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Ground Plane Effect Suppression Method to Design a Low-Profile
Printed UWB Antenna

Aliakbar Dastranj* and Faezeh Bahmanzadeh

Abstract—This paper presents a technique to design a very small planar antenna for ultra-wideband
(UWB) communication applications. To cover UWB frequency range by a small-size antenna, the
ground plane influence on the antenna impedance bandwidth is suppressed at middle and higher
frequencies. To accomplish this purpose, a rectangular and several stepped slots are etched on the
conventional radiator. Also, a tuning stub is printed in the rectangular slot, and its length is optimized.
This technique decreases current distribution on the ground plane at higher frequencies, and the
impedance matching of the antenna is significantly influenced by the radiating patch. The antenna has
a compact size of 25× 25× 1.6 mm3. It can provide a wide impedance bandwidth from 2.8 to 15.4 GHz
(|S11| < −10 dB) which covers the entire UWB spectrum (3.1–10.6 GHz). Two prototypes of the
antenna were fabricated and measured. The impedance matching, group delay, fidelity factor, and the
antenna radiation characteristics, including co- and cross-polarized far-field patterns and realized gain
were analyzed with numerical simulation and experimental measurement. Measured data are in good
agreement with the simulated ones. Based on the obtained frequency- and time-domain characteristics,
the designed antenna is an excellent candidate for UWB wireless devices.

1. INTRODUCTION

Designing a compact size antenna with the most attractive characteristics such as low complexity,
low cost, functioning over an extremely large impedance bandwidth (BW), high data rate, and low
interference in the modern wireless-enabled devices is a very challenging task, nowadays [1, 2]. Ultra-
wideband (UWB) planar monopole antenna with the allocated frequency spectrum of 3.1–10.6 GHz can
be a good candidate to design in such communication systems [3]. However, as the demand for high data
transmission is increasing, both short and long range frequency spectra are needed. As UWB technology
provides higher data rates and higher and more balanced bandwidth than narrowband systems, it can
be used to send data, voice, and video at higher speeds or ranging and monitoring applications, both
in civil and military systems [4].

In recent years, to fulfill the UWB communication technology necessities, different structures
of planar antennas, including planar monopoles [5–8], planar dipoles [9, 10], and quasi-Yagi
configurations [11, 12] have been presented. A planar slot antenna with an overall area of 50mm×68mm
and impedance bandwidth of 2.08–8.25 GHz was proposed in [13]. In [14], by using a widened tuning
stub, a coplanar waveguide (CPW)-fed square slot antenna with a size of 72 × 72 mm2 featureed a
bandwidth of 60%. In [15], by using a U-shaped tuning stub, a UWB mono-layer slot antenna with
a thickness of 0.813 mm was proposed. It can provide bidirectional radiation patterns and impedance
bandwidth of 110%. The antennas presented in [16] had identical areas of 110×110 mm2 and frequency
bandwidths of 120% and 110%. In [17], corners of a slot antenna were shaped to design a multi-resonance
structure with a bandwidth of 105.3%. In [18], two bevels were cut on an asymmetrical rectangular

Received 1 November 2019, Accepted 20 December 2019, Scheduled 8 January 2020
* Corresponding author: Aliakbar Dastranj (dastranj@yu.ac.ir).
The authors are with the Electrical Engineering Department, Faculty of Engineering, Yasouj University, Yasouj, Iran.



92 Dastranj and Bahmanzadeh

patch to improve the impedance bandwidth. By using this technique, an open-slot antenna with a broad
impedance bandwidth of 122% was implemented. In [19], a rotated square slot resonator was used to
design a parasitic patch antenna with a bandwidth of 2.23–5.36 GHz. A CPW-fed antenna with a half-
elliptical-edged radiating patch and double open-circuit stubs for 3.7–10.1 GHz was proposed in [20].
Two mono-layer UWB antennas with sizes of 50× 50 mm2 and 48× 42 mm2 and operating bandwidths
of 125% and 118.8% were reported in [21] and [22], respectively.

In this research, a planar monopole UWB antenna with suppressed ground plane effect is presented.
In order to suppress ground plane influence on the antenna impedance bandwidth, a rectangular and
several stepped slots are etched on the radiating patch. Furthermore, to reduce the current distribution
on the ground plane at a desired frequency, a strip is printed in the rectangular slot. This technique
decreases current distribution on the ground plane at higher frequencies. Consequently, the impedance
matching of the antenna is mainly affected by the antenna radiator. The designed antenna has a simple
configuration with compact size of 25 × 25 × 1.6 mm3. It can cover a wide operating bandwidth from
2.8 to 15.4 GHz (|S11| < −10 dB). To validate the proposed technique, the antenna was fabricated, and
comparison between the measured results and simulated ones is presented. Experimental outcomes
show good agreement with the numerical data. The frequency- and time-domain results of the antenna
including impedance bandwidth, co- and cross-polarized far-field patterns, realized gain, group delay,
and fidelity factor are illustrated and discussed.

2. ANTENNA EVOLUTION PROCEDURE AND DESIGN

The evolution procedure, geometrical parameters, and fabricated prototypes of the proposed antenna
are shown in Figure 1. It is seen that the final proposed structure contains asymmetric staircase-
like radiating patch with modified ground plane. Moreover, a tuning strip with length Ls is printed
in the rectangular slot near the left side of the radiator. As will be seen later, the combination of
the aforementioned portions results in UWB operating bandwidth. The antenna is printed on an FR4
substrate with permittivity of 4.4 and loss tangent of 0.02. The overall area of the antenna is 25×25 mm2.
The numerical analysis and geometry refinement of the proposed structure are performed by using Ansoft
HFSS, a full-wave electromagnetic simulator package which is based on the finite element method.
Different structures shown in Figure 1(b) were simulated, and their comparison results of reflection
coefficient curves are illustrated in Figure 2. The design procedure starts with the design of Antenna1.
As shown in Figure 1(b), Antenna1 consists of beveled ground plane and a rectangular radiator which
is fed by a 50 Ω microstrip line. Referring to Figure 2, it can be observed that Antenna1 provides a
−10-dB reflection coefficient bandwidth from 11.5 to 15.5 GHz. After etching an open ended inverted
L-shaped slot on the left portion of the radiating patch, impedance matching of the antenna at 6 GHz is
slightly improved. In the next step, several staircase-like slots are etched on three corners of the radiator
(Antenna3), and as depicted in Figure 2, Antenna3 exhibits a resonance in the reflection coefficient at
7.7 GHz whereas Antenna2 does not. However, the lower band edge frequency of Antenna3 is 3.2 GHz
which cannot satisfy the requirement for UWB systems. Afterwards, a strip with length Ls and width
of 1mm is printed in the rectangular slot near the left side of the radiator (Antenna4). As illustrated in
Figure 2, the lower band edge frequency of the operating bandwidth is shifted from 3.2 to 2.8 GHz. Also,
the second resonance frequency of the antenna and the higher end of the operating bandwidth occur at
12 and 15 GHz, respectively. As a result, Antenna4 can cover the broad frequency range of 2.8–15 GHz.
In the last step of the antenna design, the fourth corner of the radiator is stepped to further enhance
the impedance bandwidth of the antenna. As illustrated in Figure 2, the proposed antenna features
good impedance matching over the entire frequency range of 2.8–15.4 GHz. Its impedance bandwidth
is more than 138% for |S11| < −10 dB. Although the final optimized design is based on full-wave HFSS
simulations, simple formulas can be derived to provide an initial design and insight. The initial length
of the strip can be calculated approximately from the following equation:

Ls =
C

1.92 × fr ×√
εeff

(1)
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Figure 1. (a) Fabricated prototypes of the antenna, (b) antenna evolution procedure and geometry.

Figure 2. Reflection coefficients of the different designs.
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Figure 3. Surface current distribution on the antenna.

where C is the speed of light in free space; fr is the desired resonance frequency; and εeff is the effective
dielectric constant and can be approximated by:

εeff =
εr + 1

2
+

εr − 1
2

(
1√

1 + 12d/w

)
(2)

where d is the thickness of substrate, and w is the width of common microstrip line. Is should be pointed
out that in Eq. (2), εeff is the effective relative permittivity of common microstrip line. Although the
strip of length Ls is not exactly the case of common microstrip line, the approximate value of Ls in
Eq. (1) can serve as a starting point to calculate the length of strip from which it can be optimized to
obtain a final value. By using Eq. (1), the initial value of Ls is 8mm for fr = 12 GHz. However, the final
optimized value for maximum impedance bandwidth is 7 mm. The surface current distribution on the
antenna radiator and ground plane at 3 and 12 GHz is presented in Figure 3. It is seen that the current
distribution at the lower frequency, 3GHz, is considerably concentrated on the ground plane, while at
the higher frequency, 12 GHz, current distribution is mainly concentrated on the staircase-like radiator
and attached strip. This shows that the proposed technique considerably reduces the influence of the
ground plane on the antenna impedance bandwidth at higher frequencies. To better justify this point,
the reflection coefficients of the proposed antenna with different ground plane shapes are tabulated
in Table 1. As can be seen, the low frequency performance of the proposed antenna depends on the
ground plane shape, but at higher frequencies the ground plane does not affect the antenna reflection
coefficient. The evolution procedure discussed above clearly shows that the staircase-like radiating patch
with modified ground plane and attached strip jointly provide the UWB performance of the antenna.

To furthered study the impedance matching of the designed structure, the simulated input
impedance on Smith chart of the antenna is plotted in Figure 4. This figure shows two loops on
the Smith chart, which are related to two resonant frequencies illustrated on the reflection coefficient
plot of Figure 2. Moreover, it can be observed that these loops are completely inside the |S11| = −10 dB
circle, and the proposed antenna has a simulated −10-dB impedance bandwidth ranging from 2.8 to
15.4 GHz.

At last, a numerical sensitivity analysis was performed to find the influence of important design

Table 1. Reflection coefficient of the antenna with different ground plane structures.

ground plane shape
|S11| (dB)

3 GHz 12 GHz
rectangular −5.2 −19.7

square −6.6 −19.5
trapezoidal −8.2 −20

quarter circular arcs −10.5 −20
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Figure 4. Input impedance Smith chart of the antenna.

(a) (b)

Figure 5. Reflection coefficient curves for different values of Ls and Ds. (a) Ls, (b) Ds.

parameters on the performance of the antenna. It was found that strip length, Ls, and distance between
the microstrip feed-line and open ended inverted L-shaped slot on the left portion of the radiating patch,
Ds, have considerable influence on the UWB performance of the proposed antenna. Figure 5(a) shows
the influence of strip length Ls on the reflection coefficient of the antenna while the other geometrical
parameters are unchanged. As can be observed, this parameter affects the antenna reflection coefficient
over the entire UWB spectrum. Figure 5(b) shows the simulated reflection coefficient curves for different
values of Ds while other geometrical parameters are kept fixed. As depicted in this figure, the reflection
coefficients at middle and higher frequencies largely depend on Ds. However, this parameter does not
affect the lower band edge frequency of the antenna. Figure 5 shows that selecting the optimal values
of Ls = 7 mm and Ds = 4.3 mm leads to maximum impedance bandwidth.

3. EXPERIMENTAL VERIFICATION AND DISCUSSION

Figure 1(a) shows a photograph of the proposed antenna prototypes. The antenna was simulated by
using HFSS software package. Then, it was fabricated to validate the results obtained by simulation.
The designed antenna is connected to a 50 Ω SMA connector for signal transmission.

Measured reflection coefficient compared with the simulated one is shown in Figure 6. Measured
result indicates that the antenna can provide a wide impedance bandwidth from 2.8 to 14.7 GHz
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Figure 6. Comparison between the numerical and experimental reflection coefficient curves of the
antenna.

(|S11| < −10 dB) which covers the entire UWB spectrum (3.1–10.6 GHz). There is a difference between
the experimental and numerical results due to measurement and also fabricating errors. However, in
order to further understand the utility of the proposed antenna over the entire operating bandwidth,
other radiation characteristics such as far-field patterns and realized gain must also be carefully
investigated. Far-field radiation patterns of the proposed UWB antenna at 3, 9, and 15 GHz in H
(x-z)- and E (y-z)-planes are plotted in Figure 7. As can be observed from Figure 7(a), the antenna
has an omnidirectional pattern in H-plane and bidirectional pattern in E-plane at low frequencies with
low cross polarization level. Figures 7(b) and 7(c) show that the radiation patters at middle and higher
frequencies are also reasonable. The distortion of radiation pattern at high frequencies is due to the
asymmetric structure of radiator and attached strip. As mentioned in Section 2, at the higher frequencies
current distribution is mainly concentrated on the staircase-like radiator and attached strip, while the
current distribution at the lower frequencies is considerably concentrated on the symmetric ground
plane. Notice that the cross polarization level increases at higher frequencies due to excitation of higher
order modes. Figure 8 illustrates the simulated three-dimensional radiation pattern of the antenna at
3GHz. As expected from a monopole structure, it features omnidirectional and bidirectional patterns
in x-z- and y-z-planes respectively. The simulated and measured gain curves of the antenna versus
frequency are illustrated in Figure 9. The maximum value of the measured antenna gain is 4.4 dBi
which occurs at 13 GHz. It is seen that the measured gain is moderate at the operating frequency band
due to the small size (25× 25 mm2) and omnidirectional behavior of the antenna. Although not shown,
the gain in other directions is acceptable.

Along with frequency-domain analysis, time-domain performance should also be analyzed in order
to be sure of the UWB operation. The time-domain analysis required two identical designed antennas,
one as the transmitter and the other as a receiver, in the adjustment of face-to-face and side-by-side.
Time-domain analysis of both configurations was considered using CST Microwave Studio by a distance
of 50 cm. Time taken by the antenna to receive the pulse is indicated by an important parameter named
group delay. The simulated and experimental group delays of face-to-face and side-by-side orientations
are shown in Figure 10 in which the peak-to-peak variation is less than 1 ns over the entire frequency
band. Results of group delay indicate that the antenna provides an excellent time-domain performance
without signal distortion.

Another important parameter in time-domain analysis named fidelity factor is used to calculate
the correlation between transmitted and received pulses. According to the procedure proposed in [23],
the input signal is delivered to the antenna, and the far-field electric component is received by means of
four virtual probes. To investigate the fidelity factor in both E- and H-planes, four probes are placed
at the angle equal to θ = 0◦, 30◦, 60◦, and 90◦ (with respect to positive z-axis) in y-z- and x-z-planes,
respectively. In the numerical simulation procedure, the input signal was defined by a fourth-order
Rayleigh pulse as follows:

st =
(

12
τ2

− 48
τ6

(t − 1)2 +
16
τ8

(t − 1)4
)

exp

[
−
(

t − 1
τ

)2
]

(3)
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Figure 7. Experimental and numerical far-field E (y-z)- and H (x-z)-plane patterns of the antenna
(left: x-z plane, right: y-z plane) at (a) 3GHz, (b) 9 GHz, and (c) 15 GHz.

with τ = 67 ps. According to [24], the fidelity factor, FF , for the received pulse was calculated as
follows:

FF = max
k

∞∫
−∞

s̄t(t)s̄r(t + k)dt (4)
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Figure 8. 3D radiation pattern of the antenna at 3GHz.

Figure 9. Gain of the antenna versus frequency.

(a) (b)

Figure 10. Comparison between the experimental and numerical group delay results of the antenna
versus frequency. (a) Side-by-side, (b) face-to-face.

where s̄t and s̄r are the normalized transmitted and received pulses, respectively, and k is the constant
delay time. In a typical UWB system, the values of fidelity factor can vary between 0 and 100%. A
fidelity factor value of 0% shows that the received and input pulses are completely different from each
other, while a value of 100% indicates that the received and input signals are perfectly similar. As
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Table 2. Calculated fidelity factor of the antenna.

Angle (degrees)
fidelity factor

xz-plane yz-plane
0 0.94 0.95
30 0.91 0.93
60 0.87 0.88
90 0.82 0.84

mentioned in [24], a fidelity factor higher than 50% is an appropriate value for UWB systems. Table 2
presents this time-domain parameter for both planes. It is seen that the calculated fidelity factors in
both planes have proper values above 82%, making the proposed antenna very capable for use in UWB
communication applications. To calculate FF , as mentioned in [24], the antenna gain and E-field phase
should be calculated at every angle of the desired plane. Using the aforementioned parameters and
transfer function of two identical antennas, like the procedure proposed in [24], the cross-correlation
between the received and transmitted pulses is done at every point in time, and the maximum value
of this correlation is obtained. The FF in Eq. (4) has to be solved for every angle and plotted in a
polar plot. Because of the normalization of the signals, the results of the cross-correlation are between
0 and 1.

4. CONCLUSION

A printed monopole UWB antenna with suppressed ground plane effect has been presented in this work.
To suppress ground plane effect on the antenna impedance bandwidth, a rectangular and several stepped
slots are etched on the radiating patch. Besides, to reduce the current distribution on the ground plane
at a desired frequency, a strip is printed in the rectangular slot. This technique decreases current
distribution on the ground plane at higher frequencies. Consequently, the impedance matching of the
antenna is mainly affected by the antenna radiator. The antenna has a compact size of 25×25×1.6 mm3.
It can provide a wide impedance bandwidth from 2.8 to 15.4 GHz (|S11| < −10 dB) which covers the
entire UWB spectrum. Two prototypes of the antenna were fabricated and measured. The impedance
matching, group delay, fidelity factor, and antenna radiation characteristics, including co- and cross-
polarized far-field patterns and realized gain were analyzed with numerical simulation and experimental
measurement. Measured data are in good agreement with the simulated results. Based on the obtained
frequency- and time-domain characteristics, the designed antenna is an attractive candidate for UWB
wireless devices.
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