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Abstract—This paper presents a technique based on time domain reflectometry (TDR) to determine
the dielectric and magnetic properties of lossless materials fitted inside a transmission line section.
The proposed method involves three different line terminations namely open, short, and matched load.
The described technique involves placing a sample of material under test (MUT) inside a terminated
transmission line and exciting this with a vector network analyser from the other end to measure the
reflection coefficient. Results achieved from a transmission line model were compared with numerical
simulations obtained using CST Microwave Studio. The comparison shows that the electric and
magnetic properties of a material may be determined precisely with this technique. Experimental results
are also presented to validate the proposed method. Estimates of measurement errors, resulting from
sample length uncertainty, vector network analyser uncertainty, and open-end inaccuracy are discussed.

1. INTRODUCTION

Measurements of dielectric and magnetic properties of materials have been historically associated with
the design of suitable devices. In particular, the application of time domain reflectometry (TDR) in
engineering and natural science has been of interest since the 1930s, when it became a recognized
technique for cable testing [1]. This testing method relies on the change of impedance along the
transmission line, which generates a partial or total reflection of the travelling waves. In particular, the
spatial location of a defect in the cable can be determined by measuring the time between the launch
of the wave into the cable and the detection of reflections using the known propagation velocity of the
waves on the transmission line. Later on, the method was modified using the spatial location of the
reflection point to calculate the propagation velocity of the waves inside a MUT that filled up a piece
of cable or a piece of waveguide [1]. In 1969, Fellner-Feldegg [2] was the first to report the use of TDR
for measuring the dielectric constant of liquids. Davis and van Chudobiak (1986) introduced the TDR
techniques in the field of soil water content measurement [3].

The main aim of this study is to investigate the determination of the dielectric permittivity and
magnetic permeability of a MUT for a wide range of applications using TDR. The method is based
on the classical Nicholson-Ross method [4] and is an extension to the technique reported in [4]. In
particular, with respect to [4], here not only simulated data but also experimental data are considered.

Since a material’s molecular structure defines its dielectric properties, if the molecular structure
changes, so will the dielectric properties. Thus, in general, the TDR probe can indirectly measure other
properties that are also correlated to the molecular structure and can be a valuable alternative when
the property of interest is difficult to measure directly [5].
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Time domain reflectometry (TDR) is not only one of the less expensive and more accurate tools
for dielectric properties determination of materials and water soil content but also a useful technique in
order to provide users with an on-site measurement option. Thus, it can provide advantage over various
methods to measure soil volumetric water content and dielectric and/or magnetic properties. Unlike
the common gravimetric method, TDR in situ measurements enable continuous and non-destructive
monitoring of moisture content in soils, rocks, and building materials [6]. They can also be utilized to
detect water condensation processes in building envelopes during wintertime and can offer an assessment
tool for design solutions that can be adopted by civil engineers [1]. Furthermore, the measurement of
material electromagnetic properties in the agriculture and food processing industry has been of interest
for many years. For instance, the knowledge of dielectric properties of foods as a function of moisture
content is essential in the design and control of drying systems [7]. Moreover, FDR is widely used in
biomedical applications for diagnostic and monitoring purposes [8].

In this paper, we propose an inversion algorithm based on the least square difference between model
data based on the theory of the transmission lines and the measured data [9]. This will require one
more step with respect to the use of simulated data. In particular, it is needed to calculate the reflection
coefficient at the reference plane, which is not the same as the plane at which it is measured, because
of the unavoidable presence of connections between the piece of with the MUT inside and the rest of
the coaxial structure. The advantage of this technique concerning the classical method of Nicholson
and Ross is that that the method is based on waveguide measurements. Furthermore, it implies that
the system is usually not portable in the field (e.g., for geophysical measurements), but rather samples
of MUT have to be collected from the field and brought to the laboratory taking care not to alter
their properties of compactness, moisture content, and original temperature. Moreover, for frequencies
below 1 GHz, the needed cross-section of a waveguide increases and becomes progressively more critical.
Finally, even if (as hypothesized in the paper) the MUT is dispersionless, the waveguide presents some
modal dispersion that the transmission line based on the TEM mode does not show.

The paper is organized as follows. The formulation of the problem is described in Section 2.
Section 3 illustrates the procedures followed to obtain either simulated and experimental data which
are then compared in Section 4. Section 5 provides details of the inversion procedure and the achieved
inversion results, leading on to the conclusion.

2. FORMULATION OF THE PROBLEM

This section presents the derivation of the three cases that allow computing the permittivity and
permeability of a MUT from the measured reflection coefficient at the chosen reference plane of a
coaxial transmission line. Besides this, the section defines a novel algorithm approach to retrieve the
dielectric permittivity and magnetic permeability of a material from an inverse problem approach.

2.1. Theoretical Framework

The most well-known methods to determine the permittivity and permeability of a sample of material
are the Nicolson-Ross-Weir (NRW) [4] and the Baker-Jarvis (BJ) iterative methods [10]. Both methods
are based on the measurement of the reflection and transmission coefficients in a transmission line or
a waveguide embedded in or filled up with the MUT. However, this paper proposes an approach for a
lossless transmission line partially filled with (or partially embedded in) a possibly lossy MUT, related
to its reflection coefficient for three different types of termination [11, 12]. This goal has been achieved
by gathering data with a coaxial cable, part of which is filled up with the same MUT and making use
of three different terminations, namely a short-circuited transmission line, an open transmission line,
and a transmission line terminated with a matched load (to be understood as a load matched to the
previous section line in absence of the MUT). The reflection coefficient is calculated at the reference
plane placed just before the MUT, starting from the physical accessible input measurement plane.

Figure 1 shows the schematic of the three terminations with the MUT filling a coaxial line section of
length L whose complex permittivity, complex permeability, and characteristic impedance are denoted
as εr, μr, and Zl2, respectively. The datum is the reflection coefficient (S11) at reference planes x = −L,
the termination at x = 0. Within the region −L ≤ x ≤ 0, which is filled with the MUT, the characteristic



Progress In Electromagnetics Research M, Vol. 91, 2020 113

(a) (b)
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Figure 1. Schematic of the S11-parameter and the input impedance of the sample-loaded transmission
line. (a) Short-circuited line. (b) Open-circuited line. (c) Matched-circuited line.

impedance is Zl2 =
√

μr

εr
Z0l2

, where μr and/or εr are complex if the medium is lossy and are real if the

medium is lossless. The reflection coefficient of a wave incident at x = −L (referred to as datum) from
the air-filled line is given by
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(1)

where Z0l1
is the characteristic impedance of the air-filled transmission line before part which is filled

with the MUT, and Z−L is the impedance of the termination at x = 0 transformed to the reference
plane at x = −L. Thus, for the short-circuited transmission line the input impedance is given by
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where k0 is the wave number in free space. For the transmission line terminated with an open circuit,
the input impedance at x = −L is
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Finally, the impedance at x = −L of the transmission line terminated with a matched load is
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Provided that the MUT fills the transmission line section up to x = −L, the reflection coefficient at
this reference plane when the line is terminated with a short circuit can be reformulated using Eqs. (1)
† Though TDR stands for the time domain, the approach is conducted in the frequency domain.
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and (2):
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Similarly, for the reflection coefficient when the transmission line is terminated with an open circuit,
Equation (6) can be obtained by substituting from Equation (3) into Equation (1).
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The reflection coefficient with the transmission line terminated by a matched load is obtained by
substituting Eq. (4) in Eq. (1) giving:
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where a = k0
√

μrεrL = 2πf
c0

√
μrεrL, Z0l2

is the characteristic impedance of the transmission line before
inserting the MUT. Z0l1

is the intrinsic impedance of the transmission line in the part preceding the
MUT.

The numerical value for ε0 is about 8.854×10−12 F/m and for μ0 is 1.26×10−6 H/m. In propagation
media different from the free space, the permittivity and permeability are usually expressed respectively
as the products εrε0 and μrμ0, where εr and μr represent the dimensionless relative permittivity and
relative permeability, respectively. In lossy isotropic media, εr is complex and can be expressed as

εr = ε′ − jε′′ (8)

where ε′ and ε′′ are both positive and in general depend on frequency. Similarly, μr is complex in media
with magnetic losses, so that it can be expressed as

μr = μ′ − jμ′′ (9)

where μ′ and imaginary part μ′′ are both positive and in general depend on the frequency.

3. SIMULATED AND EXPERIMENTAL DATA

In this section, the problem is formulated by assuming that the TDR probe consists of a section of coaxial
transmission line shorted at one end and filled with a homogeneous MUT. To validate the proposed
method, the coaxial section was simulated using CST Microwave Studio. This section presents the
measurements setup and procedure using a coaxial sample holder to determine the reflection coefficient
of the MUT. We then describe the optimisation algorithm used to achieve convergence to the global
minimum of the cost function, in order to retrieve the dielectric permittivity and permeability profile
of the MUT from the measured reflection coefficient.

3.1. Simulated Data

In order to validate the proposed inversion analysis, a coaxial air-filled line of 40 cm long and terminated
by a short circuit was modelled with the CST full-wave simulator to obtain the reflection coefficient (see
Figure 2). A lossless non-dispersive magnetic material was then considered whose relative permittivity
and permeability were chosen as εr = 5 and μ = 2. The dimensions of the inner and outer radii of the
coaxial line were designed to satisfy an input impedance at x < −L of 50Ω impedance of the VNA test
port. The intrinsic impedance of the coaxial section intended to host the MUT, when void, is 50Ω.
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Figure 2. CST coaxial line model.

The internal diameter of the coaxial section was 3mm, and the diameter of the center conductor was
1.25 mm. The coaxial line was excited at the input reference plane (x = −L) and simulated over a
frequency range from 500 MHz to 1 GHz, in 21 MHz steps, using the CST Studio suite time-domain
solver. From simulation results, the reflection coefficient at the reference plane was extracted and
imported to an in-house MATLAB code to retrieve the required properties of the MUT.

3.2. Uncertainties

For accurate estimation of the measurement method, two primary error sources, i.e., the sample length
error and the finite accuracy of reflection coefficient measurement, are considered. In the experiment,
no direct measurement is possible at the measurement plane of interest. Therefore, the calibration was
conducted at a calibration plane, at the end of the coaxial transmission line (see Figure 4). Then, at
the sampled data post-processing stage, a phase correction was applied to shift the calibration plane to
the measurement plane. The measured reflection coefficient can be calculated as follows [13],

Γmeasured = Se11Γcorrect (10)

where Γcorrect is the corrected reflection coefficient, and Se11 is an error parameter that can be determined
from calibration. To find the error coefficient three independent measurements should be sampling
three different reflection standards. For this purpose, open, short, and load were used with reflection
coefficients Γcal

o , Γcal
s , and Γcal

lo . Then the error coefficient can be expressed in terms of calibration
standards as follows:

D =
2(Γcal

o − Γcal
lo )

Γcal
o − Γcal

s

(11)

D =
1 + E − D

DE − E − 1
(12)

C =
(Γcal

o − Γcal
s )(1 − B)
2

(13)

A = Γcal
o − C

1 − B
(14)

where A = Se11, B = Se22, C = S2
e21, E = e−j2βl1, and l1 is the offset length. Furthermore, in order

to retrieve the dielectric properties from S11 parameters, the reference plane needs to be changed from
the calibration plane to the measurement plane multiplying Γcorrect by e−j2βl.

3.3. Experimental Data

The measurement setup consists of a vector network analyzer (Rohde & Schwarz, ZVA 50, 10 MHz–
50 GHz) in combination with an open-ended transmission line. The operational frequency of the
measurements to measure the dielectric properties is in the range from 500 MHz to 1 GHz. The coaxial
transmission line sample holder is shown in Figure 3, where the MUT is loaded inside the line. The
transmission line is a commercial available coaxial adapter 50 (SPINNER GmbH, Munich, Germany)
used in RF-applications. It is configured such that it allows phase flow through the sample. In order
to connect the two-Port Coaxial Transmission Line with the vector analyser from one-end and short
it from the other end, two SMA adapters are used. However, the connectors used to terminate the
transmission line and to connect to the vector network analyser (VNA) introduce a phase delay. This
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Figure 3. Measurement set-up.

Figure 4. Schematic of the coaxial sample holder used in measurements.

presents a technical challenge since the theoretical considerations take into account the MUT fitting
exactly in the sample holder, between the termination and the reference plane. The MUT is loaded
into the sample holder, and all parts are tightly screwed together. The length of the coaxial section is
11.2 cm with internal diameter of 6.85 mm and a center conductor diameter of 3 mm. Consequently, the
characteristic impedance without the MUT is 49.5 Ω, which enables only the TEM mode to propagate
along the line in the frequency range of interest. For the inversion, the data with the transmission line
terminated by a short are considered.

Before the dielectric measurements, a one-port calibration was performed in order to compensate
the influences of the cable connecting the sample holder to the VNA, using a mechanical calibration kit
(Agilent 85032F). For a one-port calibration, reflection measurements for an open, a matched load, and
a short circuit termination were required. However, the measured signals at the VNA test port contain
information not only from the sample under test but also from the sample cell and its adapter. In
Figure 4, the reference plane 1 is the actual VNA measurement port. Therefore, the VNA input signal
is transformed to the MUT plane through the transition region. There is a reflection at this point, but
the signal proceeds to the other end of the MUT coaxial section, where there is another reflection at
the second transition. The signal then proceeds through the second transition region, at the end of
which there is another reflection, depending on the type of termination. The second signal then has to
traverse back through the second transition, through the MUT and the first transition until it reaches
the VNA test port. The analysis has to account for all these, neglecting additional reflections.

Two test samples were chosen for a preliminary validation experiment, namely air and Teflon.
These materials are non-dispersive and possess low loss properties which serve to validate the ability of
the proposed inversion method to retrieve permittivity and permeability profiles for lossless or low-loss
materials from the measured reflection coefficient (S11). Once the S11-parameter of the sample holder
had been obtained, the data were processed to remove the phase delay caused mentioned previously.
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After the contribution of unwanted connectors sections was removed, the permittivity and permeability
of the test samples could be determined by using the direct inversion algorithm. For the purpose of
comparison, the coaxial sample holder was modelled in CST, and simulation and measurement results
were compared with the transmission line mathematical model. Figure 4 illustrates the schematic
configuration of the coaxial sample holder used in this experiment.

4. COMPARISON BETWEEN SIMULATED AND EXPERIMENTAL CALIBRATED
DATA

Before showing a comparison between simulated (full wave) and experimental data, in Figure 5 we
present a comparison between CST simulated data and data calculated from transmission line theory.
In this way, we obtain a preliminary evaluation of the presumable reliability of the method (and of
the correctness of the implemented codes), without considering the added complication of moving the
reference plane. For this first comparison, we chose an idealized lossless medium with εr = 5 and
μr = 2, terminated with short. The parameters of the cable and the frequency range are those provided
in Section 3.1. In particular, Figure 5 represents the real (a) and imaginary (b) parts of the simulated
reflection coefficient as functions of frequency and the data obtained by the transmission line model
of Equation (5). The agreement between the transmission line data and the data obtained from the
full wave simulation is very good. Because the MUT is lossless, the real and imaginary parts of the
reflection coefficient fluctuate between ±1 over the frequencies of interest.

(a) (b)

Figure 5. The solid lines indicate the reflection coefficient calculated from theoratical consideration of
a short-circut terminated transmission line section, and the dashed lines represent the CST simulated
results. (a) The real part of the reflection coefficient. (b) The imaginary part of the reflection coefficient.

In order to make an initial comparison between CST and calibrated experimental data, an empty
coaxial section was considered. The results shown in Figure 6 represent the real (a) and imaginary (b)
parts of the reflection coefficient as a function of the frequency measured by the VNA on the coaxial
sample holder together with the simulated data obtained with a CST model. The experimental data in
Figure 6 involve phase delay arising from the input connector. There is substantial similarity between
the two data sets, but the discrepancy increases with frequency. In Figure 7, the phase delay was
corrected showing the reflection coefficient compared with that simulated by the CST software. The
agreement is visibly better, thus validating the correctness of the calibration procedure.

A second validation experiment was performed using Teflon as MUT. The nominal value of the
relative dielectric permittivity of the available Teflon insert was εr = 2. Teflon shows negligible losses and
negligible relative permeability. Figure 8 shows the real (a) and imaginary (b) parts of the measured and
simulated reflection coefficients (without phase correction) as a function of frequency. Figure 9 shows
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(a) (b)

Figure 6. The reflection coefficient (real and imaginary parts) of the air as the MUT simulated at
port 1, no phase correction was implemented on the measured reflection coefficient. (a) Real part of
the reflection coefficient. (b) Imaginary part of the reflection coefficient.

(a) (b)

Figure 7. The reflection coefficient (real and imaginary parts) of air as the MUT after phase correction.
(a) Real part of the reflection coefficient. (b) Imaginary part of the reflection coefficient.

the same comparison after phase correction of the experimental data, which reconfirms the validity of
the phase correction using Eq. (10). The slight difference between corrected experimental data and
simulation results may be because the Teflon insert did not fit tightly in the coaxial line test section.

4.1. Inversion Details and Result

Our inversion algorithm implements a least square minimization of the cost function of Equation (5),
involving the measured and modelled reflection coefficients and considering the two auxiliary unknowns
α =

√
μr

εr
and β =

√
εrμr. For lossless cases α and β and consequently εr and μr are real. However, our

inversion algorithm is conceived for complex quantities, and it does not assume a-priori that the MUT
is lossless.

The minimization was exhaustive and was performed on 101 cells for each of the four unknowns
searched for (namely the real and imaginary parts of α and β). This amounts to a total of 1014 =
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(a) (b)

Figure 8. The reflection coefficient (real and imaginary parts) at the reference plane of the coaxial
test section containing Teflon as the MUT without phase correction. (a) Real part of the reflection
coefficient. (b) Imaginary part of the reflection coefficient.

(a) (b)

Figure 9. The phase-corrected reflection coefficient (real and imaginary parts) at the reference plane
of the coaxial test section containing (Teflon as the MUT). (a) Real part of the reflection coefficient.
(b) Imaginary part of the reflection coefficient.

104060401 values to be compared. We consider a hyper-rectangle in R4 such that Re{αr} ∈ [0.01 : 3.995],
Im{αr} ∈ [−2 : 2], Re{βr} ∈ [1 : 21], and Im{βr} ∈ [−4 : 0]. This hyper rectangle directly imposes the
physically modelled conditions Re{αr} > 0, Re{βr} ≥ 1, Im{βr} ≤ 0.

The minimization procedure is implemented with a nested-loop iterative algorithm such that its
nth iteration exhaustively minimizes the cost function in a hyper-rectangle centred on the values from
the previous iteration and reduced in size with respect to the previous step. This reduces the size of
the pixels in the 4-dimensional space wherein the solution is searched for, and therefore it allows better
approach the global minimum of the cost function.

The optimization procedure is designed to stop when both εr and μr at the (n − 1)th step and
at the nth step differ by less than 2% or alternatively when the minimum value of the cost function
at the nth step is larger than the homologous value found at the (n − 1)th step. The minimization
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is implemented by means of an in-house MATLAB code, which reads as inputs of the parameters of
the cable, frequency range, frequency step, and data, that in turn can be read from an external file
containing either the result of a CST simulation or the measured and phased-corrected experimental
data.

In the case of the simulated medium with εr = 5 and μr = 2, the solution of the inverse problem
resulted in εr = 4.7297 − 0.7789i and μr = 1.9849 + 0.3269i. The inversion algorithm converged after
20 iterations, each of which required about 10 minutes on a laptop computer with 16 Gb RAM. This
resulted in an error of 0.04% in estimating the relative permittivity and 0.58% in estimating the relative
permeability. Though the algorithm converged to the modelled parameters accurately, false imaginary
parts were induced. This is possible because the algorithm searches for complex quantities. In particular,
there is an non-physical value of the imaginary part of the magnetic permeability, which is also possible
because the physical conditions to respect have been imposed on the auxiliary unknowns α and β and
not directly on the unknowns of interest εr and μr.

With regards to experimental data, in the case of the MUT being air, the minimization of the
cost function provided εr = 0.9022 and a relative permeability of μr = 1.1084. In this case, the
inversion algorithm converged after 50 iterations. This resulted in an error of 0.098% estimating
relative permittivity and 0.108% with respect to the relative permeability. In the case of Teflon as
the MUT, we achieved as result of the minimization of the cost function εr = 1.9100 − 0.0525i and
μr = 1.0313 + 0.0284i. The error with respect to the nominal value of the properties of the material
is (considering the complex achieved result) 0.04% with respect to the relative permittivity and 0.03%
with respect to the relative permeability.

5. CONCLUSION

A novel technique to measure both the dielectric and magnetic properties of a material using a TDR
probe modelled as a coaxial line section, terminated with a short circuit at one end was presented.
Furthermore, terminations with open or matched load are mathematically modelled. The originality of
the inversion method consists in the fact that the data are gathered only in reflection mode and that
the extracted data included the relative permeability which previously could only be obtained by using
a two-port measurement technique, considering both reflection and transmission coefficients. This also
constitutes a preliminary step toward applications where reliable data in transmission mode are difficult
to achieve. The model was validated both with respect to full wave numerical data simulated with CST
and experimental data obtained with a commercial coaxial line section. For the experimental data,
however, a phase correction was required in order to extend the reference plane up to the MUT input
plane. Over the frequency range 500–1000 MHz and using Teflon and air, the error in the measured
relative permittivity ranges between 0.04% and 0.58%, and the relative permeability ranged between
4.2% and 10%. This range is within the limits arising from inherited uncertainties of the permittivity for
Teflon measurements. On the other hand, simulated results comparison with the mathematical model
exhibit uncertainty ranges for both relative permittivity and permeability 0.03%–0.1%, respectively.

The results are preliminary, and the phase calibration procedure has to be refined for lossy materials
where not only the phase but also the magnitude of the reflection coefficient is involved. Even so, the
results show that our procedures provide a satisfactory evaluation method for complex permittivity and
permeability measurements using a reflection technique.
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