 GHz which is self-explanatory from the simulated plot. But minor disparities are seen in the
measured readings. Measured values resemble the simulated ones within the impedance bandwidth
except in 7.6–8.65 GHz, thereby exhibiting circular polarization in two bands viz. 3.4–7.6 GHz (band I)
and 8.65–9.5 GHz (band II), achieving an axial ratio bandwidth of 4.2 GHz and 0.85 GHz with fractional
axial ratio bandwidths of 76.4% and 9.4%, respectively. A minimum value of 0.13 dB axial ratio is
observed at 3.98 GHz around which the patch resonates. The deviation of the measured values from
the simulated ones may be due to fabrication inaccuracies along the truncation T1 and asymmetric
positioning of the feed line. This is because a minor misplacement of truncation T1 (or the distance d1)
and the feed line offset distance d3 has a huge effect on axial ratio within the frequency band 7.5–9 GHz
which is justified in Figure 8(a) and Figure 8(b). Also, since the connector solders and the unused
ground terminals of the SMA connector are close to truncation T1, spurious radiations may adversely
affect the measured readings.

Parametric analysis is performed to probe the variations on axial ratio with respect to those key
parameters. Figure 8(a) depicts the variations of axial ratio with changing positions of truncation T1
under the condition that there is no truncation T2, and the feed line is placed centrally (d3 = 0). Signs
of several narrowband circular polarizations are reflected by the introduction of truncation T1 having
length T at distance d1 away from the centre of the circular radiating surface in the +x direction. This
has happened by the effect of two resonant frequencies by virtue of two different diameters in the x
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Figure 8. Parametric analysis on axial ratio (a) Effect of placement of T1; without T2 and feed offset.
(b) Effect of placement of asymmetric feed; without T2 and d1 = 6.4 mm. (c) Effect of placement of
truncation T1; without T2 and d3 = 3.4 mm and (d) Effect of placement of T2; d1 = 6.4 mm and
d3 = 3.4 mm.

and y directions, with a quadrature-phase difference between the two. Figure 8(a) also reveals that the
average value of axial ratio shifts down as the length of truncation T1 is increased till it reaches the
designed value or as the distance d1 is decreased till d1 = 6.4 mm along the +x direction (where axial
ratio reads the minimum value of 0.097 dB at 4.2 GHz). Afterwards, the value of the axial ratio climbs
up. Fixing d1 = 6.4 mm, parametric analysis is carried out with the feed line offset distance d3 varying
in both +x and −x directions without having truncation T2 (Figure 8(b)). The chart exposes the fact
that shifting the feed line in +x direction towards the truncation T1 has wider control in the frequency
band (4.5–9.5 GHz) than shifting the feed line in the −x direction. The placement of the feed line has
been done accordingly. Comparing the traces in Figures 8(a) and 8(b), it is observed that by providing
truncation on one side of the radiating patch along with asymmetric feed line, the average value of axial
ratio has been pulled down thereby increasing the purity of circular polarization.

Keeping the feed line offset distance d3 = 3.4 mm, a parametric study on axial ratio with various
values of d1 is carried out. Figure 8(c) conveys that the position of truncation T1 and feed line has
a pivotal role in exhibiting wideband circular polarization. Further increase in the purity of circular
polarization between 8 GHz and 9 GHz is manifested by providing a small but sensitive truncation at the
other side of the radiating patch at distance d2 from the centre of the radiating patch (Figure 8(d)). The
average values of the axial ratio of the plots are seen to be again reduced. The placement of truncation
T2 improves the stability and purity of CP without heavily sacrificing the ARBW. The enhancement in
CP band compared to the earlier reported designs is achieved by means of the microstrip asymmetric
feed and the dissimilar truncations on the patch.
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3.3. Sense of Polarization

To assimilate the sense of polarization, investigations on the surface current distributions on the antenna
at 6 GHz (representing the band I) and 9 GHz (representing the band II) are carried out. Surface current
pattern diagrams (a) to (d) of Figure 9 and Figure 10 depict the surface current distribution at 0◦, 90◦,
180◦, and 270◦ at 6 GHz and 9GHz, respectively. It is evident that the direction of the surface current
vector rotates in the clockwise direction, and hence TCMA exhibits LHCP in the +z direction in both
the bands.

(b)(a) (d)(c)

Figure 9. Surface current distribution at 6 GHz (a) Phase = 0◦, (b) Phase = 90◦, (c) Phase = 180◦
and (d) Phase = 270◦.

(b)(a) (d)(c)

Figure 10. Surface current distribution at 9GHz (a) Phase = 0◦, (b) Phase = 90◦, (c) Phase = 180◦
and (d) Phase = 270◦.

3.4. Gain

Various traces of antenna gain along the entire frequency band are shown in Figure 11. The simulated
gain varies from 1.70 dB to 5.01 dB in the operating frequency range with a peak gain of 5.01 dB at
9.5 GHz. The gain of the proposed antenna is measured using a linear horn antenna as a reference, and
hence the gain trace is named as GdBiL. The peak value of GdBiL is 3.6 dB and is attained at 7 GHz.
The measured gain, GdBiL, is converted to GdBiC (gain of the circularly polarized antenna) by adding
3 dB to the values of GdBiL of Eq. (8) and is plotted. Another variation of GdBiC is by introducing a
correction factor Gcf , wherein the axial ratio (AR) of the antenna under test is taken into account (9,
10) [27].

GdBiC = GdBiL + 3 (8)

Gcf = 20 log10

[
0.5(1 + 10(−AR/20)

]
(9)

GdBiC = GdBiL + Gcf + 3 (10)
The above two modified gain traces are plotted along with the measured and simulated ones in Figure 11.
It is evident that better results than the simulated values are obtained with the modified gain, GdBiC ,
with a peak value of 5.73 dB at 5GHz, which lies within the broad circularly polarized band (band I).
Also, the TCMA produces a positive gain throughout the entire 10-dB impedance band.
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Figure 11. Simulated, measured and modified gain plots.

(b)(a)

Figure 12. Parametric analysis on antenna gain (a) for different values of patch radius a and (b) with
different combinations of truncations T1 and T2.

The parametric analysis performed on the antenna gain with the radius of the patch, keeping all
other parameters intact, shows that the gain increases with increasing radius of the circular patch up
to around 10 GHz (Figure 12(a)). Analysis on the effect of truncations on the gain of the antenna
(Figure 12(b)) affirms that the antenna holding both truncations T1 & T2 and the one with only the
larger truncation T1 have the same gain (since traces 1 and 2 overlap). Also, the antenna without
holding any truncations T1 and T2 and the one with only the smaller truncation T2 have the same
gain (since traces 3 and 4 overlap). Moreover, the antenna holding both the truncations T1 & T2
or with only the larger truncation T1 exhibits almost equal gain to that of antenna without holding
any truncations T1 and T2 or with only smaller truncation T2 in the lower frequency range (up to
6.5 GHz) and precisely more gain for higher frequencies except at the mid-frequency range where its
gain is slightly less. The above information conveys that the major truncation T1 will never degrade
the gain of the antenna but to increase it in the higher frequencies except in a short mid-band range of
900 MHz.

3.5. Radiation Patterns

Normalized LHCP and RHCP radiation patterns in YZ plane and XZ plane at 3.5 GHz, 5.5 GHz,
7.2 GHz (representing CP band I), and 9.3 GHz (representing CP band II) are plotted in Figure 13.

Simulated and measured readings evidently manifest the presence of left hand circularly polarized
radiation in the +z axis. The antenna possesses a minimum 10 dB isolation at θ = 0, except in YZ
plane in the second CP band. Also, the isolation improves towards lower frequencies. The tilt in the
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Figure 13. LHCP and RHCP radiation patterns in YZ plane and XZ plane at (a) 3.5 GHz, (b) 5.5 GHz,
(c) 7.2 GHz and (d) 9.3 GHz.

Table 2. Comparison of reported broadband CP antennas with the proposed work.

Ref. Substrate IBW ARBW Peak gain

[2] FR4: 60 × 60 × 0.8 mm 2.67–13 GHz
1.952 GHz

4.993–6.945 GHz (32.2%)
4.2 dBi

[3] All metal: 32 × 12.5 × 7mm 2.1–10.1 GHz
3.65 GHz

4.1–7.75 GHz (61.6%)
3.38 dBi

[4] FR4: 28 × 29 × 1.6 mm 2.98–10.93 GHz
2.83 GHz

7.18–10.01 GHz (33%)

Not

mentioned

[5]
Rogers RO4003:

20 × 20 × 0.813 mm
4.8–7.2 GHz

1.95 GHz

5.15–7.1 GHz (33%)
3.6 dBi

[6] FR4: 25 × 24 × 1mm 4.8–8.8 GHz
3.375 GHz

5.375–8.75 GHz (47.8%)
3.4 dB

[7] FR4: 50 × 50×0.8 mm 2.15–6.97 GHz
3.9 GHz

3.1–7 GHz (71%)
5 dBi

[8] FR4: 30 × 25 × 0.8 mm 3.1–17.5 GHz
4.67 GHz

5.91–10.58 GHz (56.64%)
5.67 dBi

This

work
FR4: 37 × 33 × 1.6 mm 3.4–11 GHz

5.05 GHz

3.4–7.6 GHz (76.4%) and

8.65–9.5 GHz (9.4%)

5.73 dBi
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radiation patterns is possibly due to the asymmetric configuration of the radiating patch and microstrip
feed line.

The results of the proposed work are compared with similar reported planar antennas which make
use of single feed configuration. Table 2 conveys the fact that this work deploying single asymmetric
feed mechanism exhibits broad impedance bandwidth which almost covers the entire UWB frequency
range (short of only 0.3 GHz) and exhibits wide axial ratio bandwidth compared to the other reported
works with a fair gain in the entire passband.

4. CONCLUSION

This paper has presented an asymmetric single feed circularly polarized microstrip antenna with wide
axial ratio bandwidth for UWB applications. The structure is very simple to design with only
12 dimensional parameters and compact in size. TCMA radiates signal from 3.4 GHz to 11 GHz.
Asymmetrical features introduced in the antenna structure regulate the magnitude and phase of the
orthogonal E-field components, which affect the value of axial ratio, and it leads to left-hand circular
polarization. Circular polarization is observed as two bands from 3.4 GHz to 7.6 GHz (band I–76.4%)
and from 8.65 GHz to 9.5 GHz (band II–9.4%) thus providing a total axial ratio bandwidth of 5.05 GHz
(85.8%). TCMA offers adequate gain throughout the impedance bandwidth and decently good gain in
the CP band with a peak gain of 5.73 dBi at 5 GHz. The proposed antenna would be a good candidate
for UWB applications.
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