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A Novel Approach for Human Intention Recognition Based on Hall
Effect Sensors and Permanent Magnets
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Abstract—Human intention recognition is important for any interaction between the user and the
exoskeleton. This study proposes a novel approach, based on a contactless sensory system, using linear
Hall effect sensors to recognize human intentions. This contactless sensory system consists of four Hall
effect sensors mounted on the exoskeleton, whilst a ring-shaped permanent magnet with diametrical
magnetization consisting of two semi-rings is worn on the user’s forearm. The model of the magnetic
field created by the permanent magnet is also developed. Based on the developed magnetic field model
and by interpreting the signals from the Hall effect sensory system received while the user’s elbow
and forearm move, the intention identification algorithm is derived. A lightweight elbow and forearm
assistive exoskeleton is developed. The proposed approach for human intention recognition is used
to assist in controlling the exoskeleton, following the wearer’s intended motions. By implementing
this contactless sensory system, wearers can use the exoskeleton easily and can move their forearm
comfortably, while the human intention motion is recognized and used to control the exoskeleton.
Moreover, achieved signals are unaffected by skin perspiration and muscle fatigue. As the sensory
system is mounted on the exoskeleton, there is only indirect contact between the user’s body and the
sensors, leading to improved comfort. Finally, the system does not require expert knowledge to place
the sensors on the body of the user. This approach can be extended to detect human intentions for the
control of exoskeletons with more degrees of freedom.

1. INTRODUCTION

One of the important aspects in the control of a human-exoskeleton interface is to follow the user’s
intentions correctly and at the correct pace. There are a number of research projects attempting
to develop methods of human intention recognition for the control of exoskeletons based on contact
sensory systems. Rahman et al. proposed a strategic control method based on Electromyography (EMG)
signals recorded from users to manoeuvre a wearable exoskeleton robot named ETS-MARSE for the
rehabilitation and assistance of upper-extremity movements [1]. EMG based methods have also been
found in a number of other studies [2–7]. One of the problems when using this type of method is that it
requires expert knowledge to put the electrodes on the correct muscle positions on the wearer’s shoulder
and elbow, which is not always possible for the user themselves. Another problem is that the locations
of the electrodes can change during limb movements, due to skin perspiration or the lack of effective
electrode fixation forces which can cause unstable signal patterns. Consequently, the accuracy of the
prediction as to the location of the electrodes can be affected. Furthermore, wearing electrodes on the
body can make the user feel uncomfortable. It is also time-consuming to put all the electrodes on in
the correct positions. Moreover, EMG signals could be weak and noisy, which makes the methods of
processing the signals complex. As a result, the effectiveness of using the exoskeleton decreases.
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Another method of human intention recognition is based on an electroencephalogram (EEG) [8–
15], a non-invasive method that has been used to recognize brain signal changes before the onset of
limb movements [14]. Noda et al. [15] used recorded brain signals to control an assistive robot system
following stand-up movements. However, the EEG signals are unstable because the position of the
electrodes placed on the wearer’s head can change during activity and cause a change in signal patterns.
Moreover, patients need to pay full attention to their intended movements, which may lead to unwanted
motion when they suddenly change their thoughts. Wearing electrodes can also cause discomfort, which
decreases the effectiveness of using the EEG method.

Because of the disadvantages of using EMG and EEG-based techniques, many researchers have
used an alternative method of human intention recognition based on force sensors. Ammar et al. [16]
embedded a force sensor in a biceps ring mounted on an exoskeleton to measure the pressure exerted by
the biceps on the ring. By interpreting the achieved pressure signals, human intention for motion can
be predicted to control the exoskeleton. However, because the biceps need to contact the exoskeleton
directly, the user’s arm needs to exert a force from the exoskeleton. Therefore, the user’s arm can
become fatigued, decreasing the efficacy of the exoskeleton. Force myography based on force sensors
has been studied by Ul Islam and Bai [17], Xiao et al. [18], and Cho et al. [19] to recognize human
intentions to control prostheses. Although signal patterns, recorded from the force sensors in these
studies, can be used to predict the wearer’s intended motion(s), the user still needs to wear the sensory
system on the body, which is uncomfortable. Moreover, the sensors’ locations on the body could change
during limb movements, which could lead to a change in the recorded signal patterns and a lower
accuracy of intention prediction. Muscle fatigue can also affect the prediction. In the work by Huang et
al. [20], a number of force resistive sensors are mounted on the external shells, which are fixed on the
exoskeleton. The inner shells are worn on the user’s forearm and upper arm. The obtained signal
patterns from these sensors are then analysed and used to control the exoskeleton. Because the sensory
system requires direct contact between the inner and outer shells, the user needs to exert a force on the
exoskeleton. This can lead to fatigue in the user’s arm and reduce the effectiveness of the system. In
conclusion, conventional methods still do not recognise human intention efficiently enough and they may
cause discomfort for the user during interactions with the exoskeleton because their sensory systems,
based on contact sensors, need to be worn on or directly in contact with the user’s body.

This research presents a novel approach for human intention recognition based on contactless
sensors, which, in contrast with conventional methods, are mounted directly on the exoskeleton and
the user’s body does not need to be in direct contact with those sensors. The outcome will improve
the experience of using exoskeletons. The findings can be extended to detect human intentions for the
control of exoskeletons with more degrees of freedom. The preliminary theoretical study of this work
was presented by Nguyen et al. [21].

With advantages such as its small size, low mass, and inexpensive cost, the contactless Hall effect
sensor has been used widely in non-contact position measurements [22–27]. In this study, the system of
Hall effect sensors and a ring permanent magnet with diametrical magnetization is proposed to recognize
the human intention. The rest of this paper is organized as follows. Section 2 describes an arrangement
of a number of Hall effect sensors and the associated human intention identification algorithm. Section 3
presents the experimental setup. Section 4 discusses the results, and Section 5 draws conclusions.

2. AN ARRANGEMENT OF HALL EFFECT SENSORS AND MAGNETS AND A
HUMAN INTENTION IDENTIFICATION ALGORITHM

2.1. An Arrangement of Hall Effect Sensors and Magnets

The arrangement of permanent magnets and Hall effect sensors is presented in Figure 1. There are
two semi-ring shaped permanent magnets mounted on the forearm of the user 1. One piece, 2, is
diametrically magnetised outside the S pole and inside the N pole. On the other hand, another piece, 3,
is diametrically magnetised outside the N pole and inside the S pole. Four linear Hall effect sensors 4,
5, 6, and 7 are mounted in pairs at an angle of 90 degrees on the circular exoskeleton’s sensor support,
8, which is fixed on the exoskeleton and coaxial with the magnets. The thicknesses of the air gaps, 9,
between the Hall effect sensors and magnets are assumed to be equal due to this particular arrangement.
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Figure 1. The arrangement system of Hall effect sensors and magnets: 1 — Human forearm; 2 —
Semi-ring shape diametrically magnetised S-N; 3 — Semi-ring shape diametrically magnetised N-S; 4,
5, 6, and 7 — linear Hall effect sensors; 8 — Exoskeleton sensors’ support; 9 — Air gaps.

Figure 2. Hall effect sensors in the assembly with the sensors’ support: 1 — Hall effect sensor; 2 —
Exoskeleton sensors’ support; 3 — Forearm big gear; 4 — Permanent magnet; 5 — User’s forearm.

Figure 2 depicts the physical assembly of the sensory system including the permanent magnet worn on
the user’s forearm.

2.2. The Human Intention Identification Algorithm

It is assumed that H1, H2, H3, and H4 are the received output signals obtained from the Hall effect
sensors 4, 5, 6 and 7 (Figure 3) respectively, and α is the rotation angle of the user’s forearm with
magnets. Each of the Hall effect sensors detects only its respective radial part Br (more details on the
analytical modelling of the magnetic field distribution created by a diametrically magnetised permanent
magnet can be found in [28–30]), of the magnetic fields B (Figure 3), generated by the magnets. Based
on the above derived expressions of the magnetic field, the radial component of the magnetic field is the
sinusoidal wave of the angle α where its amplitude depends only on the magnet’s characteristics and
the position of the computed points; hence, the output signals are the sinusoidal waves of the angle α.
According to the arrangement, four sinusoidal waveforms, each phase shifted by 90◦ from its neighbour,
are generated [25].
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From Figure 3, we have
H1 = A cos α (1)

where A is the constant or the amplitude of the signals of the Hall effect sensors.
According to Figure 3, the following equations are derived:

H2 = A cos(α + 90◦) = −A sin α (2)
H3 = A cos(α + 180◦) = −A cos α (3)
H4 = A cos(α + 270◦) = A sin α (4)

2.2.1. Forearm Rotation Detection

Equations (1)–(4) can be used to derive an expression to calculate the angle α:

α = arctan((H4 − H2)/(H1 − H3)) (5)

The forearm rotation angle can be defined by following Eq. (5), which means that the forearm
position can be defined or the pronation/supination movements can be recognized. This system has some
advantages, such as it is independent of the signal amplitude and independent of both the temperature
and vertical-gap variations of the magnet and temperature drift of the Hall elements. Also, it can cancel
any magnetic offsets caused by external magnetic fields [25, 26].

Figure 3. Position of the forearm and magnetic
field distribution of the magnets.

Figure 4. Magnetic distribution during elbow
movements.

2.2.2. Elbow Flexion/Extension Motion Recognition

From Eqs. (2) and (4), the absolute values of the output signals from the Hall effect sensors 5 and 7
are equal

|H2| = |H4| = |A sin α| (6)

when there are no elbow flexion and extension movements (the balanced position).
It is assumed that

ε = |H4| − |H2| (7)

is the error between the output signals obtained from the Hall effect sensors 7 and 5.
When the elbow is flexed or extended to a small angle β (Figure 4), the Hall effect sensors 5 and

7 can sense only the radial component Btt, respective to it, of the magnetic fields B that have the
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magnitude of Btt = Bt cos β. Hence, ABtt = ABt cos β, where ABtt and ABt are the amplitudes of
the signals of a Hall effect sensor sensing Btt and Bt at the same position of the forearm, respectively.
The following equations can be derived when the forearm with the magnets moves out of the balanced
position by the small angle β.

|H2| = |A2 cos β sin α| = A2| cos β sin α| (8)
|H4| = |A4 cos β sin α| = A4| cos β sin α| (9)

where A2 and A4 are the amplitudes of the output signals obtained from the Hall effect sensors 5 and
7, when it is assumed that they sense Bt. Hence, the difference between the output signals from these
sensors depends only on the difference between the amplitudes A2 and A4, which, in turn, depends
only on the different air-gaps from the magnets to the Hall effect sensors when the magnets’ properties
and the surrounding environments are constant. Moreover, the amplitudes A2 and A4 increase if the
air-gaps decrease, respectively, and vice versa [27, 31].

Subtracting Eq. (8) from Eq. (9) produces

ε = (A4 − A2)| cos β · sinα| (10)

From Eq. (10) when ε > 0, A4 > A2 or the forearm and magnets move closer to sensor 7, hence
elbow flexion is performed.

When ε < 0, A4 < A2 or the forearm and magnets move closer to sensor 5, hence elbow extension
is performed.

At the initial position of the forearm (Figure 5), the magnetic fields B are vertical; hence, the angle
α = 90◦ or

|H1| = |H3| = |A cos 90◦| = 0

and
|H2| = |H4| = |A sin 90◦| = A

A is the amplitude of the output signals.

Figure 5. The initial position of the forearm.

Because the maximum average rotation angle of the forearm supination is 86◦ and the forearm
pronation is 61◦ [32], we can adjust α in the interval [29◦, 176◦] to avoid ε = 0 independent of A4–A2

when α = 0◦ or α = 180◦ (zero points).

3. EXPERIMENTAL SETUP

In order to demonstrate the validity of the approach for human intention recognition, a prototype of an
assistive elbow and forearm exoskeleton was developed (Figure 6) with the aim to make a lightweight
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(a) (b)

Figure 6. The developed exoskeleton worn by a user: (a) the general view of the exoskeleton worn on
the user’s upper arm; (b) the view of the user’s forearm wearing the ring permanent magnet. 1 — Arm
bracer; 2 — Elbow plate; 3 — Elbow gears; 4 — Elbow DC motor; 5 — Forearm plate; 6 — Forearm
DC motor; 7 — Forearm pinion gear; 8 — The user’s arm; 9 — Forearm larger gear; 10 — Permanent
magnet; 11 — Forearm larger gear’s support; 12 — Sensors’ support.

Figure 7. Control architecture of the exoskeleton system: H1,H2,H3 and H4 — Hall effect sensors;
abs — absolute; MAF — Moving average filter.

exoskeleton. Some components of the exoskeleton, including the arm brace, elbow gears, forearm pinion
gear, forearm larger gear, forearm big gear’s support and sensors’ support are made of carbon fibre
using 3D printing technology. The elbow and forearm plates are made of aluminium alloy. The weight
of the ring-shaped permanent magnet used in this experiment is less than 100 grams.

A proportional-integral-derivative (PID) controller was applied to control the exoskeleton, and its
coefficients were obtained using manual tuning. The sample rate of the control system was set to 300 Hz.
Moving average filters with a window length of 50 were implemented to filter the signals. The control
architecture is illustrated in Figure 7. The control program was written using MATLAB/SIMULINK R©.

During the experiment, a male with 1.60 m height and 61 kg mass wore the exoskeleton (Figure 6)
and performed the elbow and forearm movements in three cases: case 1 — only the forearm rotated;
case 2 — only the elbow moved; and, case 3 — the forearm and elbow moved simultaneously.
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4. RESULTS AND DISCUSSION

The results obtained from the experiment for the three cases are described as follows.

Figure 8. Forearm intended rotation only.

(a)

(b)

Figure 9. Intended elbow movement only: (a) Error = abs(H4) − abs(H2); (b) Elbow (exoskeleton)
rotation angle (degrees).
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Case 1: Forearm intended rotation only

In the case of intended forearm rotation alone, the user’s elbow is considered to be motionless. Figure 8
shows that the sensor arrangement and the human intention recognition algorithm are able to detect

(a)

(b)

(c)

Figure 10. Both forearm and elbow simultaneous movements: (a) Forearm rotation angle (degrees);
(b) Error = abs(H4) − abs(H2); (c) Elbow (exoskeleton) rotation angle (degrees).
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the user’s forearm intended rotation (supination/pronation) to control the exoskeleton, as the estimated
angle of the forearm is in good agreement with the measured angle.

Case 2: Elbow intended movement only

In the case of an intended elbow movement alone, the user’s forearm is considered as remaining
motionless. Figure 9(a) shows the error between the absolute value of the output of Hall effect sensor
4 and Hall effect sensor 2 (where error ε = abs(H4) − abs(H2)). As illustrated in Figure 9(a) and
Figure 9(b) and as proposed by the above theoretical study, when ε < 0 elbow extension was performed
and when ε > 0 elbow flexion was performed. The results demonstrate that the sensor arrangement
and the human intention recognition algorithm are able to detect the user’s intended elbow movement
(flexion/extension) to control the exoskeleton.

Case 3: Both intended forearm rotation and intended elbow movements simultaneously

For the case of both intended elbow and forearm movements simultaneously, Figure 10(a) shows that
the user’s forearm intended motions are recognised as controlling the forearm of the exoskeleton as
the estimated angle is in good agreement with the measured angle. While the forearm movements are
detected, Figures 10(b) and (c) demonstrate that the elbow motions are also recognised as controlling
the exoskeleton, as in case 2; when ε < 0 the elbow extension was performed and when ε > 0, the elbow
flexion was performed as proposed by the theoretical study. Therefore, the sensor arrangement and the
human intention recognition algorithm is able to detect as well as classify the user’s forearm intended
rotation and the elbow’s intended movements to control the exoskeleton.

5. CONCLUSION

In this research, a novel approach for human intention recognition based on Hall effect sensors and
permanent magnets is presented. The experimental results of this study demonstrate that the sensory
system of four Hall effect sensors, which are mounted on the exoskeleton, and two semi-ring shaped
diametrically magnetised magnets worn on the user’s forearm can detect and classify the user’s intentions
for the control of an assistive exoskeleton, following the human intention identification algorithm. This
system lets the user wear an exoskeleton comfortably and easily. Moreover, there is no need to have
expert knowledge to help set up the system. As the result of the contactless interaction, the achieved
signals are less affected by the wearer’s body conditions. These findings can be extended to detect
human intentions for control of exoskeletons with more degrees of freedom.
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