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An Iterative Threshold Algorithm Based on Log-sum Norm
Regularization for Magnetic Resonance Image Recovery
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Abstract—This paper considers the class of Iterative Shrinkage Threshold Algorithm (ISTA) to solve
the linear inverse problem that occurs in magnetic resonance (MR) image recovery. The ISTA algorithm
adheres to the principle of minimizing the L1 norm. This method can be considered as an extension
of the classical gradient algorithm. However, it is known that the ISTA algorithm converges slowly,
and the accuracy of the algorithm is not sufficient. In many MR image recovery problems, using non-
convex log-sum norm minimization can often obtain better results than the l1-norm minimization. In
this paper, we firstly transform the MR image recovery into a non-convex optimization problem with
log-sum norm regularization and combine it with a faster global convergence method. Then a Log-sum
generalized iterated shrinkage threshold algorithm (LISTA) for solving the MR image recovery problem
is proposed. Finally, numerical experiments are conducted to show the superiority of our algorithm.

1. INTRODUCTION

MR image recovery plays a vital role in clinical diagnosis. However, at present, the quality of MR image
recovery needs to be strengthened. Compressed sensing (CS) is a new sampling technique applied to MR
imaging recovery. The CS first acquires a small amount of k-space data (also called Fourier coefficients)
to shorten the image recovery time, then reconstructs the MR image from the undersampled data.
Assuming the image is sparse, we can recover the image from a small number of Fourier coefficients.
Therefore, we need to find an image that is sparse in the transform domain to fit the undersampled k-
space data. We can transform the MR image by transforming domain (such as DCT, Fourier, wavelet),
so that CS can be applied to MR image recovery. There have been some studies showing that the MR
image restoration problem is a morbid inverse problem, so the commonly used image reconstruction
method is to add regularization to the problem. MR image recovery based on compressed sensing mainly
concerned with the problem of so-called sparseness constraint minimization, and image restoration is
often achieved by sparse minimization. One difficulty with the sparse constraint minimization problem
is the choice of minimized norm. In recent years, Daubechies et al. proposed iterative shrinkage
thresholding algorithm (ISTA) [1] based on the L1 norm regularization problem and successfully applied
it to MR image recovery. The ISTA idea is relatively simple. It only needs to determine the initial
value of the algorithm, step size, and denoising operator, and achieve the convergence effect by the
gradient descent. Then, under the framework of the ISTA algorithm, Beck and Teboulle proposed the
Fast Iterative Shrinkage-Thresholding Algorithm [2] to improve the convergence speed of the algorithm.
Based on ISTA algorithm, a two-step iterative shrinkage threshold algorithm is proposed in [3], which
is also based on the idea of improving the algorithm speed. Inspired by the ISTA that solves the L1
regularization problem, Zuo et al. proposed a generalized iterative shrinkage thresholding algorithm
(GISA) [4] to solve the Lp regularization problem. Compared with ISTA, GISA uses different methods
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of contraction operator, while the iteration form is almost the same as ISTA. Then some scholars have
made further improvement based on GISTA algorithm, and proposed FGISTA algorithm [5]. FGISTA
algorithm improves the speed of GISTA algorithm, but the accuracy is decreased. Based on the p-
norm, Chartrand and Yin proposed an Iterative Reweighted Least Squares (IRLS) algorithm [6]. Unlike
gradient descent, the algorithm uses the least squares method to converge. Paper [7] proposes to apply
l 1
2

norm to iterative threshold algorithm, which further extends the compressed sensing algorithm. Now,
this kind of compressed sensing algorithm is widely used in various fields, such as image restoration [8–
10] and MRI imaging [11], because of its strong scalability.

There are still a lot of studies on the problem of minimizing the norm. Some scholars have suggested
in the literature [12–14] that the log-sum norm can effectively approximate the L0 norm and prove that
the log-sum norm can also be used as a regularization term.

2. RELATED WORK

Previous studies of MR image recovery have shown that using L0 norm minimization usually yields
good results, and it is designed to address the following minimization problems:

min
1
2
||y− Ax||2 + λ||x||0 (1)

where y is an n × 1 vector, A a sensing matrix, x the the original signal (or image), and ||x||0 simply
counts the number of non-zero entries in x. Unfortunately, the L0 norm is a non-convex non-continuous
function, which makes the corresponding solution problem very cumbersome.

Since the L1 norm is a convex hull of L0 norm and has the property of continuity, many researchers
have shifted the study to the L1 norm. It has been proved that the L1 norm minimization is equivalent
to the L0 norm minimization when A satisfies certain conditions [15, 16]. Unlike solving the L0 norm
minimization, many algorithms seek the desire x by solving the following convex optimization problem:

min
1
2
||y− Ax||2 + λ||x||1 (2)

In solving [2], the fast iterative shrinkage-thresholding algorithm (FISTA) which is based on the
gradient descent method makes smarter choices in the iterative process to obtain the ideal solution. In
ISTA algorithm, Donoho proposed a soft threshold operator [16], which is defined as:

T1(y;λ) =
{

0, |y| ≤ λ

sgn(y)(|y| − λ) |y| > λ
(3)

Based on the ISTA algorithm, FISTA improves the selection of the starting point and improves the
convergence speed of ISTA algorithm. The difference between the two algorithms is the choice of the
initial position.

To solve the L1 norm problem, the GISTA algorithm gives a model using the p-norm:

min
1
2
(y − Ax)2 + λxp (4)

Like the traditional iterative threshold method, GISTA algorithm needs to approximate the
convergence image by gradient descent. However, GISTA needs to define its p value according to
different noise intensities and different images in order to get better reconstruction effect.

In order to solve the problem in Eq. (1), some researchers have proposed the optimization problem
of the log-sum norm, which is expressed as:

min
1
2
(y− Ax)2 + λ log(x + u) (5)

It has been proved in [5] that when u is equal to 0, the log-sum norm is close to the L0 norm.
Theoretical and experimental results also show that log-sum norms can yield solutions that are more
sparse than the L1 norm in some cases. Compared with the L0 norm, although the log-sum norm
is continuous, it loses its convexity relative to the L1 norm, which makes the log-sum regularization
problem difficult to solve the convex optimization algorithm.
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This paper mainly discusses the MR image recovery problem based on log-sum norm constraint.
Based on the ISTA algorithm, a Log-sum generalized iterated shrinkage threshold algorithm (LISTA)
for solving Equation (5) is presented.

So far, various algorithms have been proposed to minimize the norm in MR image recovery. The
process of obtaining the sampled MR image can be expressed as:

y = Ax + η (6)

where A is a sampling matrix or sensing matrix, x the original image, η the noise, and y the acquired
compressed signal (or image). The MR image recovery problem is the process of recovering the ideal
image x from the compressed image y. Since the sampling matrix A is a highly ill-conditioned matrix,
the problem is an ill-posed inverse problem, and a common method for solving ill-conditioned problems
is to regularize it.

This paper mainly considers the MR image recovery problem based on log-sum norm regularization:

min
1
2
||y − Ax||2 +

n∑
i=1

λ log(|xi| + ε) (7)

where 1
2 ||y − Ax|| is often referred to as the data fitting term, and λ log(|xi| + ε) is the penalty term.

ε acts as a regularization, balancing the value of the function f(x) when x is too small, and it usually
takes from 0.01 to 0.001. LISTA algorithm adopts the idea of the ISTA algorithm based on the log-sum
norm as the penalty term, and its core is to find a contraction operator similar to the iterative threshold
class algorithm.

3. MAIN RESULTS

The core of the ISTA algorithm is the gradient descent method. The unconstrained optimization
problem is as follows:

min
x

{F (x) = f(x)} (8)

where f(x) is the formula 1
2 ||y − Ax||2. Assume that f(x) is continuously differentiable, if there is a

small enough value tk > 0 such that xk+1 = xk − t∇F (xk) , then:

F (xk) ≥ F (xk+1) (9)

The xk value corresponding to the minimum value of the function f(x) can be obtained by iterating
through the following steps:

xk = xk−1 − tk∇f(xk−1), x0 ∈ Rn (10)

The ISTA algorithm assumes that f(x) satisfies the Lipschitz continuous condition, that is, the
derivative of f(x) has a lower bound, and the minimum lower bound is called the Lipschitz constant
L(f). At this time, for any L >= L(f), there are:

f(x) ≤ f(y) + 〈x − y,∇f(y)〉 +
L

2
||x − y||2 x,y ∈ Rn (11)

Based on Eq. (11), the function value can be approximated near point xk:

f̂(x, xk) = f(xk) + 〈∇f(xk),x − xk〉 +
L

2
||x − xk||2 (12)

Adopting this same basic gradient idea to the nonsmooth L1 regularized problem:

min
x

{F (x) = f(x) + λ||x||1} (13)

After bringing the function into the penalty, the value of the function can be approximated by the
point xk:

f̂(x, xk) = f(xk) + 〈∇f(xk),x − xk〉 +
L

2
||x − xk||2 + λ||x||1 (14)
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In each iteration of gradient descent, the approximation function of point xk−1 takes the minimum
point as the starting point xk of the next iteration:

xk = arg min
x

{
f(xk−1) + 〈x − xk−1,∇f(xk−1)〉 +

1
2tk

||x − xk−1||2 + λ||x||1
}

(15)

After ignoring constant terms, Eq. (15) can be rewritten as:

xk = arg min
x

{
1

2tk
||x − (xk−1 − tk∇f(xk−1))||2 + λ||x||1

}
(16)

Inspired by ISTA, we propose a generalized shrankage thresholding operator to solve the log-
sum minimization problem in Eq. (5) by modifying the shrinkage rules. We convert the L1 norm
regularization into a log-sum norm regularization problem and simplify it based on Eq. (16), which is
expressed as:

xk = arg min
x

{
1

2tk
||x − (xk−1 − tk∇f(xk−1))||2 +

n∑
i=1

λ log(|xi| + ε)

}
(17)

In order to facilitate the analysis of the change in the concavity, we turn the above formula into
the simplest logsum norm minimization problem:

min
1

2tk
(x − y)2 + λ log(x + ε) (18)

where tk is the step size and is generally taken as 1. λ is known as regularization strength, and its value
range is generally (0, 1]. If y > 0, the solution to Eq. (18) should fall into the range of [0, y]. If y < 0,
the solution into the range of [y, 0]. Without loss of generality, in the paper we only consider the case
y > 0, and we set tk = 1 and λ = 0.3. In Fig. 1, we take four different values for y. It can be seen from
Fig. 1 that there is a threshold τlog-sum. When y < τlog-sum, then 0 is the value of x corresponding to
the global minimum. When y > τlog-sum, the local minimum and zero values need to be compared.

For the non-convex problem, if the contraction rule of the ISTA algorithm is directly adopted, x
can generally only shrink to the local minimum rather than the global minimum. Therefore, we need
to set a threshold τlog-sum to judge various situations. First, we need to determine if the function has a
local minimum.

We can analyze the convergence of the function by the first derivative and the second derivative of
f(x).

f ′(x) = x− y + tkλ
1

x + ε

f ′′(x) = 1 − λtk
1

(x + ε)2
(19)

We can get this inflection point by the second derivative of the function f(x). The inflection point
coordinates are xλ =

√
λtk − ε. We can see from Fig. 1 that when x > xλ, the function f(x) is concave;

otherwise, it is convex. If the function has a local minimum, f ′(xλ) ≤ 0. Based on this, we can get a
threshold by the following formula.

f ′(xλ) = xλ − y + tkλ
1
xλ

= 0 (20)

We can get the threshold of y:

τλtk =
√

λtk − ε +
λtk√

λtk − ε
(21)

However, it is easy to find through c in Fig. 1: even if the function f(x) has a local minimum, it
needs to compare the size with f(0) to determine the global minimum. As shown in Fig. 1(d), when y
exceeds a certain threshold, the local minimum of the function is the global minimum. Assuming that
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Figure 1. Plots of the function f(x) in Eq. (18) with different values of y: (a) y = 0.5, (b) y = 1, (c)
y = 1.5, (d) y = 2.5.

the critical point is x̃, an approximate estimate of x̃ can be obtained by the formula f(x̃) = f
x→0

(x) and

f ′(x̃) = 0: {
x̃ − τx + tkλ

1
x̃+ε = 0

f(x̃) = f
x→0

(x) (22)

However, the solution to this equation is a transcendental equation, and we can only get an
approximate solution through matlab. Based on this, we can get an approximation of estimate

x̃ ≈
√

ε2+8tkλ−ε
2 . The regularization factor ε is generally taken as [0.01, 0.001], so its quadratic square

can be ignored. Therefore, x̃ ≈ √
2tkλ − ε/2. τx corresponding to x is taken as its threshold. Then the

approximate estimate of the threshold τ̃x is:

τ̃x =
√

2tkλ − ε

2
+

tkλ√
2tkλ + ε/2

(23)

Now we can draw conclusions. When y is greater than τlog-sum, we can judge that function f(x) has
a local minimum value. When y is greater than τ̃x, the local minimum value is the global minimum. We
can get the iterative contraction rules (LST operator) corresponding to the LISTA algorithm as shown
in the left of Table 1, where J is the number of iterations with decreasing gradient when calculating
the iterative threshold compression operator. When J is too large, the LST operator may not reach the
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Table 1. The left is the log-sum contraction operator corresponding to the LISTA algorithm, which is
LST. The right is the total LISTA algorithm step.

Algorithm 1 (LST) Algorithm 2 (LISTA)

Input: y, λ, tk, J Input: y, λ, tk, J , iter
Step 1 τ̃x =

√
2tkλ + tkλ/

√
2tkλ + ε Step 1 Initialize x0 = y, z0 = x0

Step 2 if y < τ̃x Step 2 for k = 1: iter
Step 3 TLST (yλ) = 0 Step 3 y = zk−1 − tkAT (Azk−1 − y)
Step 4 else Step 4 xk = LST (y, λ, tk, J)

Step 5 xk = |y| Step 5 lk = (1 +
√

1 + 4(lk−1)2)/2

Step 6 Iterate on k = 0, 1, ......, J Step 6 zk = xk + lk−1−1
lk

(xk − xk−1)
Step 7 xk+1 = |y| − λtk(xk)−1 Step 7 x = xiter

Step 8 k = k + 1 Step 8 end
Step 9 TLST (yλ) = sgn(y)xk Output: x

Step 10 end
Output: TLST (yλ)

minimum value. When J is too small, the total number of iterations of LISTA algorithm will increase,
resulting in the increase of the total time.

The above is the operator that selects the minimum value, and the body of the LISTA algorithm
is similar to the ISTA algorithm. We introduce the above iterative contraction operator based on the
ISTA algorithm and add the acceleration operator of the FISTA algorithm to the LISTA algorithm.
The corresponding algorithm is shown in the right of Table 1.

4. NUMERICAL EXAMPLE

In this section, we will present numerical results to illustrate the efficiency of our proposed algorithm. We
firstly compare the efficiencies of the LISTA algorithm in radial sampling matrix at different sampling
rates. In the second subsection, we will compare FISTA, GISTA, LISTA, then we also select several
state of the art methods for comparisons. In the last subsection, we will analyze the convergence of
different algorithms under different iterations. The test MR images are mainly taken from the medical
image library, shown in Fig. 2, and we add a Gaussian noise with a standard deviation of 1e-2 to the
test.

Figure 2. Original images. All the image size are 512 ∗ 512.
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4.1. Evaluation Criterion

In this subsection, we use SSIM, peak signal-noise ratio (PSNR), and running time to evaluate the
quality of restoration, which are defined as:

MSE = ||x − x̂||2/(M × N) (24)
PSNR = 10 lg(2552/MSE) (25)

SSIM(p, q) =
(2μpμq + c1)(2σpq + c2)

(μ2
p + μ2

q + c1)(σ2
p + σ2

q + c2)
(26)

where x̂ and x denote the original and restored image respectively, and M and N represent the length
and width of the picture. We also consider the running time of every algorithm. SSIM is a new indicator
to measure the structural similarity between two images. In image restoration, the larger the SSIM value
is, the better the image restoration quality is. μp is the mean of image p, and μq is the mean of image
q. c1 = k1L and c2 = k2L, in which k1 is 0.01, and k2 is 0.03. L is the dynamic range of pixel values.
σp and σp are the variance of image. σpq is the covariance between two images.

We conduct some experiments to illustrate the superiority of the LISTA algorithm in MR image
recovery. In the selection of parameters, we uniformly set the step size tk to 0.5. The range of
regularization parameters λ is generally (0, 1]. In past experiments, the selection of regularization
parameters λ based on changes in noise intensity could yield better MR image recovery results, so we
set the regularization parameter λ to 1 under this low noise condition. For GISA algorithm, we choose
p = 0.8 (the p value is also chosen in the original paper.) for the comparison. For FISTA algorithm, the
regularization strength is the same as LISTA algorithm, which is taken as 1. For fairness, according to
other references, we can obtain satisfactory results by uniformly selecting J = 2 or 3, so we set J = 2.
All experiments are operated under Windows 10 and MATLAB R2016a with the platform of Intel (R)
Core (TM) i5-7th Gen CPU@2.50 GHz 2.50 GHz.

Next, we will carry out our experiments from three aspects: 1) reconstruct the same MR image
at different sample rates. 2) analyze the peak signal to noise ratio (PSNR) of different algorithms. 3)
analyze the convergence of the algorithm under certain noise conditions.

4.2. Performance Evaluation of Different Sample Rates for MR Image Recovery under
the Same Conditions

First, we display the original image of the MR image. The selected sampling matrix is a radial sampling
matrix under the Fourier domain. In the experiment, the sampling rate of the matrix is 30%; the
obtained reconstructed image PSNR is 38.44 dB; reconstruction time is 0.712 seconds. The result is
shown in Fig. 3. From Fig. 3, we can find that under the 30% sampling matrix, our algorithm can
reconstruct the MR image effectively.

(a) (b) (c)

Figure 3. The MR image recovery effect of the LISTA algorithm at 30% sampling. (a) Original image.
(b) Sampling matrix. (c) The reconstructed image.
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Table 2. Comparison of PSNR and time after restoration of MR images of LISTA algorithm under
different sampling matrices.

Sampling Rate PSNR (dB) SSIM (%) time (s)

20% 28.96 65.88 0.65
30% 38.44 95.54 0.71
40% 44.20 98.05 0.74
50% 47.58 98.90 0.75

From Table 2 we can see that when the sampling rate is greater than 30%, LISTA algorithm works
well on reconstructing MR images, with PSNR greater than 38 dB and SSIM greater than 90%. As
the sampling rate increases, the effect of reconstructing the MR image is better. It can be seen from
Table 2 that an increase in the sampling rate will increase the time. However, this result verifies the
superiority of compressed sensing compared to Nyquist sampling. The LISTA algorithm can reconstruct
MR images with superior quality by reducing the sampling rate.

4.3. Performance Evaluation of Different Algorithms

In order to eliminate the influence of random factors on the algorithm results, we use the 30% sampling
matrix to test different images. The parameter selection is the same as 4.1. We use GISTA, FISTA
and LISTA algorithms to perform the recovery of PSNR of the MR image after testing 100 times. The
experimental picture is shown in Fig. 4. The specific data are shown in Table 3. It can be seen from

(a) (b) (c)

(d) (e) (f)

Figure 4. MR image recovery results at 30% sampling. (a) Image 1 FISTA recovery results. (b) Image
1 GISTA recovery results. (c) Image 1 LISTA recovery results. (d) Image 2 FISTA recovery results. (e)
Image 2 GISTA recovery results. (f) Image 2 LISTA recovery results.
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Table 3. Comparison of effects of LISTA, GISTA and FISTA algorithms in MR image reconstruction.

image algorithm PSNR (dB) SSIM (%) time (s)

image 1
FISTA 27.08 0.861 0.648
GISTA 28.00 0.931 0.689
LISTA 28.94 0.941 0.734

image 2
FISTA 35.20 0.922 0.870
GISTA 36.06 0.932 0.880
LISTA 36.08 0.944 0.877

Table 3 that the algorithm effect of LISTA is good for different algorithms. These experiments show
that the LISTA algorithm is more accurate than other algorithms under low noise conditions.

Combined with Table 3 and Fig. 4, FISTA is less accurate than other algorithms but with less time,
and GISTA algorithm is somewhere in between. The accuracy of the proposed LISTA algorithm has
been improved, both in SSIM and PSNR. We can see that LISTA algorithm has reached the standard
of the iterative threshold class algorithm and even surpassed the accuracy of some iterative threshold
algorithms.

4.4. Performance Evaluation of Convergence of Different Algorithms

In this section, we compare PSNR changes in different algorithms as the number of iterations increases.
The selected MR images are identical and are the third image of Fig. 2. In the parameter selection, we
set J for each type of algorithm to 2, set the step size tk to 1, and set the regularization parameter λ
to 1. The standard deviation of the added noise is 0.01. Record the recovery effect of each algorithm
on the same graph as the number of iterations increases.

Figure 5 lists the PSNR values for various iterations. For various iterative threshold class
algorithms, when the number of iterations is greater than 35, good results can be maintained under low
noise conditions, but if the number of iterations is less than 30, various algorithms based on gradient
descent cannot achieve good results. As can be seen from Fig. 5, our proposed LISTA algorithm
outperforms other algorithms with a sufficient number of iterations. Although LISTA algorithm is not
as accurate as the FISTA algorithm in the case of too few iterations, the number of iterations in MR
image recovery is generally sufficient, so this problem is acceptable.

0 5 10 15 20 25 30 35 40 45

Number of iterations
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dB

)

GISTA
FISTA
LISTA

Figure 5. LISTA algorithm, GISTA algorithm, FISTA algorithm for the convergence analysis of the
same MR image reconstruction under different iteration times.
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5. CONCLUSIONS

This paper presents a new iterative threshold method based on log-sum algorithm for the first time.
The new idea is embedded in two aspects: embedding log-sum norm regularization into the iterative
threshold method; setting a new iterative threshold operator. In this paper, we demonstrate in detail
the robustness of the algorithm compared to other algorithms. Experiments are performed to show
the good results of our method. It can be clearly seen that the new iterative threshold algorithm has
a significant improvement in some cases such as MR image recovery, compared to the Lp norm and
the L1 norm. The algorithm also has some shortcomings, i.e., the algorithm performs poorly at low
iterations, which is related to the mathematical properties of log-sum norm. The iterative threshold
operator needs more accurate estimation. When we process signals in real life, we often have more than
one iterations, so this problem can be ignored.
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