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Space-Borne Compressed Sensing Based Receiver for Accurate
Localization of Ground-Based Radars

Esmaeil Ramezani, Mohamad F. Sabahi*, and Seyyed M. Saberali

Abstract—Space borne accurate emitter localization has become an important and indispensable part
of electronic warfare (EW) systems. In this paper, a system-level approach to design a space borne
receiver for accurate localization of long range co-channel radars (e.g., a network of similar surveillance
radars) is presented. Due to the wide frequency range of modern radar signals, the receiver should have a
wide instantaneous bandwidth and requires high sampling rate analog-to-digital converters (ADCs). To
address this issue, we propose a receiver structure with an appropriate sub-Nyquist sampling scheme and
fast sparse recovery algorithm. The proposed sub-Nyquist sampler employs a three dimensional uniform
linear array (ULA), followed by a modulated wideband converter (MWC). To accurately estimate the
location of the co-channel radars from sub-Nyquist samples, a novel quad-tree variational Bayesian
expectation maximization (QVBEM) algorithm is proposed. The QVBEM algorithm minimizes the
computational load and grid mismatch error by iteratively narrowing the search area. This is done
by a smart grid refinement around radars’ locations. To evaluate the performance of the proposed
receiver, location finding of pulsed radars is studied through numerical simulations in various scenarios.
The results show that the proposed QVBEM method has a significantly lower estimation error than
conventional deterministic and Bayesian approaches, with a reasonably computational complexity.

1. INTRODUCTION

The development and deployment of space borne electronic warfare receivers for detecting, locating,
and analyzing the radar threats from space was started in 1960, just three years after the first
satellite launch [1]. In recent years, space borne EW receiver design has attracted the attention of
many researchers in diverse fields. The satellite platform requirements are determined by the main
characteristics of the payload, including size, weight, and power consumption. Therefore, low weight,
small size, and low power consumption payload are key requirements when designing a cost efficient
system [2].

The velocity of the Low Earth Orbit (LEO) satellites with respect to the earth is around 7–8 Km/s,
resulting in a very short target observation time [3]. Therefore, the instantaneous bandwidth should be
wide in order to permit a high probability of interception in the space borne receiver. Covering broad
frequency ranges with a wide instantaneous bandwidth forces us to use modern digital receivers. If
classical sampling schemes are used, the wideband digital receiver requires ADCs with extremely high
sampling rates, processors with high processing powers and memories with very large storage size. When
the input signal is sparse or compressible, it can be recovered from a small set of linear, non-adaptive
measurements [4]. The idea of reducing the sampling rate of analog signals, or compressive sensing (CS),
has led to several sub-Nyquist sampling methods for multiband signals. Several algorithms have also
been developed to recover the signal from sub-Nyquist samples [5]. The development of these algorithms
in the application of electronic warfare has also been considered [6]. One of the most important tasks of
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EW receivers is to determine the position and frequency of the transmitters. Several spectral techniques
are introduced for emitter localization which can be used in EW receivers. Some of them are suitable for
the scenarios where the receiver copes with both the radiating sources and the scattering objects [7–10].

A space borne EW receiver copes with a limited number of long range radars, spread over a vast
area. Usually, a small portion of the frequency range is occupied by these radars. In such a scenario,
the signal is sparse in frequency and location. Therefore, CS methods can be used to cope with the
challenge of high-rate ADC and its consequences. CS-based receivers work in two steps. First, the input
signal is sampled by a sub-Nyquist method and second, the signal (or its parameters) is reconstructed
from sub-Nyquist samples [11]. Spectrum sensing and the direction of arrival (DoA) estimation are two
major research fields in CS literature (see [12] and references therein).

Exploiting compressed sensing in EW applications has recently been addressed [6, 13, 14]. Designing
a CS-based receiver is a growing research field that has attracted considerable attention [13, 15] and
has a wide range of applications [16, 17]. Performing agile spectrum sensing as well as accurate DoA
estimation of radar signals can be viewed as one of the most important missions of a space borne CS-
based EW receiver. Practically, beside exploiting an appropriate sub-Nyquist sampling scheme, effective
sparse recovery algorithm is the heart of CS-based receivers. Designing the sampling mechanism and
the sparse recovery algorithm in practical scenarios are investigated throughout this paper. We focus
on the localization of co-channel ground-based radars, i.e., radars with the same carrier frequency.
An important application is the localization of a network of similar surveillance radars. To the best
knowledge of the authors, this problem has not been considered previously. The localization is performed
by finding two dimensional DoAs. Generally, DoAs are estimated by the smart searching of the
region under surveillance. In this paper a new sparse recovery method is presented by modifying the
VBEM algorithm, which is one of the well-known high-performance Bayesian recovery algorithms. This
modification is done by using the quad-tree technique. Through this proposed method, the localization
resolution will be improved by iteratively narrowing the search area. Our contributions in this paper
are as follows:

• A CS-based wideband receiver, including a three-dimensional ULA and an appropriate sub-Nyquist
sampler, is introduced to design a space borne EW receiver.

• Accurate localization of long range co-channel radars is modeled as a sparse problem and an
analytical expression for space borne localization is derived.

• A novel sparse recovery algorithm, called QVBEM, is introduced for accurate target localization.
• The suitability of the proposed QVBM algorithm for accurate localization in space borne EW

receiver, and its superiority to the existing deterministic or Bayesian approaches, are demonstrated
by applying the algorithm in various scenarios.

The rest of the paper is organized as follows. In Section 2, theoretical backgrounds about space
borne EW receivers, sub-Nyquist sampling schemes, and sparse recovery algorithms are provided. In
Section 3, the proposed structure for space borne localization is presented. Moreover, our new recovery
algorithm is discussed in details. In Section 4, simulation results are presented and finally, Section 5
provides a conclusion of the paper.

Notations: Throughout the paper, vectors, matrices, and scalar values are denoted by boldface
upper case, boldface lower case, and italic lower case letters, respectively. xi is the i-th element of a
vector x, and Aij denotes the ij-th entry of matrix A. Also, operator E [.] is the expectation.

2. PRELIMINARIES AND THEORETICAL BACKGROUND

2.1. Space Borne EW Receiver

The platform-based EW and network-centric EW are two major approaches to electronic warfare
development. In both of these approaches, the satellite platforms play an incredible and growing role.
Overcoming limitations due to the curvature of the earth, increasing the operational range of the systems
from several hundred to several thousand kilometers, detection and identification of the electromagnetic
sources without the limitations of geographical boundaries between countries, and predictable access
to all parts of the world are compelling reasons for the tendency to exploit LEO satellite platforms as
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Figure 1. Model of the space borne localization as a sparse problem.

carriers of EW systems. Long-range radars are the main targets of space borne EW receivers. A typical
scenario has been depicted in Fig. 1. In this scenario, a satellite with an orbital height of 600 km, the
common orbital height in such missions [1], was used to detect and locate long-range radars. The main
characteristics of the space borne EW receiver are sensitivity, instantaneous bandwidth and dynamic
range. In free space, the signal level received by the EW receiver from the radar transmitter is given
by [2]:

SE =
PT GTEGEλ2

(4π)2 R2
ELTLE

, (1)

where SE, LT , LE, and λ represent the signal level at the EW receiver, transmitter losses, EW receiver
losses, and wavelength, respectively. RE is the distance between transmitter and the EW receiver. Also,
GTE and GE are the radar antenna gain in direction of the EW receiver and EW receiver antenna gain
in the direction of the radar, respectively.

From the perspective of the space borne EW receiver, an important point in Eq. (1) is that long-
range pulsed-radars have high transmission power. This can be considered as a great opportunity for a
space borne EW receiver to detect them [18]. Based on orbital mechanical calculations [3], for a satellite
with a height of h, from the earth surface, RE in Eq. (1) must satisfy the following conditions:

h ≤ RE ≤
√

(Rearth + h)2 − R2
earth (2)

where Rearth is the radius of the earth, equal to 6378 km. So, for a satellite at a height of 600 km, the
distance between the satellite and target radars varies from 600 km to 2800 km. Compared to airborne
and ground-based counterparts, a space borne EW receiver detects targets from a far greater distance.
Therefore, there is a need for better receiver sensitivity. On the other hand, the ratio of the furthest
distance to the lowest distance in a space borne receiver is between 4 and 5, while this number is much
higher for airborne systems (e.g., up to 100). As a general result, a space borne EW receiver needs very
good sensitivity and a moderate dynamic range.

In a space borne EW receiver, detecting and localizing ground-based radars can be modeled as a
sparse problem. Indeed, as shown in Fig. 1, at any time a limited number of radars is under detection
and identification. Therefore, the problem is sparse when taking into account the location of the
radars. Also, from the spectrum sensing point of view, the radars occupy only a small fraction of the
surveillance frequency band. Hence, the problem is also sparse in the sense of spectrum sensing. Spatial
and frequency sparsity provide the opportunity to take advantage of the emerging compressed sensing
techniques which enable an estimation of the radar signal parameters by sub-Nyquist samples.

2.2. Compressed Sensing and Sub-Nyquist Sampling

In general, when treating compressed sampling for analog signals, an appropriate sub-Nyquist sampling
method and an effective sparse signal recovery algorithm are two main cases that should be considered.
The sampling of radar signals is equivalent to the sampling of a multiband signal with unknown carriers.
Fourier transform of input signal u(t) comprises a small number of occupied bands, spread over a wide
frequency range. The low-pass equivalent of the received signal at the EW receiver, u(t), is represented
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as a combination of up to M independent signals si (t), i ∈ {1, 2, . . . ,M}.

u (t) =
M∑
i=1

si (t)ej2πfit (3)

Each si(t) has a relatively small bandwidth, belongs to the interval B = [− 1
2T , 1

2T ], and the
maximum frequency component of u(t) is assumed to be in F = [− fNyq

2 ,
fNyq

2 ]. The signals are
disjoint in the frequency domain, i.e., min

i�=j
{|fi − fj|} > B = 1

T . To sample such a multiband signal,

several sub-Nyquist sampling methods have been introduced. Multicoset sampling and Modulated
Wideband Converter (MWC) are two well-known methods which work based on aliasing in time domain
and frequency domain, respectively [19]. In multicoset sampling, the input signal u(t) is sampled in
several channels with different delays. Implementing multicoset sampling requires a complex ADC
circuit, and maintaining accurate time delays between the channels. These requirements make the
multicoset sampling impractical [20]. The MWC is a more practical method in the multiband signal
scenario [20, 21]. In MWC, the received signal u(t) arrives k channels and in the i-th channel is multiplied
by the Tp-periodic function pi(t), followed by a low pass filter (LPF) with cut-off frequency 1

2T s
. The

output of the filter is sampled at the rate 1
Ts

, which is a fraction of B.

2.3. CS-Based Carrier frequencies and Direction of Arrivals Estimation

In the space borne EW receivers, there is a need for both carrier frequency and DoA estimation. Often,
a uniform linear array (ULA) of antennas is used to estimate the DoAs. Several authors have considered
the problem of joint carrier frequency and DoA estimation [22–27]. Also, joint two dimensional DoAs
and carrier frequency estimation is considered in [14]. The superiority of the CS-based DoA estimation
over traditional methods has been reported in [12] and the references therein. From the implementation
point of view, one of the most appropriate CS-based joint frequency and DoA estimation methods is the
ULA-based MWC [14, 20]. A ULA-based MWC is depicted in Fig. 2. Incoming signals are assumed to
have an angle arrival of θ �= 90◦. The distance between two adjacent antennas is d so that d < c

|cos θ|fNyq
,

where c is the speed of light. The received signal on each antenna element is mixed with a periodic
function p (t) with period Tp = 1

fp
, followed by an ideal LPF with the cutoff frequency fs

2 .

Figure 2. ULA-based MWC.

Assume that the received signal at the n-th antenna is as follows:

un (t) =
M∑
i=1

si (t + τn)ej2πfi(t+τn) (4)
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where τn = nd
c cos θ. By considering narrow band assumption on si (t), un (t) can be approximate as,

un (t) ≈
M∑
i=1

si (t)ej2πfi(t+τn) (5)

The Fourier transform of the received signal is represented by

Un (f) =
M∑
i=1

Si (f − fi) ej2πfiτn (6)

Consider the Fourier series expansion of the periodic mixing function p(t), as p(t) =
∑∞

l=−∞ cle
j2πlfpt,

where cl = 1
Tp

∫ Tp

0 p(t)e−j2πlfptdt. The Fourier transform of the modulated signal, Ũn(t) = un(t)p(t) is
given by

Ũn (f) =

∞∫
−∞

un (t) p (t) e−j2πftdt =
∞∑

l=−∞
clUn (f − lfp) (7)

Indeed, Ũn (f) is a linear combination of fp-shifted, cl-scaled copies of the modulated signal Un (f). At
the output of LPF we have Yn (f) as:

Yn (f) = Ũn (f)H (f) ==

⎧⎪⎨
⎪⎩

∞∑
l=−∞

cl

M∑
i=1

Si (f − fi − lfp)ej2πfiτn , f ∈ Fs

0, f /∈ Fs

(8)

where H(f) represents the frequency response of LPF and Fs = [− fs

2 , fs

2 ]. Note that Un(f) and Yn(f)
only contain frequencies in the intervals F and Fs, respectively. Therefore, we can rewrite Yn(f) as
below:

Yn (f) =
L0∑

l=−L0

cl

M∑
i=1

Si (f − fi − lfp) ej2πfiτn =
M∑
i=1

ej2πfiτn

L0∑
l=−L0

clSi (f − fi − lfp) =
M∑
i=1

S̃i (f) ej2πfiτn

(9)
where

S̃i (f) �
L0∑

l=−L0

clSi (f − fi − lfp) (10)

and L0 = �fNyq+fs

2fp
� − 1.

Let xn [r] = yn (rTs) denote the r-th sample of the n-th array element. The discrete time Fourier
transform (DTFT) of xn [r] is,

Xn

(
ej2πfTs

)
=

M∑
i=1

Wi

(
ej2πfTs

)
ej2πfiτn , f ∈ Fs (11)

where wi [r] � S̃i (rTs) and Wi

(
ej2πfTs

)
= DTFT {wi [r]}. We car rewrite Eq. (11) in matrix form as,

X (f) = AW (f) , f ∈ Fs (12)

where X(f) = [ X1(ej2πfTs) . . . Xk(ej2πfTs) ]T and W(f) = [ W1(ej2πfTs) . . . WM(ej2πfTs) ]T is
a M × 1 vector, related to M components of the received signal. Also, the matrix A is defined by

A =

⎡
⎢⎣

ej2πf1τ1 . . . ej2πfMτ1

...
. . .

...
ej2πf1τk . . . ej2πfMτk

⎤
⎥⎦ (13)

Equation (12) can be rewritten in time domain as,

x [r] = Aw [r] , r ∈ Z (14)
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where x [r] and w [r] are obtained by stacking xn [r] , n = 1, . . . , k and wi [r] , i = 1, . . . ,M , respectively.
In the case that θ is known, by using the CS-based techniques, the unknown vector f = [f1, f2, . . . , fM ]T

can be recovered from the low rate samples x [r] [22]. In case that the source signals si (t) , i = 1, 2, . . . ,M
have both unknown different carrier frequencies fi and different angles of arrival θi, the authors in [22]
have suggested an L-shaped ULA to joint carrier frequency and DoA estimation.The L-shape ULA-
based MWC consists of two orthogonal ULAs with a common antenna at the origin, where the MWC
structure is employed in each axis. It is assumed that the ULAs lie across x and z axes, and θ is
measured with respect to the x axis. Let the low rate samples in x and z axes be denoted by x [r] and
z [r], respectively. Similar to conventional ULA-based MWC, we can write

X (f) = AxW (f) , Z (f) = AzW (f) , f ∈ Fs (15)

where

Ax =

⎡
⎢⎣

ej2πf1τx
1 (θ1) . . . ej2πfMτx

1 (θM )

...
. . .

...
ej2πf1τx

k (θ1) . . . ej2πfMτx
k (θM )

⎤
⎥⎦ , Az =

⎡
⎢⎣

ej2πf1τz
1 (θ1) . . . ej2πfMτz

1 (θM )

...
. . .

...
ej2πf1τz

k (θ1) . . . ej2πfMτz
k (θM )

⎤
⎥⎦ (16)

in which τx
n (θ) = nd

c cos θ and τ z
n (θ) = nd

c sin θ. The matrices Ax and Az depend on both the carrier
frequencies and DoAs. In other words, Ax = Ax (f ,θ) and Az = Az (f ,θ), where θ = [θ1, θ2, . . . , θM ]T .
In the time domain, one can write

v [r] =
[

x [r]
z [r]

]
= Aw [r] , r ∈ Z, A =

[
Ax

Az

]
(17)

Similarly, the unknown vectors (f ,θ) can be recovered from the low rate samples v [r] [22].
An extension of the ULA-based MWC for Joint two-dimensional DoAs and carrier frequency

estimation is presented in [14], by using three orthogonal ULAs. We will develop our method by using
this extension in Section 3. Having estimated two-dimensional DoAs at a space borne EW receiver, we
can estimate the location of ground-based radars.

2.4. Signal Reconstruction from Sub-Nyquist Samples

Signal reconstruction or signal parameters estimation from sub-Nyquist samples is the task of recovery
algorithms. A variety of sparse recovery algorithms is presented in the literature, which can be
categorized into three classes including convex optimization techniques, greedy methods and Bayesian
methods [28].

In convex optimization-based recovery methods, it is assumed that the measurement vector v is
related to sparse vector w by v = Aw. Typically, these methods look for a w with the smallest �0

norm. However, this problem is shown to be NP hard [29]. To address this issue, one can use the �q

norm and solve the following problem

minimize ‖w‖q , subject to Aw = v (18)

In the case of 0 < q < 1, the problem in Eq. (18) is non-convex and very difficult to solve. For q = 1,
the problem is convex and can be solved via well-known convex optimization methods [28]. In noisy
case, where we have v = Aw + e, the problem is formulated as follows

minimize ‖w‖1 , subject to ‖Aw − v‖2 ≤ η (19)

where e is the sensing noise vector and ‖e‖2 < η. The recovery time is the main criterion in the
evaluation of �1-norm algorithms. Fast �1-norm algorithms have been developed for cases where noisy
CS measurements are considered [6].

In greedy algorithms, the measurement vector v is related to sparse vector w by v = Φw, where
Φ is the sensing matrix. Greedy algorithms look for a set of indices ξ, with the minimum number of
elements, to represent v as follows

min
|ξ|

v =
∑
i∈ξ

Φiwi (20)
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where Φi is the i-th column of Φ. Greedy algorithms, with the assumption of having an estimate of the
sparsity order, significantly increase the recovery speed in comparison with fast �1-norm algorithms [6].
However, in cases such as a space borne EW receiver, the sparsity order (e.g., the number of ground-
based radars) is unknown.

In the Bayesian methods, the compressible signal f ∈ R
N should be recovered from the measured

vector g ∈ R
K where K 	 N . Desired signal f is compressible in some basis B, and can be written as

f = Bw. Generally, the relation between f and g can be written as follows [30]:

g = ΦBTf + n =Φw + n (21)

where Φ is a K ×N matrix, and n is a K × 1 vector, which represents both the measurement noise and
the error arising from the K-sparse assumption on the vector w. The elements of n are approximated
as zero-mean Gaussian random variables with unknown variance σ2. So, we have

p
(
g |w, σ2

)
=

(
2πσ2

)−K
2 exp

(
− 1

2σ2
‖g − Φw‖2

2

)
, (22)

w and σ2 must be estimated from the measurements g. To solve Eq. (21), maximum a posteriori
(MAP) estimation of the sparse weights vector, w, should be obtained [30]. To have closed form
Bayesian inference, the idea of relevance vector machine (RVM) is introduced in [31], where hierarchical
prior density functions are used. First, a zero-mean Gaussian prior is assumed for elements of w, as
follows

p (w,α) =
N∏

i=1

N (
wi|0, α−1

i

)
(23)

whereα = [α1, α2, . . . , αN ]T and N (.|μ, ρ) denotes the Gaussian distribution with mean μ and variance
ρ. Furthermore, a Gamma hyper-prior density function is assumed for α as follows,

p (α | a, b) =
N∏

i=1

Γ (αi | a, b) (24)

where Γ (. | a, b) is the Gamma distribution function with shape parameter a and scale parameter b.
Also, a Gamma prior is applied to the inverse of the noise variance β = 1

σ2 as follows

p (β) = Γ (β | c, d) (25)

By combining Eqs. (23) and (24) and marginalizing hyper-parameter α, final prior density function on
w can be rewritten as

p (w|a, b) =
N∏

i=1

∞∫
0

N (
wi | 0, α−1

i

)
Γ (αi , a, b)dαi (26)

It has been shown that Eq. (26) can be evaluated analytically. Indeed, it corresponds to a student-t
distribution, picked around wi = 0, which imposes the sparsity condition on w [31]. Besides, given g,
α, and σ2, it can be easily shown that p

(
w |g,α, σ2

)
is a multivariate Gaussian distribution with the

mean vector μ and covariance matrix Σ, given by [31]

Σ =
(
σ−2ΦTΦ + A

)−1
, μ = σ−2ΣΦT (27)

where A = diag (α1, α2, . . . , αN ). The distribution of g, given α and σ2, can be obtained by
marginalizing w as follows

p
(
g |α, σ2

)
=

∫
p

(
g |w, σ2

)
p (w |α) dw (28)

and, again, is a multivariate Gaussian distribution with the mean zero and covariance matrix C =
σ2I + ΦA−1ΦT [31]. The MAP estimation of

(
α, σ2

)
can be updated from measured data, g, by
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maximizing p
(
α, σ2 |g) ∝ p

(
g |α, σ2

)
p (α) p

(
σ2

)
. Indeed, by taking derivation of p

(
α, σ2 |g)

with
respect to α and σ2, and equating to zero, we have [31]

αnew
i =

1 − αiΣii + 2a
μ2

i + 2b
,

(
σ2

)new =
‖g − Φμ‖2

2 + 2d

K −
N∑

i=1

(1 − αiΣii) + 2c

(29)

where μi is the i-th element of μ, and Σii is the i-th diagonal element of Σ, defined in Equation (27).
Equations (27) and (29) are iterated, until a convergence criterion is satisfied. After convergence,
μ represents the MAP estimation of w. The structural form of the Bayesian model is depicted in
Fig. 3. Parameters a, b, c, and d are usually fixed to small values to make the prior distributions non-
informative. The proper choice of parameters a, b, c and d is essential to have a suitable approximation.
Assuming fixed values for these parameters results in poor performance. To address this issue, using
an enhanced Bayesian model, variational Bayesian expectation maximization (VBEM) algorithm is
proposed in [32]. The idea behind the VBEM is to introduce nonstationary Gaussian prior for capturing
local characteristics of signal. In the VBEM algorithm, the hyper-prior distributions are assumed as
p(α) =

∏N
i=1 Γ(αi | ãi, b̃i) and p(β) = Γ(β | c̃, d̃). The Gamma distribution parameters are defined by

setting small values for a, b, c and d, e.g., a = b = c = d = 10−6, and using the following relations [32],

ã = a +
1
2
, b̃i = b +

1
2
E2 [wi] , c̃ = c +

K

2
, d̃ = d +

1
2
E

[
‖g − Φw‖2

2

]
(30)

where E [.] denotes the expected value operation. The superior performance of the VBEM algorithm in
various applications, including source localization, is shown in [33, 34].

Figure 3. Structural form of the Bayesian recovery.

The computational load for calculating the inverse matrix in Eq. (27) is the main challenge in the
Bayesian-based sparse recovery algorithms. The computational load of inverting an N × N matrix is
O (

N3
)

which becomes intolerable when N is large. In summary, the sparse recovery algorithms, which
have been developed based on the Bayesian framework, provide a comparatively small recovery error in
a small recovery time. In other words, they are shown to have a beneficial balance between accuracy
and computational complexity [35].

3. PROPOSED STRUCTURE FOR SPACE BORNE LOCALIZATION

3.1. Using ULA-Based MWC to Obtain a Coarse Estimation of Carrier Frequencies and
DoAs

Similar to [14], we now introduce a ULA-based MWC structure to joint carrier frequency and two-
dimensional DoAs estimation, as shown in Fig. 4. This array consists of three orthogonal ULAs, each
lying on one of the Cartesian coordinate axes, with a common antenna at the origin (reference antenna).
The numbers of antennas in x, y, and z axes are assumed to be Mx, My, and Mz, respectively, so the
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Figure 4. Three dimensional uniform linear array (The figure is regenerated from [14]).

total number of antennas will be K = Mx + My + Mz − 2. The sampling procedure in each array is
similar to that depicted in Fig. 2. The maximum number of ground-based radars is assumed to be M .
When M co-channel radars transmit their signals, the received signal at the origin of ULA is given by
u (t) =

∑M
i=1 si (t) ej2πfit + ε (t), where si (t) is the baseband signal transmitted by the ith radar, and

ε (t) denotes the measurement noise and model mismatches. The received signal at the m-th antenna
of the x-axis ULA can be written as

ux
m (t) =

M∑
i=1

si (t) ej2πfi(t+τx
m(ϕi,θi)) + εx

m (t) (31)

where τx
m (ϕi, θi) represents the time delay of the received signal at the m-antenna in the x axis from

the i-th source, with respect to the received signal time at the reference antenna. In a similar way, the
received signal at the m-th antenna of the y axis and z axis can be obtained. Also, the time delays are
related to DoAs by the following equations:

τx
m (ϕi, θi) =

d (m − 1)
c

sin (ϕi) cos (θi) , τy
m (ϕi, θi) =

d (m − 1)
c

sin (ϕi) sin (θi) ,

τ z
m (ϕi, θi) =

d (m − 1)
c

cos (ϕi) (32)

The received signals at each antenna element are filtered by an LPF and sampled (see Fig. 2) to form
the K × 1 measurement vector v [r]. Similar to what we did to obtain Eqs. (15) and (16), matrices
Ax = Ax (f ,θ,ϕ), Ay = Ay (f ,θ,ϕ) and Az = Az (f ,θ,ϕ) can be defined, and we have

v [r] =

⎡
⎣ x [r]

y [r]
z [r]

⎤
⎦ = Aw [r] , r ∈ Z, A =

[ Ax

Ay

Az

]
(33)

where ϕ = [ϕ1, ϕ2, . . . , ϕM ]T and x [r], y [r], z [r] represent the sampled data in x, y, and z axes,
respectively. Recovery algorithms for estimating (f ,θ,ϕ) from the low rate samples v [r] are reviewed
in [14]. However, as reported in [14], the accuracy of extracted DoAs is not enough to have an accurate
localization at the surface of the earth, unless very high computational complex grid-free recovery
algorithms are employed. Nonetheless, the accuracy of estimated carrier frequencies can be acceptable.
This is especially important because even if there is a small error in the carrier frequencies estimation,
they can be accurately determined according to our prior knowledge of radar carrier frequencies. In
what follows, we assume a small estimation error for carrier frequencies and focus on estimating the
DoAs. As we will see, by iteratively narrowing the search area, we accurately obtain the location of
ground-based radars, from a space borne EW receiver.

3.2. Accurate Location Estimation of Co-Channel Radars

Now, we assume that a coarse estimate of (f ,θ,ϕ) is available. By using the prior knowledge about radar
carrier frequencies, we select a set of co-frequency transmitters, transmitting at the same frequency, e.g.,
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Figure 5. Gridded squared shape region under surveillance.

f0, and the aim is to accurately find their locations. Without loss of generality, we assume that the
region under surveillance is square shape. As illustrated in Fig. 5, a uniform grid is assumed to be
on the surface of the earth. From the receiver point of view, each grid point corresponds to a pair of
angles, (ϕi, θi). Thus, localization can be performed through two dimensional direction finding. Assume
that the location of the i-th grid point in the Cartesian coordinate system is given by li = [xi, yi, zi]

where zi =
√

R2
eearth − x2

i − y2
i − Rearth − h [3]. Here, h is the height of the satellite from the earth.

Equivalently, the location of the i-th grid point can be expressed by [ri, ϕi, θi], where ri is the distance
between the i-th grid and the satellite and

xi = ri sin (ϕi) cos (θi), yi = ri sin (ϕi) sin (θi) , zi = ri cos (ϕi) (34)

Therefore, we can rewrite Eq. (32) as follows

τx
m (ϕi, θi) = τx

m (xi, yi, zi) =
d (m − 1)

c

xi

ri
, τy

m (ϕi, θi) = τy
m (xi, yi, zi) =

d (m − 1)
c

yi

ri
,

τ z
m (ϕi, θi) = τ z

m (xi, yi, zi) =
d (m − 1)

c
zi
ri

(35)

Assume that all array elements are down converted from f0 to baseband, filtered, and sampled. If there
is a radar at li, its time delays to array elements are given in Eq. (35). Hence, the steering vectors for
the ULAs in the x, y, and z axes are given in Eq. (36), respectively.

ψxi =
[
1, ejφ

(i)
x , ej2φ

(i)
x , . . . , ej(Mx−1)φ

(i)
x

]T
, ψyi =

[
ejφ

(i)
y , ej2φ

(i)
y , . . . , ej(My−1)φ

(i)
y

]T
,

ψzi =
[
ejφ

(i)
z , ej2φ

(i)
z , . . . , ej(Mz−1)φ

(i)
z

]T
(36)

where φ
(i)
x = 2πf0d

c
xi
ri

, φ
(i)
y = 2πf0d

c
yi
ri

and φ
(i)
z = 2πf0d

c
zi
ri

. By defining K × 1 column vector
ψi = [ ψT

xi
ψT

yi
ψT

zi
]T , we can define the sensing matrix as below,

Φ (ϕ,θ) = [ ψ1 . . . ψN ] (37)

with dimension K×N , where N is the number of grid points. Therefore, the CS equation, which relates
the K × 1 measurement vector g to N × 1 radar locations vector w, is given by

g = Φ (ϕ,θ)w + n, (38)

where n is the noise vector. Note that only M 	 N elements of w are nonzero. The effect of the radar
waveform in the baseband (at the output of receiver filter) can be considered as a complex number.
We define am as the waveform effect of the m-th radar. Therefore, the nonzero elements of w are
a1, a2, . . . , aM , scaled by their SNR at the receiver point.
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Equation (38) is quite similar to Equation (21) and can be solved using the Bayesian-based
algorithms. Due to the superiority of VBEM, we use this algorithm to recover w from g. However,
accurate localization by the VBEM algorithm requires a dense grid, which results in a heavy
computational load in the space borne EW receiver. On the other hand, radars are not necessarily
located exactly on the grid points. Therefore, grid mismatch error is unavoidable [36]. The grid-
free algorithms were developed to reduce the grid mismatch error in CS-based spectrum sensing
[14, 37, 38] and CS-based DoA estimation [14, 39, 40]. Although grid-free algorithms obtain more
accurate estimates, they impose high computational load, which results in serious challenges in space
borne implementation. To address this issue, in next subsection, we propose a new technique to
iteratively employ a more dense grid only around the locations, where we expect radars to be located.

3.3. Quad-Tree Refinement and QVBEM Algorithm

A quad-tree is a tree data structure and often used for partitioning a two-dimensional space, through
subdividing it into four quadrants or regions [41]. We propose combining the quad-tree technique with
the VBEM, as a new sparse recovery method, and call it QVBEM. With the aid of the quad-tree
technique, the grid points increase only around the target locations. In this manner, the blind increase
in the number of grid points in all regions is avoided. The quad-tree algorithm must be adapted to
the localization problem. As depicted in Fig. 5, a square region is gridded. With high probability, the
radars are not exactly located on the grid points; however, the VBEM algorithm can estimate only the
grid points as the location of each radar. At the first level of the QVBEM algorithm, the VBEM is
applied to Eq. (38) to estimate w. Then, each element of w (each element corresponds to one grid
point) is evaluated, and if its magnitude is greater than a predefined threshold, say δ, it is considered
as a potential target. At the next levels of QVBEM, we consider all the grid points that might be a
potential target. Each of these grid points is at the intersection of four squares. The grid refinement
is applied to these squares, and new grids, with a half distance with respect to the previous level, are
considered at these regions. With the new grids, defined on the refined region under surveillance, the
sensing matrix can be updated according to Eq. (37), and the VBEM algorithm is run again. The above
process is repeated iteratively until the expected localization accuracy is achieved. The block diagram
of the proposed space borne EW receiver structure is depicted in Fig. 6. The stop point of the algorithm

Figure 6. The proposed space borne EW receiver structure.
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can also be determined by the maximum time that we have for running the algorithm and detecting
the targets. At the last level of the QVBEM algorithm, the local maxima of the vector w are reported
as the targets.

The block diagram of Fig. 6 has two main sub-blocks. The first sub-block is ULA-based MWC to
obtain a coarse estimation of f ,θ,ϕ. As shown in [14], it has a computational complexity as O(L3),
where L is the number of coarse grid points. The second sub-block is the QVBEM. Note that the
QVBEM iterates the VBEM in consecutive levels, where in each level only the refined grid points
around the potential targets are considered. Therefore, the computational complexity of the QVBEM
is the summation of the computational complexities of the VBEM in consecutive levels. It has been
shown that the computational complexity of the VBEM with N grid points is O(N3) [32]. Now, assume
that we start with a single grid point and run the QVBEM to refine the grid points at consecutive
levels, so that the grid spacing is halved in successive levels. Thus, after log2N steps, the grid spacing
is equal to that of full-grid VBEM having N grid points. If one grid is selected as a potential target,
according to the quad-tree refinement method, 4 neighboring squares of that point are refined so that
25 refined grid points around the potential target are generated. Hence, if r points at each stage are
selected as potential targets, there are at maximum 25r remaining grid points at each level. Thus, the
number of multiplications in total levels of QVBEM is at maximum O((25r)3log2N).

4. SIMULATION RESULTS

We will now study the proposed system performance through simulation. We will also compare the
performance of the proposed QVBEM algorithm with the existing algorithms.

4.1. Radar Localization Scenario

In this section, a practical radar scene is considered as the simulation scenario. M = 3 co-channel
radars are randomly located in a wide geographical region. The goal is to determine the position of
these radars by a space borne EW receiver, which is located on an LEO satellite with a height of 500 Km.
The radars are spread randomly in an area of 1000 Km × 1000 Km at the surface of the earth. The
transmitted powers of the radars are considered to be more than 60 KWatt. The signals’ bandwidth
is considered smaller than 50 MHz, and the Nyquist sampling rate is 100 Msamples/sec. The carrier
frequency of the radars is considered between 2 GHz and 12 GHz. We consider ULA-based MWC, as
depicted in Fig. 4, with 4 antennas in each axis, so we have K = 10. The scenario is illustrated in
Fig. 7(a). We compare the performance of the proposed QVBEM algorithm with the VBEM, as a high
performance Bayesian algorithm [32–34], and Stage-wise orthogonal matching pursuit (StOMP), as a
fast greedy algorithm [42]. For the VBEM and StOMP algorithms, 289 grid points are considered in
the region under surveillance, which is an area of 1000 Km × 1000 Km. The positions of three radars
are p1 = (106,−93), p2 = (414, 407), and p3 = (−121, 392). Note that the radars’ locations are assumed
being off-grid (do not exactly lie on the grids). For the QVBEM algorithm, we start with N = 81 grid
points, at the first level of the algorithm. Table 1 shows the distance between adjacent grid points in
each level.

Table 1. Distance between grid points in each level of QVBEM.

Level 1 2 3 4 5 6
Distance (Km) 125 62.5 31.25 15.625 7.8125 3.90625

The QVBEM algorithm iteratively refines the region under surveillance, only around the potential
target locations. For the simulated scenario, the numbers of grid points at different levels of QVBEM
algorithm are given in Table 2. Also, the equivalent numbers of grid points for two comparable
algorithms, having the same resolution, are shown in Table 2. As can be seen, at the third level of
QVBEM, there are a total of 268 grid points, which is close to 289. Thus, for a fair comparison we
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(a) (b)

(c) (d)

Figure 7. (a) Off-grid targets, (b) localization results of StOMP and VBEM with 289 grid points,
(c) grid refinement around the potential targets, done by the QVBEM, and (d) localization results of
QVBEM method in the third level, i.e., 268 grid points.

Table 2. Number of grid points in different algorithms.

Level
Number of grid points in

QVBEM algorithm
Number of equivalent grid points in full

grid VBEM and StOMP algorithms
1 81 (92) 81 (92)
2 154 289 (172)
3 268 1089 (332)
4 337 4225 (652)
5 408 16641 (1292)
6 463 66049 (2572)

consider the third level of QVBEM for the purpose of comparison. The localization results of different
algorithms are shown in Figs. 7(b) and 7(d).

As can be seen in Fig. 7(b), the VBEM and StOMP algorithms have a very high estimation error
in estimating the radars located at p3 = (−121, 392) and p1 = (106,−93), respectively. This can be
attributed to the threshold value which is applied to the recovered elements of w. We consider only
three local maxima in Fig. 7(b). Indeed, with a smaller threshold, several false alarms appear. On the
other hand, the QVBEM algorithm shows a very good performance here. Indeed, by setting smaller
thresholds at the interior layers of the QVBEM algorithm, almost all potential targets are maintained,
and at the final level the targets are correctly identified.



264 Ramezani, Sabahi, and Saberali

A closely spaced targets scenario, with 40 km distance between radars, is selected as a
complementary configuration, and the results of localization are depicted in Fig. 8. The number of
grid points for the StOMP and VBEM is 289, while that of the QVBEM is 268. The StOMP and
VBEM algorithms fail to distinguish the radar locations, and thus, only the results of QVBEM are
demonstrated. As can be seen in Fig. 8, the proposed QVBEM algorithm can well distinguish the radar
locations.

Figure 8. The QVBEM algorithm evaluation in the closely spaced targets scenario.

(a) (b)

Figure 9. The 6-th level of QVBEM. (a) The refined surveillance region, and (b) the localization result.

The accuracies of VBEM and StOMP algorithms are limited to grid spacing, which is for example
62.5 Km for 289 grid points. However, at approximately the same number of grid points (and,
consequently, the same computational complexity), the QVBEM results in much smaller error. For
a better illustration, we run the QVBEM algorithm with 6 levels and show the results in Fig. 9. Also,
the average localization error is shown in Fig. 10. As can be seen, the localization error reaches 2.65 Km
at the 6-th level, which is a very good result for space born radar localization. According to Table
2, in order to achieving this accuracy with the conventional VBEM or StOMP algorithms, at least
66049 grid points must be employed. As mentioned in Section 2, the computation complexity of VBEM
is O(N3), so it rapidly increases with the number of grid points. The number of grid points and
simulation runtimes for the QVBEM and conventional VBEM are depicted in Figs. 11(a) and 11(b),
respectively. All simulations are run on a personal computer with “Intel(R) Core(TM) i5 3230M @
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Table 3. Simulation runtime (sec) for the proposed method compared with full grid method.

Level 1 2 3 4
Full grid 0.44 6.33 243.16 10230
QVBEM 0.59 2.47 3.48 15.12

Figure 10. Average localization error of QVBEM in different levels.

(a) (b)

Figure 11. (a) Comparison of required grid points in each level for full grid algorithm and QVBEM,
and (b) simulation runtime required in each level for full grid algorithm and QVBEM.

2.6 GHz” processor. Simulation runtimes are also listed in Table 3. As expected, the computational
complexity of QVBEM is considerably lower than that of the full-grid VBEM algorithm.

5. CONCLUSION

Finding the accurate location of ground-based radars is a serious challenge for space borne EW receivers.
Since there are a small number of radars in a wide geographical area, the localization problem is a sparse
recovery problem, which can be solved using the Bayesian algorithms. To have a small localization error,
generally a dense grid must be used in recovery algorithms, resulting in a high computational complexity.
To address this issue, we have proposed the QVBEM algorithm, which uses local grid point refinement
instead of dense gridding. As a result, we achieve significant reduction in computational complexity
and hence, the runtime of algorithm. Moreover, the proposed method can find unknown radar locations
several times more accurate than conventional algorithms with the same number of grid points. By
considering space borne EW receiver requirements, the proposed algorithm is performed in two steps.
First, a coarse carrier frequency estimation is obtained, which, combined with our prior knowledge,
is used to determine the exact carrier frequency. In the second step, only the locations of co-channel
radars are extracted using the proposed QVBEM algorithm. Simulation results confirm the excellent
performance of the proposed method, to find the location of ground-based radars. Developing the
proposed algorithm in applications such as the airborne EW receiver, where the receiver copes with
both radiating sources and scattering objects, can be considered as the future work.
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