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Non-Stationary Statistics with Amplitude Probability Density
Function for Exposure and Energy Density Reporting

near a Mobile Phone Running 4G Applications

Simona Miclaus* and Paul Bechet

Abstract—Present contribution introduces, for the first time, the description of human exposure
dynamics to mobile phone radiation by implementing the use of in-air integrated energy density (IED)
evolution in time. Using the amplitude probability density (APD) function capability of a real-time
spectrum analyzer, we demonstrate the differences in exposure due to five different mobile applications
running in Long Term Evolution (LTE) standard, based on energy deposited in air: voice call; voice
over LTE (VoLTE); video call, file download and live streaming. This exposimetric method will be
of great interest also for the new 5G communication standard. The superiority of the approach has
three branches: a) integrated APD allows a sample rate of the order of 0.6 × 108/s which is equivalent
to an extremely agile tracing of the power level change in LTE communication standard (happening
at every 6.67µs); b) momentary and mean IED accumulation rate can be computed, and minute
differences between mobile applications may be observed during their running time; c) the superficial
tissue temperature increase may be rapidly estimated after the period of use of one specific wireless
application in the GHz frequency range. The method implemented here also provides the means for
rapid usage profile expectancy assessment of a mobile phone user.

1. INTRODUCTION

The metrics of the human exposure protection against radiofrequency (RF) electromagnetic fields is
continuously challenged, mostly because the wireless communication technologies advance towards
emissions characterized by radiated fields with quasi-stochastic behavior, sporadic high peak powers,
and variable crest factors. Safety standards in use till very recently this year 2019 [1, 2] have been
under revision, and refined procedures were sought for, in order to properly advice protective limits.
When moving up in the frequency spectrum towards mm-wave technologies including 5th generation
(5G) wireless communication systems, high variability in time and position of an individual’s exposure
is expected, for example from steerable arrays of beams. Such situations should be instrumented by
extensive use of statistics.

As the user of a wireless communication technology is primarily exposed to the radiation of his/her
own devices — such as cell phones, these are of the greatest interest. The data gathered till the present
referring to biological or health effects are very controversial, mainly those connecting cell phones use
with brain cancer. Since 2011, when the International Agency for Research on Cancer (IARC) classified
the mobile phones’ emitted radiation as possibly carcinogenic to humans [3], literature has contin-
ued to indicate both positive and negative results [4]. Belyaev reported in 2017 that a proper metrics
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for exposure to RF fields is a combination of exposure duration and power flux density of the field
[5]. Evidence supporting a nonlinear dose-response relationship continued to gather, and recently in
2019 the authors of [6] demonstrated that a nonlinear J-shaped dose-response relationship exists in
carcinogenesis due to mobile phone radiation.

The classical metrics in use in the frequency range of interest in this paper, that of (1–3) GHz,
establishes protective limits based on the specific absorption rate (SAR) of energy deposition in
tissues/body parts (W/kg) and on the incident power flux density (IPD), (W/m2). The procedures
to establish if the safety limits are not exceeded generally refer to the “worst case” situations of
exposure. However, realistic exposure is still very difficult to report with the methodology described in
the guidelines in use.

A completion of the metrics has been proposed in the previous two years, to fill up the newly
identified gaps regarding: a) time-variation of the emitted signals — which needs an improved averaging
process; b) in the case of pulsed fields the fluence was proposed as a metric, and a limit of its value
can be established, which depends on frequency and pulsewidth [7–9]. Fluence, a term imported from
ionizing radiation dosimetry, refers to the radiant energy received by a surface per unit area (J/m2) and
is similar to the integrated energy density (IED). It has also been demonstrated that the metric called
transmitted power density (TPD) to the skin surface and SAR are proper indicators to estimate the
skin temperature elevation for frequencies starting from (1–3) GHz upwards. The just-released (October
2019) improved IEEE C95.1 standard in USA [4] provides valuable details on short-duration exposures
(less than the average time — 6 minutes), to be applied when investigating, for example, mobile phone
radiation. In such a case, both the dosimetric and exposure reference levels associated with tissue
heating are related to energy. Therefore, specific absorption (SA) or incident energy density should be
used. A very similar approach is adopted in the draft guidelines to be used in Europe [10].

From another perspective, the usage pattern of the mobile phone is crucial. Gandhi has recently
reported that most mobile terminals exceed the safety limits from guidelines when being held against
the body [11]. The exceeding factors are situated between (1.6–3.7) reporting to ICNIRP guidelines [1]
and even 11 when reporting to IEEE standard [2]. In the case of persons wearing spectacles, the effect
of their presence near the phone can increase SAR very much [12]. The effect of three different usage
patterns — voice calling, video calling, and texting were investigated by computational dosimetry in
2019 [13]. Radiated powers and gap distances between mobile phones and human heads are among the
variables used to observe SAR and temperature distributions in head models. The results indicate a high
impact of these variables on the deposited energy in the head. Also in 2019, the authors of [14] studied
the temporal and power emission behavior of a mobile phone used in different wireless technologies
2nd–4th generations, respectively: GSM, UMTS circuit-switched, UMTS Voice over Internet Protocol
(VoIP), Voice over Long Term Evolution (VoLTE), and LTE VoIP using WhatsApp and Skype mobile
application, in active and idle states. They concluded that the emitted power of the terminal depended
on the channel quality and the path loss between the device and base station antenna; therefore, each
case needs a separate analysis. In order to report realistic exposure levels of mobile phone users, a
statistical approach has been recently applied to trace the variability of the delivered input power
during the uplink transmission of terminals and model it for given propagation conditions [15]. Also
our research group’s latest contributions [16, 17] revealed radiated power levels near the terminal that
highly depended on the time and the usage pattern.

In line with the need of implementation of improved metrics especially for frequencies higher than
3GHz, in the present work we follow the statistic variability of IPD and electric (E)-field strength,
respectively, which is received locally in air, at a few centimeters distance of a mobile terminal
connected to a 4-th generation (4G) mobile network — Long Term Evolution (LTE) which uses different
applications. Then, IED is for the first time calculated and its time-evolution represented. Keeping
in mind that IPD is an external physical quantity, it will be differently absorbed in tissues (skin or
head, depending on positioning of the terminal) in function of the frequency dependencies of reflexion
coefficient and penetration depth. This absorption will cause a frequency-dependent temperature
elevation. TPD at the skin level will also be assessed, leading to the determination of the steady-state
skin temperature elevation in our experimental situation, in realistic time-use of the mobile phone.
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2. MATERIALS AND METHODS

A mobile phone model Samsung Galaxy A3 (SM-A320FL) was used in the experiment. It emitted LTE
signals on the center frequency of 1.93 GHz with a bandwidth of 10 MHz. The producers’ maximum
SAR certified values are: SARhead = 0.349 W/kg; SARbody-attached = 1.38 W/kg. The measurement
system was composed of: a) a near-field E-field probe model PBS E1 (Aaronia, Germany); b) real-time
spectrum analyzer model Fast Support Vector Regression — FSVR (Rhode & Schwarz, Germany); c) a
custom Python application which remotely interrogated and extracted the data from the analyzer. All
the measurements were performed indoor, while keeping the terminal battery fully charged. The setup
is shown in Fig. 1. A tiny E-field probe was positioned with its tip at 5.4 cm distance from the surface
of the terminal, in air, exactly over the center of the loudspeaker. The probe was sequentially oriented
on all three orthogonal directions Oxyz to finally express the total E-field strength in the point of
measurement. Therefore, the field level was measured in a single point in air, in the radiative near-field
of the mobile antenna, following a methodology described in our earlier paper [17].

Figure 1. The experimental set-up used for measuring the incident power density dynamics.

Five types of mobile applications were the sources of the RF exposure, namely: voice call, VoLTE,
video call, file download (movie Youtube), and live streaming. The average and peak values of the E-
field strengths were computed and analyzed in their time dynamics. Finally, the point fluence values in
air were expressed, in terms of peak and average values, together with their evolution over a short-time
duration (1 minute) of use of the specific wireless application.

The spectrum analyzer had the following settings, to accurately trace the microseconds fluctuations
of the LTE field strength (symbol duration = 6.67µs): central frequency = 1.93 GHz; span = 60 MHz;
resolution bandwidth = 10 MHz; total acquisition time = 60 seconds; captured samples rate =
662 × 105/s. In this way, the analyzer recorded one sample after each 15.1 ns, which allowed the
most agile tracing of the momentary amplitude changes. Moreover, any signal coming from any other
radiofrequency source was excluded from being captured (which means that we had a “controlled
environment”) due to the settings that we used, applied so as to avoid any standardized wireless emission.

The amplitude probability distribution (APD) is used in radio engineering to describe signal
amplitude statistics [18–20]. The APD function indicates the probability that a varying signal exists at a
specific amplitude value. The horizontal axis denotes the amplitude, and the vertical axis is normalized
from 0 to 1. Frequently, APD is used for noise or interference characterization. APDs are commonly
used to characterize the amplitude statistics of non-Gaussian noise, and since 4G radiated signals behave
very similarly, we introduce it here for the first time, as an accurate characterization method of such
signals. By directly using the APD capability function of the FSVR real-time spectrum analyzer, we
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investigated the statistical dynamics of the radiated E-field component. Percentile amplitude statistics
can be read directly from the APD. The peak statistic is defined by the amplitude that has exceeded
0.0001% of the time.

Practically, the probability of the measured amplitudes was provided and displayed as a histogram.
While the selected measurement time for each measurement was 60 sec., the histograms of the amplitudes
were provided. As the x-axis of the APD function was set in dBm, we transformed the power in E-field
strength by using the E-field probe calibration curve. Since the choice of histogram bin size may affect
the accuracy of the statistics, we use here a bin size of 15.1 ns, which is an excellent capability. The root
mean square (rms) values of E-field strengths were finally calculated, Erms. For each displayed trace,
the instrument provides the mean and the peak values.

The rate of average IED accumulation in air (fluence), in the measurement point, for different
mobile applications, was then calculated. Practically, we computed the IPD based solely on E-field
strength values, and then applied cumulating function (in time) over IPD to gain the fluence expressed
in J/m2. The next definitions were used:

IPD =
E2

Z0
(1)

where E is the electric field strength value, and Z0 is the characteristic impedance of free space.

IED =
∫ t2

t1
IPD(t) ∗ dt (2)

where t is the time, and integration duration has the limits t1 and t2.

3. RESULTS AND DISCUSSION

Figure 2 shows the average and peak E-field strengths dynamics with 1 minute duration of running the
five different wireless applications in LTE communication standard, in a point in air situated at 5.4 cm
distance from the mobile phone surface, above the center of the loudspeaker. While notable differences
are observed when reporting average values per wireless application, the peak field strengths are very
similar during all five applications (except downloading). Video call among them presents the highest
average field strength and has the most dynamic amplitude in time, generally at least 2.5 times higher
than all the other four investigated. The lowest mean exposures are attributed to voice calling and to
downloading files. If comparing mean field strengths with peak field strengths, the last ones are 3–10
times larger, in general. However, peak values have a more restricted variance, not depending on the
application type.

(a) (b)

Figure 2. Evolution of the E-field strength in time during one minute of use of various wireless
applications: (a) average values; (b) peak values.
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(a) (b)

Figure 3. Boxplots of the (a) average and (b) peak E-field levels distribution at 5.4 cm distance from
the phone display (in air) during one-minute use of different applications.

(a) (b)

Figure 4. The time-evolution of (a) average and (b) peak electromagnetic fluence in air, in the
measurement point, for different mobile applications.

Boxplot representations in Fig. 3 highlight the most dynamic and most stationary radiated signal
levels: video call presents the most spread field strength values, both as average and as peak values.
Mean and median values of average and peak strengths are also the highest for video call, while file
download is at the opposite side. If we consider two applications in which the user puts the terminal
in contact to the head, classical voice call and VoLTE respectively, then we observe that even if peak
levels and dynamics are practically the same, the average values are different. From this perspective, it
is safer for the user to choose classical voice call instead of VoLTE, which radiates 30% more intensely
in terms of average E-field strength levels.

Correlation coefficients for the strings of data corresponding to average and peak values of the
field levels are as follows: 0.49 — Call, 0.56 — VoLTE, 0.38 — Video call, 0.56 — Download, 0.61 —
Streaming. Such coefficients clearly indicate the non-stationary nature of the 4G radiated signals.

As observed in Fig. 4, video call had the highest rate of energy density deposition (in air) in time.
Median value of E-field strength during video call was 6.1 V/m at 5.4 cm distance from the phone (Fig.
3(a)), while peak value reached 33 V/m (Fig. 3(b)). Theoretically estimating the field strength at a
distance of 40 cm from the terminal (also in air) provides a median value of 0.1 V/m and a peak value of
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0.6 V/m in this position. The estimation was based on theoretical decrease with the square of distance.
During a video call, a phone positioned at a distance of 40 cm from the head is a realistic one. If such
fields are considered to impinge the head of the user, they will penetrate the skull (with bone tissue), and
inside, just beneath the limit air-skull the SAR can be calculated theoretically, following the formula:

SAR =
σ ∗ E2

int rms

ρ
(3)

where σ is the electric conductivity of the tissue, E2
int rms the rms electric field strength inside the tissue,

and ρ the mass density of the tissue. E2
int rms was simply calculated considering the most defavorable

case, when the incident E vector (Eair) was perpendicular to the air-tissue interface, and the interface
was plane. The transmission is ruled by the relation:

Eair = εr ∗ Eint rms (4)

where εr is the relative permittivity (real part) of the tissue.
A median SAR value of the order of 10−7 W/kg and a peak SAR of the order of 10−5 W/kg were

obtained. Such SAR values are indeed too low to be taken into account. For the simplified dosimetric
assessment just considered, we used the next values, valuable at 1.93 GHz for bone cortical tissue:
εr = 11.7, σ = 0.29 S/m, and ρ = 1908 kg/m3.

Using the ratio of the surface temperature elevation to the IPD for a one-dimensional tissue model-
skin (i.e., assuming plane wave exposure that is uniform over the entire tissue boundary), based on data
in [7], we could further estimate the temperature increase. From Fig. 3, for a median field strength of
6.1 V/m — obtained during video call, an IPD of 0.099 W/m2 is gained, which results in an increase of
4×10−4 deg C temperature. Similarly, for a 33 V/m peak value, the IPD is of 2.89 W/m2, which results
in a 0.012 deg C peak temperature increase. Using the ratio of the surface temperature elevation to the
IPD for a dipole antenna situated 5.4 cm from the tissue, the temperature increase was calculated to be
half in both cases. In conclusion, the rapid dosimetric estimations clearly show that such field strengths
are completely inoffensive for humans, if we consider just the thermal-based effects, as in the standards
in use today.

Figure 4 representation however deserves a separate discussion. It shows the accumulation of fluence
in time while running various wireless applications, and we underline that it is for the first time applied
as a metrics in RF exposimetry, here. It demonstrates to successfully give indication on the deposition
rate of the energy transmitted from the air to the body when using a wireless terminal. The use of
momentary and average slopes of the IED curves of the type represented in Fig. 4 highly increases
the sensitivity of generating personal usage profile expectations. For example, Fig. 4(a) highlights
information that is available only by such a representation: voice call and VoLTE may reverse the slope
trend at some moment in time (second 13th) during wireless application use. Moreover, both Figs. 4(a)
and 4(b) indicate the speed with which the incident RF energy accumulates per running application
during time and can provide the moment when a user will become more exposed due to one or another
application. Such amplitude-time information will be of even greater value with the deployment of 5G
user devices.

From Fig. 5 we observe that peak values of the total energy density deposited in air during 1
minute use do not show a large relative variation between applications, but the average values do.
Therefore, the average energy density radiated in air may be a very proper indicator to make the
differences in exposure between types of used applications. However, in order to have access to such
data, one needs a real-time spectrum analyzer with APD capability. For example, in the present case,
during one symbol transmission duration (6.67 µs), 441 samples were recorded and processed. Such
a high sampling rate offers a very accurate APD distribution of field levels, with the consequence of
agile tracing of real emitted power change. These results contribute to the demands just underlined by
the authors of [21] who proved that “the exposure uncertainty has probably introduced non-differential
exposure misclassification in many previous epidemiological studies” dealing with mobile phone radiation
exposure.
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Figure 5. The total electromagnetic energy density accumulation in air, at 5.4 cm distance from the
terminal’s display, after one-minute use of different mobile applications: average values (red/bars) and
peak values (blue/points).

4. CONCLUSIONS

With the increase in frequencies in the GHz range from the 4G towards 5G mobile communications
generation standards, the need for tailored methods to better describe human exposure to the near-
body emitted radiation exceeded the framework of standards in use until 2019. Since scarce realistic
description of amplitude-time behavior of radiated field strengths from mobile phones is present in the
literature, it was the main objective of present work to demonstrate the versatility of an original method.

Practically, by using a near-field electric field probe and a real-time spectrum analyzer, we described
the electromagnetic energy accumulation in air, in the proximity of a mobile terminal running different
wireless applications in LTE standard on 1.93 GHz and in a 10 MHz bandwidth. The method is based
on using the amplitude probability density function capability of a real-time spectrum analyzer and on
computing the integrated energy density in air (at incidence to the body).

The method proves to have a high agility in tracing the microsecond variability of emitted power
level, since 441 samples could be captured during the period of power level change of the LTE standard
signal. Then, the statistics of signals with non-Gaussian behavior was applied, conducted at the end to
an accurate classification of the energetic prints of the run applications. Not only are the average and
peak energy densities with their distributions available, but also the momentary rate of incident energy
accumulation in time and the total deposited energy density can be calculated after using a well-defined
period of one application. In this way, predictions of real usage profiles can be obtained. Also, with
the collected and processed data, and based on the literature, we could further estimate superficial
temperature increase in tissues, for signals with small penetration depth.

From the five tested wireless applications, it is shown that video call generates the highest human
exposure, mainly when reporting average incident electric field strengths (10 V/m at 5.4 cm from the
terminal’s surface). Peak levels of field strength are very similar for all five applications, varying around
23 V/m. The largest variations in time were recorded during video call and VoLTE applications running.
The rate of energy accumulation in air was very different per application for average values, while for
peak values only small differences were revealed. Overall, the total electromagnetic energy density
accumulation in air during one minute use of an application was more than 6 times higher in the case of
video call than for all the others. This parameter descended in order from video call, to live streaming,
VoLTE, voice call, and downloading.
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