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Both Worst Case and Outage Constrained Robust Design for MIMO
Wiretap Wireless Sensor Networks

Feng Zhou1, 3, *, Rugang Wang1, 2, and Jinhong Bian1, 3

Abstract—In this paper, we consider a MIMO wiretap system in wireless sensor networks (WSNs),
where the confidential signal sent to the legitimate receive (Bob) may be eavesdropped by the
eavesdropper (Eve). Assuming that only partial channel state information (CSI) can be obtained
by the transmitter, we consider both worst case (WC) and outage-constrained (OC) robust secrecy
optimizations. To solve the WC design, we propose to linearize these logarithmic determinant terms.
After linearization, we tackle the CSI uncertainty using the Nemirovski lemma. Then, an alternating
optimization (AO) algorithm is proposed to solve the reformulated problem. On the other hand, to
solve the OC design, we transform the probabilistic constraint into safe and tractable reformulation
by the Bernstein-type inequality (BTI) and large deviation inequality (LDI), and an AO algorithm is
proposed. Numerical results are provided to demonstrate the performance of the proposed scheme.

1. INTRODUCTION

Wireless sensor networks (WSNs) are considered as a promising technique with numerous applications
such as data acquisition, location monitoring, and node control [1, 2]. However, secure transmission has
been seen as an important problem for WSN due to the openness of wireless channel [3, 4]. The physical
layer security (PLS) technique, which exploits the characteristics of wireless channels, has been proved
as an effective method to improve the security in wireless networks [5].

The design of transmit precoding or beamforming in multiple-input multiple-output (MIMO)
wiretap channel is a typical non-convex problem [6, 7]. To solve this problem, various methods have
been proposed in [8–13]. In [8], the authors proposed a transmit precoding design based on alternating
optimization (AO). In [9], the authors proposed a method based on matrix generalized singular value
decomposition (GSVD). In [10], the authors proposed an iterative custom-made method. In [11], the
authors proposed an inexact block coordinate descent (IBCD) method to design information signal
and energy signal in a secrecy MIMO system with energy harvesting (EH). Recently, the minorization-
maximization (MM) based method has aroused new attention to design the precoding in MIMO wiretap
channels [12, 13].

However, due to the existence of channel estimation and feedback errors, it is difficult to obtain
perfect channel state information (CSI). Robust design has been widely investigated to handle this
obstacle. Commonly, there are two kinds of robust design in wiretap channel, e.g., the worst case (WC)
secrecy design and outage constraint (OC) secrecy design.

Specifically, the worst case robust optimizing problem was investigated in [14–18]. The technique
to tackle the bounded CSI uncertainty in these works mostly involved the S-Procedure. However, for
a MIMO wiretap channel, the S-Procedure is not directly workable since the secrecy rate expression
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consists of several logarithmic determinant (log-det) terms, not the matrix trace formulation as in
the multiple-input single-output (MISO) channel. To overcome this obstacle, log-det is commonly
approximated as a trace by first order Taylor series expansion [14–16]. However, at high SNR region,
the difference between the actual value and this approximation is huge [17]. In [18], the authors proposed
an epigraph reformulation to handle the CSI uncertainty without considering artificial noise (AN).

On the other hand, the outage constraint design has been investigated in [19–23]. In [19], the
authors proposed an AO method to achieve a safe approximation for the secrecy outage design. In [20],
the authors proposed a successive convex approximation (SCA) based method to maximize the outage
secrecy rate. In [21], the authors proposed an SCA method to maximize the harvested energy at the
energy receiver subject to the outage secrecy rate constraint. Recently in [22] and [23], the authors
proposed AO based methods to maximize the outage secrecy rate in MIMO channel without and with
considering AN, respectively.

Motivated by these observations, in this paper, we investigate the bounded and probabilistic CSI
uncertainties constraint robust designs, respectively. Specifically, considering both imperfect Bob’s and
Eve’s CSIs, we aim to optimize the transmit precoding matrix and AN covariance. We propose to
linearize these log-det terms and utilize epigraph reformulation to deal with CSI uncertainties. Then,
an AO algorithm is proposed to solve the reformulated problem. For the outage-constraint design, we
transform the probabilistic constraint into tractable reformulation by Bernstein-type inequality (BTI)
and large deviation inequality (LDI), to achieve better performance and lower complexity, respectively.
Finally, numerical results demonstrate the performance of the proposed scheme.

The rest of this paper is organized as follows. The system model and problem statement are given
in Section 2. Section 3 investigates the worst case secrecy design. Section 4 investigates the worst case
secrecy design. Simulation results are provided in Section 5. Section 6 concludes this paper.

Notations: Throughout this paper, boldface lowercase and uppercase letters denote vectors and
matrices, respectively. The conjugate, transpose, conjugate transpose, trace, and rank of matrix A are
denoted as A†, AT , AH , Tr(A), and rank(A), respectively. a = vec(A) indicates to stack the columns
of matrix A into a vector a. H

N
+ denotes the set of all N ×N Hermitian positive semi-definite matrices.

A � 0 indicates that A is a positive semi-definite matrix. |·| and ‖a‖ denote the absolute value and
Euclidean norm of vector a, respectively. ⊗ denotes the Kronecker product. D(a) represents a diagonal
matrix with a on the main diagonal. I is an identity matrix with proper dimension. λmax(A,B)
denotes the largest generalized eigenvalue of matrices A and B. Re{a} denotes the real part of a
complex variable a. CN (0, I) denotes a circularly symmetric complex Gaussian random vector with
mean 0 and covariance I. [x]+ indicates max(0, x), and E[·] stands for the statistical expectation.

2. SYSTEM MODEL AND PROBLEM STATEMENT

2.1. Problem Statement

Let us consider a MIMO wiretap system, which consists of one transmitter (T), one legitimate receiver
(Bob), and an eavesdropper (Eve), as shown in Fig. 1. It is assumed that the T, Bob, and Eve are
equipped with Nt, Nb, and Ne antennas, respectively. The channel matrices between T and Bob, and
between T and Eve are denoted as H ∈ C

Nb×Nt and G ∈ C
Ne×Nt , respectively.

In this paper, we assume that only imperfect Bob’s and Eve’s CSIs can be obtained. The bounded
CSI uncertainties are modeled as

H =
{
H
∣∣H = H̄ + ΔH, ‖ΔH‖ ≤ χH

}
, (1a)

G =
{
G
∣∣G = Ḡ + ΔG, ‖ΔG‖ ≤ χG

}
, (1b)

where H̄ and Ḡ denote the estimates of H and G, respectively; ΔH and ΔG are their respective channel
uncertainties; χH and χG denote the respective sizes of the bounded channel uncertainties region.

Accordingly, the worst case secrecy rate can be expressed as

Rworst = min
∀H∈H, ∀G∈G

Cb (W,Σ) − Ce (W,Σ) , (2)
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Figure 1. The MIMO wiretap system model.

where Cb and Ce denote the mutual information at Bob and Eve, respectively, and are given by

Cb (W,Σ) Δ= ln
∣∣∣I + HWWHHH

(
σ2

b I + HΣHH
)−1
∣∣∣ , (3a)

Ce (W,Σ) Δ= ln
∣∣∣I + GWWHGH

(
σ2

eI + GΣGH
)−1
∣∣∣ . (3b)

On the other hand, for the outage constraint design, the CSI uncertainties are modeled as follows

H =
{
H
∣∣H = H̄ + ΔH, vec (ΔH) ∼ CN (0,CH)

}
, (4a)

G =
{
G
∣∣G = Ḡ + ΔG, vec (ΔG) ∼ CN (0,CG)

}
, (4b)

where ΔH and ΔG denote the channel uncertainties, respectively; CH and CG denote the covariances,
respectively.

Accordingly, the secrecy outage probability can be expressed as

Pr
{

min
∀H∈H,∀G∈G

Cb (W,Σ) − Ce (W,Σ) ≥ Rout

}
≥ 1 − ρ, (5)

where ρ is the secrecy outage probability, e.g., the chance of the achievable secrecy rate R falling below
the target rate Rs due to CSI uncertainty.

2.2. Problem Statement

In this paper, we investigate the joint precoding and AN design to maximize the worst case secrecy rate
and outage secrecy rate, respectively. Mathematically, the two problems can be formulated as

P1 : max
W,Σ�0

[
min

‖ΔH‖F≤χH

ln
∣∣∣I + HWWHHH

(
σ2

bI + HΣHH
)−1
∣∣∣

− max
‖ΔG‖F≤χG

ln
∣∣∣I + GWWHGH

(
σ2

eI + GΣGH
)−1
∣∣∣] , (6a)

s.t. Tr
(
WWH + Σ

) ≤ Ps, (6b)

P2 : max
W, Σ�0

Rout (7a)

s.t. Pr
{

min
∀H∈H,∀G∈H

Cb (W,Σ) −Ce (W,Σ) ≥ Rout} ≥ 1 − ρ, (7b)

(6b), (7c)

where Ps is the maximum achievable power for the transmitter.
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3. WORST CASE SECRECY DESIGN

P1 is highly non-convex due to maximize the difference of several log-det functions in the CSI uncertainty
region. In this section, we will propose en effective method to linearize these log-det terms and handle
the CSI uncertainty.

Firstly, we introduce the following Lemma.
Lemma 1 [11]: Define an m by m matrix function,

Ξ (U,V) Δ= UHNU +
(
I − UHMV

) (
I − UHMV

)H
,

where N is any positive definite matrix. Then, the following three equations hold true.
Equation (1): For any positive definite matrix S ∈ C

m×m, we have

S−1 = arg max
T�0

ln |T| − Tr (TS) ,

and
− ln |S| = arg max

T�0
ln |T| − Tr (TS) + m.

Equation (2): For any positive definite matrix T, we have

Ũ Δ= arg min
U

Tr (TΞ (U,V)) =
(
N + MVVHMH

)−1
MV,

and
Ξ
(
Ũ,V

)
= I − ŨHMV =

(
I + VHMHN−1MV

)−1
.

Equation (3): We have

ln
∣∣I + MVVHMHN−1

∣∣ = arg max
T�0,U

ln |T| − Tr (TΞ) + m.

Equations (1) and (2) can be proven by the first-order optimality condition, while Equation (3)
directly follows from Equations (1) and (2) and the identity ln |I + AB| = ln |I + BA|.

Eq. (6) is hard to handle due to the coupled variables and non-convex objective and constraints.
In the following, we will decouple Eq. (6) based on these above equations.

To utilize the above equations, we denote Σ = QQH and rewrite Rs as

Rs = ln
∣∣∣I + σ−2

b HWWHHH
(
I + σ−2

b HQQHHH
)−1
∣∣∣︸ ︷︷ ︸

f1

+ ln
∣∣I + σ−2

e GQQHGH
∣∣︸ ︷︷ ︸

f2

+ ln
∣∣σ2

eI
∣∣− ln

∣∣σ2
eI + GWWHGH + GQQHGH

∣∣︸ ︷︷ ︸
f3

, (8)

where

f1 = max
Ψ1�0,U

ln |Ψ1| − Tr (Ψ1Ξ1 (U,W,Q)) + Nd, (9a)

f2 = max
Ψ2�0,V

ln |Ψ2| − Tr (Ψ2Ξ2 (V,Q)) + NT , (9b)

f3 = max
Ψ3�0

ln |Ψ3| + NE − Tr
(
Ψ3

(
σ2

eI + GWWHGH + GQQHGH
))

. (9c)

Furthermore, the matrix functions Ξ1 and Ξ2 are as follows

Ξ1 (U,W,Q) Δ= UH
(
I + σ−2

b HQQHHH
)
U +

(
I − σ−1

b UHHW
) (

I − σ−1
b UHHW

)H
, (10a)

Ξ2 (V,Q) Δ= σ−2
e VHV +

(
I − σ−1

e VHGQ
) (

I − σ−1
e VHGQ

)H
. (10b)
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Based on the above relationships, Eq. (6) can be rewritten as

max
Ψ1�0,Ψ2�0,

Ψ3�0,U,
V,W,Q

ln |Ψ1| − Tr
(
Ψ1UHU

)− a − b + ln |Ψ2| − σ−2
e Tr

(
Ψ2VHV

)− c

+ ln |Ψ3| − σ2
eTr (Ψ3) − d − e,

(11a)

s.t. Tr
(
Ψ1

(
I − σ−1

b UHHW
) (

I − σ−1
b UHHW

)H) ≤ a, (11b)

Tr
(
Ψ1UHHQQHHHU

) ≤ σ2
b b, (11c)

Tr
(
Ψ2

(
I− σ−1

e VHGQ
) (

I − σ−1
e VHGQ

)H) ≤ c, (11d)

Tr
(
Ψ3GWWHGH

) ≤ d, (11e)

Tr
(
Ψ3GQQHGH

) ≤ e, (11f)
(6b). (11g)

Furthermore, denote Ψ1 = T1TH
1 , Ψ2 = T2TH

2 , Ψ3 = T3TH
3 , Eq. (11) can be reformulated as

max
T1�0,T2�0,

T3�0,U,
V,W,Q

2 ln |T1| − Tr
(
T1TH

1 UHU
)− a − b + 2 ln |T2| − σ−2

e Tr
(
T2TH

2 VHV
)− c

+ 2 ln |T3| − σ2
eTr
(
T3TH

3

)− d − e,

(12a)

s.t.
∥∥TH

1

(
I − σ−1

b UHHW
)∥∥2

F
≤ a, (12b)∥∥TH

1 UHHQ
∥∥2

F
≤ σ2

b b, (12c)∥∥TH
2

(
I− σ−1

e VHGQ
)∥∥2

F
≤ c, (12d)∥∥TH

3 GW
∥∥2

F
≤ d, (12e)∥∥TH

3 GQ
∥∥2

F
≤ e, (12f)

(6b). (12g)
Eq. (12) is still hard to handle due to the CSI uncertainty. Next, we will introduce the

following Nemirovski Lemma to handle the CSI uncertainty. Firstly, we rewrite Eq. (12b) as∥∥TH
1 − σ−1

b TH
1 UH

(
H̄ + ΔH

)
W
∥∥2

F
≤ a, ‖ΔH‖F ≤ χH .

By denoting Δh = vec (ΔH) and invoking the equation vec (A1A2A3) =
(
AT

3 ⊗ A1

)
vec (A2),

we obtain the relationship
∥∥t1 − σ−1

b P1Δh
∥∥2

2
≤ a, ‖Δh‖2 ≤ χH , where t1 = vec

(
X1H̄W − TH

1

)
,

P1 = WT ⊗ X1 and X1 = TH
1 UH .

Based on the Schur complement, the above relationship can be reformulated as[
a (t1 −PΔh)H

t1 − PΔh I

]
� 0, ‖Δh‖2 ≤ χH . (13)

Furthermore, Eq. (13) can be rewritten as follows[
a tH

1

t1 I

]
�
[

0
P

]
Δh [−1 0] +

[ −1
0

]
ΔhH

[
0
P

]H
. (14)

Next, we will introduce the following Nemirovski Lemma to handle the CSI uncertainty.
Lemma 2 (Nemirovski Lemma) [24, 25]: For a given set of matrices A = AH , B and C, the

following LMI is satisfied
A � BHXC + CHXHB, ‖X‖ ≤ t,

if and only if there exists a non-negative real number μ such that[
A− μCHC −tBH

−tB μI

]
� 0.
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Based on the Nemirovski Lemma, Eq. (14) can be rewritten as the following LMI⎡
⎣ a − λ1 tH

1 0
t1 I χHP1

0 χHPH
1 λ1I

⎤
⎦ � 0. (15)

where λ1 ≥ 0 is the introduced auxiliary variables.
Similarly, we denote t2 = vec(X1H̄Q), P2 = QT ⊗ X1, t3 = vec(X2ḠQ− TH

2 ), P3 = QT ⊗ X2,
X2 = TH

2 VH , t4 = vec(T3ḠW), P4 = WT ⊗T3, t5 = vec(T3ḠQ), P5 = QT ⊗T3, then, the following
LMIs can be obtained ⎡

⎣ σ2
b b − λ2 tH

2 0
t2 I χHP2

0 χHPH
2 λ2I

⎤
⎦ � 0, (16)

⎡
⎣ c − λ3 tH

3 0
t3 I χGP3

0 χGPH
3 λ3I

⎤
⎦ � 0, (17)

⎡
⎣ d − λ4 tH

4 0
t4 I χGP4

0 χGPH
4 λ4I

⎤
⎦ � 0, (18)

⎡
⎣ e − λ5 tH

5 0
t5 I χGP5

0 χGPH
5 λ5I

⎤
⎦ � 0, (19)

where {λ2 ≥ 0, · · · , λ5 ≥ 0} are introduced auxiliary variables.
Bases on these above operations, we obtain the following problem

max
T1�0,T2�0,

T3�0,U,
V,W,Q

2 ln |T1| − Tr
(
T1TH

1 UHU
)− a − b + 2 ln |T2| − σ−2

e Tr
(
T2TH

2 VHV
)

− c + 2 ln |T3| − σ2
eTr
(
T3TH

3

)− d − e,

(20a)

s.t. (6b), (15), (16), (17), (18), (19). (20b)

To this end, we turn Eq. (6) into an equivalent problem in Eq. (12). Eq. (12) is still non-convex
w.r.t all these optimization variables, but is convex w.r.t given variables when other variables are fixed.
Specifically, these variables can be divided into three groups: {W,Q}, {U,V}, and {T1,T2,T3}. Then,
Eq. (12) can be decoupled into four subproblems w.r.t these variables. Both these subproblems can be
effectively solved by the convex optimization tool CVX [28], and the optimal solution to Eq. (6) can be
achieved in an alternating method.

4. OUTAGE SECRECY DESIGN

In this section, we will handle the outage secrecy design. As discussed in the above, we find that the
OCSRM problem is non-convex due to the constraints in Eq. (7b). Hence, in the following, in order to
solve the OCSRM problem, we propose an effective way to convert the non-convex constraints.

Based on Equation (1) and denoting WWW = WWH , we obtain the following relationship

− ln
∣∣I + σ−2

b HWWWHH
∣∣ = max

Sb�0
f
(
Sb, I + σ−2

b HWWWHH
)
, (21a)

− ln
∣∣I + σ−2

e G (WWW + Σ)GH
∣∣ = max

Se�0
f
(
Se, I + σ−2

e G (WWW + Σ)GH
)
, (21b)

where Sb and Se are introduced auxiliary variables.
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In addition, at low signal-to-noise ratio (SNR) region, we invoke the following SNR approximation
method [23],

ln
∣∣I + σ−2

b H (WWW + Σ)HH
∣∣ = σ−2

b Tr
(
H (WWW + Σ)HH

)
, (22a)

ln
∣∣I + σ−2

e GWWWGH
∣∣ = σ−2

e Tr
(
GWWWGH

)
. (22b)

By substituting Eqs. (21) and (22) into Eq. (5), we obtain the following probability constraint

Pr
{
σ−2

b Tr
(
H (WWW + Σ)HH

)
+ σ−2

e Tr
(
GWWWGH

)
+ max

Se�0
f
(
Se, I + σ−2

e G (WWW + Σ)GH
)

+ max
Sb�0

f
(
Sb, I + σ−2

b HWWWHH
) ≥ R

}
≥ 1 − ρ,

(23)

which can be further safely approximated as

Pr
{
σ−2

b Tr
(
H (WWW + Σ)HH

)
+ σ−2

e Tr
(
GWWWGH

)
+ f
(
Se, I + σ−2

e G (WWW + Σ)GH
)

+f
(
Sb, I + σ−2

b HWWWHH
) ≥ R

} ≥ 1 − ρ.

(24)

Next, we turn channel matrices H and G into the following form h = h̄+C1/2
h vh where h = vec (H)

and h̄ = vec
(
H̄
)
, vh ∼ CN (0, I), g = ḡ+C1/2

g vg. Similarly, g = vec (G), ḡ = vec
(
Ḡ
)
, vg ∼ CN (0, I).

By invoking the equations Tr
(
ABCH

)
= vec(C)H

(
BT ⊗ I

)
vec (A) and Tr

(
AHBCD

)
=

vec(A)H (DT ⊗ B
)
vec (C), Eq. (24) can be rewritten as the following equation

Pr
{[

vH
h vH

g

] [ C1/2
h Θ1C

1/2
h 0

0 C1/2
g Θ2C

1/2
g

] [
vh

vg

]

+2	
{[

vH
h vH

g

] [ C1/2
h Θ1 0
0 C1/2

g Θ2

][
h
g

]}

+
[
hH gH

] [ Θ1 0
0 Θ2

] [
h
g

]
+ ϕ ≥ 0

}
≥ 1 − ρ,

(25)

where Θ1 = σ−2
b

((WWWT + ΣT
)⊗ I −WWWT ⊗ Sb

)
, Θ2 = σ−2

e

(WWWT ⊗ I− (WWWT + ΣT
)⊗ Se

)
and ϕ =

−Tr (Sb) + ln |Sb| + Nb − Tr (Se) + ln |Se| + Ne − R.
Next, we will handle the CSI uncertainty based on the following BTI.
Lemma 2 [26] (BTI): For any (A,u, c) ∈ H

N ×C
N ×R, v ∼ CN (0, I) and β ∈ (0, 1], the following

inequalities hold:
Prv
{
vHAv + 2	{vHu

}
+ c ≥ 0

} ≥ 1 − β

⇐

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tr (A) −√−2 ln (β)x+ ln (β) y + c ≥ 0,∥∥∥∥
[

vec (A)√
2u

]∥∥∥∥ ≤ x,

yI + A � 0, y ≥ 0,

where x and y are slack variables. Moreover, BTI is convex w.r.t all the variables (A,u, c, x, y).
Based on BTI and denoting v Δ=

[
vH

h vH
h

]H ,

A Δ=

[
C1/2

h Θ1C
1/2
h 0

0 C1/2
g Θ2C

1/2
g

]
, (26)

u Δ=

[
C1/2

h Θ1 0

0 C1/2
g Θ2

] [
h
g

]
, (27)
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c
Δ=
[
hH gH

] [ Θ1 0
0 Θ2

] [
h
g

]
+ ϕ, (28)

we obtain the following relationship⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tr (A) −√−2 ln (ρ)x + ln (ρ) y + c ≥ 0,∥∥∥∥ vec (A)√
2u

∥∥∥∥
2

≤ x,

yI + A � 0.

(29)

To this end, we turn Eq. (25) into a solvable reformulation.
In addition, to reduce the computation complexity of the BTI method, we propose to use the

following LDI method.
Lemma 3 [27] (LDI): Let x ∼ CN (0, I), and A ∈ H

n×n, r ∈ C
n×1 are given. Then, for any

v > 1√
2

and ζ > 0, we have

Pr
{
xHAx + 2	{xHr

} ≤ Tr (A) − ζ
}

≤

⎧⎪⎪⎨
⎪⎪⎩

exp
(
− ζ2

4T 2

)
0 < ζ ≤ 2v̄vT ,

exp
(
− v̄vζ

T
+ (v̄v)2

)
ζ > 2v̄vT ,

where v̄ = 1 − 1
2v2 and T = v‖A‖F + 1√

2
‖r‖. Similarly with BTI, LDI is also convex w.r.t all the

variables (A,u, c, x, y).
Based on LDI, we transform Eq. (25) into the following relationship⎧⎪⎨

⎪⎩
Tr (A) + c ≥ 2

√− ln (ρ) (x + y) ,

‖u‖2 ≤ √
2x,

v‖A‖F ≤ y,

(30)

where v is the solution of the following equation v̄v = (1 − 1/2v2)v =
√− ln(ρ).

For both BTI and LDI based methods, Eqs. (29) and (30) are still non-convex w.r.t all these
optimization variables, but are convex w.r.t certain variables when other variables are fixed. Specifically,
these variables can be divided into two groups: {WWW,Σ} and {Sb,Se}. Then, Eq. (24) can be decoupled
into four subproblems w.r.t these variables. Both these subproblems can be effectively solved by the

Table 1. Complexity analysis of BTI and LDI methods.

problems Complexity Order (ln (1/ε)
√

β (K)C, ε denotes the accuracy requirement.)

subproblem 1 with BTI

β (K) = (2 + Nr + Ne)Nt + 4, C = n3 + n
[
(Nr + Ne)

3N3
t + 2N3

t + 2
]

+n2
[
(Nr + Ne)2N2

t + 2N2
t + 2

]
+ nN2

t (Nr + Ne)2(NtNr + NtNe + 1)2,

and n = O (2N2
t

)
.

subproblem 2 with BTI
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[
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3N3
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t

]
+n2
[
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t + 2N2

t

]
+ nN2
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and n = O (N2
r + N2

e

)
.

subproblem 1 with LDI β (K) = 2Nt + 5, C = n3 + n
(
2N2

t + 1
)3 + n2

(
2N2

t + 1
)2+

nN4
t (Nr + Ne)

4 + nN2
t (Nr + Ne)

2, and n = O (2N2
t

)
.

subproblem 2 with LDI
β (K) = 2Nt + 4, C = n3 + 2nN6

t + 2n2N4
t + nN4

t (Nr + Ne)
4

+nN2
t (Nr + Ne)

2, and n = O (N2
r + N2

e

)
.
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convex optimization tool CVX [28], and the optimal solution to Eq. (6) can be achieved in an alternating
method.

Via a similar way to that in [27], we obtain the complexity comparison between BTI and LDI
methods, which are shown in Table 1. From the comparison, we observe that the LDI method achieves
lower complexity than the BTI method.

5. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed design through Monte Carlo simulations.
The simulation settings are assumed as follows: Ps = 10dBW, σ2

b = σ2
e = 10−4. Each element of H̄ and

Ḡ is randomly generated by CN (0, 10−4), and the channel uncertainties are χ2
H = χ2

G = 2 × 10−6 for
bounded uncertainty and CH = CG = 2×10−6 for the outage case, respectively. The outage probability
is ρ = 0.05. For the worst case design, we compare our algorithm with the following methods: 1) The
case of perfect CSI, which can be seen as the upper bound of our proposed design; 2) The no AN method,
e.g., setting Σ = 0 while only optimizing W; 3) The SCA based method in [16]; 4) The MM based
method in [13]. The five methods are denoted as “the proposed method”, “the perfect CSI case”, “the
no AN method”, “the SCA based method”, and “the MM based method”, respectively. On the other
hand, for the outage case design, we compare our BTI and LDI methods with the following methods:
1) The case of perfect CSI; 2) The no AN method; 3) The MM based method. The five methods are
denoted as “the BTI method”, “the LDI method”, “the perfect CSI case”, “the no AN method”, and
“the MM based method”, respectively.

5.1. Worst Case Performance

Firstly, in Fig. 2, we show the convergency of our proposed AO method with random channel realization.
From this figure, we can see that for different channel conditions, the proposed method can always
convergent in limited AO numbers.

Secondly, in Fig. 3, we show the worst case secrecy rate Rworst versus the source transmit power
Ps. From this figure, we can see that our proposed method achieves better performance than the other
methods. In addition, the performance gaps among the four methods with the perfect CSI case become
larger with the increase of Ps, while the SCA method tends to decrease in respectively high Ps region.

Furthermore, in Fig. 4, we show the worst case secrecy rate Rworst versus the channel uncertainty
level. The proposed method achieves better performance than other methods. For all these methods,
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Figure 2. The convergency versus the iterative
numbers.
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Figure 3. The worst case secrecy rate versus the
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Figure 5. The BTI convergency versus the
iterative numbers.

Rworst tends to decrease with the increase of the channel uncertainty level, which shows the impact of
the channel uncertainty on the secrecy performance.

5.2. Outage Secrecy Performance

Firstly, in Fig. 5 and Fig. 6, we show the convergency of the proposed BTI and LDI methods with
random channel realization. Similarly with the previous AO method, both the BTI and LDI methods
can be convergent in limited AO numbers.
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Figure 6. The LDI convergency versus the
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Figure 7. The outage secrecy rate versus the
source transmit power.

Secondly, in Fig. 7, we show the outage secrecy rate Rout versus the source transmit power Ps. From
this figure, we can see that our proposed method achieves better performance than the other methods.
In addition, the no AN design suffers from the worst performance, which suggests the importance of
AN in resistance of the channel uncertainty.
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Figure 8. The outage secrecy rate versus the uncertainty level.

Lastly, in Fig. 8, we show the outage secrecy rate Rout versus channel uncertainty level. From this
figure, we can see that the gap between BTI and LDI methods is tiny. However, the performance loss
for the no AN method is quite large, which suggests the necessity of AN again.

6. CONCLUSION

In this paper, we have investigated both WC and OC robust secrecy designs in MIMO wiretap WSNs.
To solve the WC design, we propose to linearize log-det terms in the secrecy rate expression. After
linearization, we tackle the CSI uncertainty based on epigraph reformulation and the Nemirovski lemma.
Then, an AO algorithm is designed to solve the reformulated problem. Furthermore, to solve the OC
design, we transform the probabilistic constraint into tractable approximation by the BTI and LDI.
Numerical results are provided to demonstrate the performance of the proposed scheme.

7. FUNDING

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or
publication of this article: This work was part supported by the National Natural Science Foundation
of China under Grant No. 61673108, part supported by the Colleges and Universities Natural
Science Foundation in Jiangsu Province under contracts No. 18KJB510010 and No. 19KJA110002,
part supported by the industry-university-research cooperation project of Jiangsu province under
Grant No. BY2018282, part supported by the Open Project Program of the Key Laboratory of
Underwater Acoustic Signal Processing, Ministry of Education, China under contracts No. UASP1801,
and part supported by the Fundamental Research Funds for the Central Universities under contracts
No. 2242016K30013.

REFERENCES

1. Choi, K. W., L. Ginting, P. A. Rosyady, A. A. Aziz, and D. I. Kim, “Wireless-powered sensor
networks: How to realize,” IEEE Trans. Wireless Commun., Vol. 16, No. 1, 221–234, Jan. 2017.

2. Ruan, T., Z. Chew, and M. Zhu, “Energy-aware approaches for energy harvesting powered wireless
sensor nodes,” IEEE Sensor Journal, Vol. 17, No. 7, 2165–2173, Apr. 2017.



120 Zhou, Wang, and Bian

3. Wu, J., K. Ota, M. Dong, and C. Li, “A hierarchical security framework for defending against
sophisticated attacks on wireless sensor networks in smart cities,” IEEE Access, Vol. 4, 416–424,
Jan. 2016.

4. Deng, Y., L. Wang, M. Elkashlan, A. Nallanathan, and R.K. Mallik, “Physical layer security in
three-tier wireless sensor networks: A stochastic geometry approach,” IEEE Trans. Inf. Forensics
Security, Vol. 11, No. 6, 1128–1138, Jan. 2016.

5. Liu, Y., H.-H. Chen, and L. Wang, “Physical layer security for next generation wireless networks:
Theories, technologies, and challenges,” IEEE Commun. Surveys Tutorials, Vol. 19, No. 1, 347–376,
First Quarter, 2017.

6. Khisti, A. and G. W. Wornell, “Secure transmission with multiple antennas — Part II: The
MIMOME wiretap channel,” IEEE Trans. Inf. Theory, Vol. 56, No. 11, 5515–5532, Nov. 2010.

7. Oggier, F. and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf.
Theory, Vol. 57, No. 8, 4961–4972, Aug. 2011.

8. Li, Q., M. Hong, H.-T. Wai, Y.-F. Liu, W.-K. Ma, and Z.-Q. Luo, “Transmit solutions for MIMO
wiretap channels using alternating optimization,” IEEE J. Sel. Areas Commun., Vol. 31, No. 9,
1714–1727, Sep. 2013.

9. Fakoorian, S. A. A. and A. L. Swindlehurst, “Full rank solutions for the MIMO Gaussian wiretap
channel with an average power constraint,” IEEE Trans. Signal Process., Vol. 61, No. 10, 2620–
2631, May 2013.

10. Loyka, S. and C. D. Charalambous, “An algorithm for global maximization of secrecy rates in
gaussian MIMO wiretap channels,” IEEE Trans. Commun., Vol. 63, No. 6, 2288–2299, Jan. 2015.

11. Shi, Q.-J., W.-Q. Xu, J.-S. Wu, E.-B. Song, and Y.-M. Wang, “Secure beamforming for MIMO
broadcasting with wireless information and power transfer,” IEEE Trans. Wireless Commun.,
Vol. 14, No. 5, 2841–2853, May 2015.

12. Lee, H., C. Song, J. Moon, and I. Lee, “Precoder designs for MIMO Gaussian multiple access
wiretap channels,” IEEE Trans. Veh. Tech., Vol. 66, No. 9, 8563–8568, Sep. 2017.

13. Masood, M., A. Chrayeb, P. Babu, I. Khalil, and M. Hasna, “A minorization-maximization
algorithm for maximizing the secrecy rate of MIMOME wiretap channel,” IEEE Commun. Lett.,
Vol. 21, No. 3, 520–523, Mar. 2017.

14. Cumanan, K., Z. Ding, B. Sharif, G. Y. Tian, and K. K. Leung, “Secrecy rate optimizations for a
MIMO secrecy channel with a multiple-antenna eavesdropper,” IEEE Trans. Veh. Tech., Vol. 63,
No. 4, 1678–1690, May 2014.

15. Chu, Z., K. Cumanan, Z. Ding, M. Johnston, and S. Y. Le Goff, “Secrecy rate optimizations for
a MIMO secrecy channel with a cooperative jammer,” IEEE Trans. Veh. Tech., Vol. 64, No. 5,
1833–1847, May 2015.

16. Wang, S.-H. and B.-Y. Wang, “Robust secure transmit design in MIMO channels with simultaneous
wireless and information power,” IEEE Signal Process. Lett., Vol. 22, No. 11, 2147–2151, Nov. 2015.

17. Zhu, Z., Z. Chu, N. Wang, S. Huang, Z. Wang, and I. Lee, “Beamforming and power splitting
designs for AN-aided secure multi-user MIMO SWIPT systems,” IEEE Trans. Inf. Forensics
Security, Vol. 12, No. 12, 2861–2874, Dec. 2017.

18. Jiang, M., Y. Li, Q. Zhang, Q. Li, and J. Qin, “Robust secure beamforming in MIMO wiretap
channels with deterministically bounded channel errors,” IEEE Trans. Veh. Tech., Vol. 67, No. 10,
9775–9784, Oct. 2018.

19. Li, Q., W.-K. Ma, and A. M. Cho, “A safe approximation approach to secrecy outage design for
MIMO wiretap channels,” IEEE Signal Process. Lett., Vol. 21, No. 1, 118–121, Jun. 2014.

20. Chu, Z., K. Cumanan, Z. Ding, M. Johnston, and S. L. Goff, “Robust outage secrecy rate
optimizations for a MIMO secrecy channel,” IEEE Wireless Commun. Lett., Vol. 4, No. 1, 86–
89, Jun. 2015.

21. Wu, W. and B. Wang, “Efficient transmission solutions for MIMO wiretap channels with SWIPT,”
IEEE Commun. Lett., Vol. 19, No. 9, 1548–1551, Sep. 2015.



Progress In Electromagnetics Research C, Vol. 97, 2019 121

22. Khandaker, M. R. A. and K.-K. Wong, “Robust secrecy beamforming for MIMO SWIPT with
probabilistic constraint,” Proc. IEEE Globecom Workshops, 1–6, Dec. 2016.

23. Yuan, Y. and Z. Ding, “Outage constrained secrecy rate maximization design with SWIPT in
MIMO-CR systems,” IEEE Trans. Veh. Tech., Vol. 67, No. 6, 5475–5480, Jun. 2018.

24. Eldar, Y. C., A. Ben-Tal, and A. Nemirovski, “Robust mean-squared error estimation in the
presence of model uncertainties,” IEEE Trans. Signal Process., Vol. 53, No. 1, 168–181, Jan. 2005.

25. Ben-Tal, A., L. E. Ghaoui, and A. Nemirovski, Robust Optimization, Princeton Univ. Press,
Princeton, NJ, USA, 2009.

26. Bechar, I., “A Bernstein-type inequality for stochastic processes of quadratic forms of Gaussian
variables,” avaiable online at http://arxiv.org/abs/0909.3595, Sep. 2009.

27. Wang, K.-Y., A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Outage constrained
robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic
optimization,” IEEE Trans. Signal Process., Vol. 62, No. 21, 5690–5705, Nov. 2014.

28. Grant, M. and S. Boyd, CVX: Matlab software for disciplined convex programming, version 1.21.
Accessed on Apr. 2011. [Online]. Available: http://cvxr.com/cvx.


