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Direct Suspension Control Based on Second Order Sliding Mode
for Bearingless Brushless DC Motor

Baohua Yue1, Ye Yuan2, *, and Tianyue Tao2

Abstract—For direct suspension force control (DSFC) strategy of Bearingless Brushless DC Motor
(BBLDCM), combined with super-twisting algorithm, a second-order sliding mode (SOSM) controler
is designed by direct suspension force. The control precision, robustness, and jitter suppression of
the suspension subsystem are improved. The direct suspension force control based on the second-
order sliding mode (SOSM-DSFC) solves the influence of external disturbance on the self-stabilizing
suspension, effectively suppresses the rotor jitter problem, and improves the robustness of the rotor
suspension.

1. INTRODUCTION

BBLDCM is based on the traditional permanent magnet brushless DC motor, adding a set of suspension
windings to break the air gap magnetic field to generate suspension force [1]. It also has the advantages
of bearingless motor of high integration, no mechanical wear, long service life, and no pollution [2].
BBLDCM has high research value and wide application prospects in biomedical fields such as blood
pumps, high-speed/ultra-high-speed centrifuges, surgical cutting chainsaws, new energy fields, e.g.,
flywheel energy storage and aerospace [3–9].

BBLDCM is a strong coupling and nonlinear system [10]. Therefore, it is difficult to accurately
control the radial suspension force of the rotor and rotor shakes seriously [11]. Ref. [12] adopts a
three-phase simultaneous conduction control of the suspension force winding which achieves a stable
suspension of the rotor; however, the power consumption is great. Refs. [13, 14] propose a current
hysteretic suspension force control method. This method is limited by the width of hysteresis loop
and the operating frequency of switching device, and the switching loss is large. Due to the linear
relationship between the inductance of the suspension winding and the rotor displacement, a self-
detection method for estimating the radial displacement of the rotor based on the high-frequency signal
injection of the suspension winding is proposed in [15]. This method saves the cost of the eddy current
displacement sensor but reduces operational reliability. Ref. [16] proposes a DSFC algorithm based on
space vector pulse width modulation. SVPWM method is used to adjust the change of the suspension
winding flux linkage to realize the closed-loop control of the suspension force and weaken the rotor
jitter. The algorithm requires cumbersome coordinate transformations and complex calculations. When
system parameters change or are affected by external uncertainties, the PID control no longer meets
the requirements of high performance. Sliding mode control has the characteristics of fast response,
insensitivity to disturbance and parameter change, and simple implementation. It is widely used in
motor control. However, the first-order sliding mode control has discontinuous and severe chattering
problems, which affect the control effect of the system. In this frame, high-order sliding mode control acts
on the high-order derivative with discontinuous control input and retains the advantages of traditional
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sliding mode. The idea of high-order sliding mode control is proposed in [17]. Ref. [18] applies high-
order sliding mode control for the nonlinear control of an induction motor, which improves the static
and dynamic performance of motor speed regulation and enhances the robustness.

In order to improve the control precision of the radial suspension force of the BBLDCM, a DSFC
strategy is proposed in [19], which is based on the traditional brushless DC direct torque [20, 21] control
and different from direct suspension force control of space vector pulse width modulation. Inspired
by [19], this paper introduces the SOSM of super twisting algorithm based on the DSFC and designs
the direct suspension force control based on SOSM. Firstly, the basic principle of DSFC is introduced,
and then a sliding mode displacement controller is designed. Taking the x-axis single-degree-of-freedom
displacement of the rotor as an example, the radial suspension force Fx in the x-axis direction of the
rotor is defined as control quantity u. Super twisting algorithm is adopted, and the second-order sliding
mode is improved to realize the second-order sliding mode direct suspension force control. The control
results show that the second-order sliding mode direct suspension force control is feasible and effective.

2. BBLDCM DIRECT SUSPENSION FORCE CONTROL

2.1. The Mechanism of Suspension Force Generation

BBLDCM embeds a set of suspension control windings in stator slots of the brushless DC motor, so
that the suspension magnetic field and rotating magnetic field share a set of core magnetic circuit.

Figure 1 is a schematic diagram of an external rotor BBLDCM. a1, a2, b1, b2, c1, and c2 are
suspension windings of the motor. Each set of windings is composed of two windings in series. When
a1 winding passes into the current in the direction shown in the figure, the magnetic force at air gap 1
decreases. Conversely, the magnetic density at air gap 2 increases, thereby breaking the balance of the
air gap magnetic density on both sides of the rotor and generating the suspension force that displaces
the rotor along axis +x. Similarly, when suspension winding a2 is supplied with current as shown, a
suspension force is generated which causes the rotor to move along axis +y. Therefore, by changing the
magnitude and direction of the current flowing through windings a1 and a2, the rotor is displaced in
any direction of the xoy plane, and finally the rotor is stably suspended. Assuming that the direction
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Figure 1. BBLDCM with Outer Rotor.
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Figure 2. Coordinate of the levitation force of each phase. (a) Axis a1-a2. (b) Axis b1-b2. (c) Axis
c1-c2.

of the suspension force generated by the suspension force winding is along axes a1, a2, b1, b2, c1, and
c2, respectively, the coordinate systems a1-a2, b1-b2, and c1-c2 are established as shown in Fig. 2.

2.2. Model of Radial Suspension Force Model

The motor is placed vertically, so the radial suspension force does not take into account the effects of
rotor gravity.

(1) When the motor rotor position angle θ < [0, 30◦], the suspension force expression is:[
Fx

Fy

]
=
[

Fsa1

Fsa2

]
= ki

[
ia1

ia2

]
+ kx

[
a1

a2

]
(1)

where ia1 and ia2 are the currents flowing through the suspension windings a1 and a2; a1 and a2 are
the displacements of the rotor a1-a2 in the coordinate system; ki is the current stiffness coefficient, and
kx is the displacement stiffness coefficient.

(2) When the motor rotor position angle θ < [30◦, 60◦], the levitation force expression is:[
Fx

Fy

]
=
[

kiib1 + kxb1

kiib2 + kxb2

] [
cos 60◦ cos 150◦

sin 60◦ sin 150◦

]
(2)

(3) When the motor rotor position angle θ < [60◦, 90◦], the levitation force expression is:[
Fx

Fy

]
=
[

kiic1 + kxc1

kiic2 + kxc2

] [
cos 120◦ cos 240◦

sin 120◦ sin 240◦

]
(3)

2.3. Control of Suspension Force Control

For the closed-loop control of suspension force, it is necessary to observe the suspension force first. The
estimation of suspension force can be calculated by Equations (1)–(3). At the same time, a two-point
suspension force regulator is used, as shown in Fig. 3, to achieve high dynamic performance of motor
rotor suspension control.

Figure 3. Two-point suspension force regulator. Figure 4. The working process of DSFC.
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In Fig. 3, the input amount of the suspension force regulator is the error value ΔF of the suspension
force set value Fg and the suspension force feedback value Ff , and the output amount FQ is the switching
signal of the suspension winding. The set tolerance of the suspension force regulator is ±εm, taking
a discrete two-point adjustment. The specific adjustment process of the suspension force is shown in
Fig. 4.

Taking the single-degree-of-freedom x-axis displacement direction as an example, when the rotor is
eccentric +x (−x), the error value of the suspension force is less than (greater than) the lower tolerance
limit set by the regulator −εm (upper tolerance limit +εm). Then the output FQ of the two-point
regulator is changed to “−1” (“+1”). Under the control of FQ = −1 (FQ = +1), the motor suspension
control subsystem conducts the corresponding suspension windings in reverse (forward) direction (the
phase suspension winding is determined by the motor rotor position signal), which increases the radial
suspension force along the −x (+x) direction and adjusts the rotor displacement to the center. It can be
seen that the fluctuation of radial suspension force can be restrained within the allowable tolerance range
by reasonably choosing the tolerance limit of the regulator ±εm, and the purpose of stable suspension
of the motor rotor can be achieved finally.

2.4. Switch Table for Direct Suspension Force Winding Control

The winding of the BBLDCM is only a two-phase conduction in normal operation. Define a six-digit
binary number to indicate the switching state of the inverter. Use “1” for on state and “0” for off
state. The torque winding has six switch states: VT1 (010010), VT2 (000110), VT3 (100100), VT4
(100001), VT5 (001001), VT6 (011000); the floating winding has three switching states: VF1 (100100),
VF2 (010010), VF3 (001001).

The motor selects and turns on the corresponding torque winding and suspension winding according
to different logical combinations of three output signals HA, HB, and HC of the Hall position sensor
to achieve continuous stable suspension operation. Taking Table 1 as an example, the corresponding
relationships between the Hall signal and the torque winding and between the Hall signal and the
conduction state of the suspension winding during motor operation is given.

Taking suspension winding a1 and a2 as examples, the switching table of direct suspension force
winding is deduced. The non-zero suspension force vectors Fsa1, Fsa2, −Fsa1, and −Fsa2 can be
generated in Fig. 5 when a1 and a2 suspension windings are working. The non-zero suspension force
vectors divide the plane into four sectors. At the same time, the non-zero suspension force vectors can
synthesize radial forces Fa1, Fa2, Fa3, and Fa4 of different sizes and directions. When the eddy current
displacement sensor detects that the rotor displacement (x, y) is in sector III, the radial force Fa1 is
selected to adjust the rotor displacement. In the same way, the conduction mode in other states can be
obtained, and the direct suspension force winding switch table can be obtained as in Table 2.

x(Fsa1)

y(Fsa2)

-Fsa1

-Fsa2

Fa1

Fa2

Fa3 Fa4

  IIII

III IV

Figure 5. Suspension force vector generated by suspension winding.
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Table 1. Motor clockwise rotation winding conduction table.

HA HB HC Torque winding state Suspension winding state
1 0 1 VT1 (010010) VF2 (010010)
1 0 0 VT2 (000110) VF1 (100100)
1 1 0 VT3 (100100) VF3 (001001)
0 1 0 VT4 (100001) VF2 (010010)
0 1 1 VT5 (001001) VF1(100100)
0 0 1 VT6 (011000) VF3 (001001)

Table 2. Selection switch table for direct suspension force winding.

Sector a-connected b-connected c-connected
I Fa3 Fb3 Fc3

II Fa4 Fb4 Fc4

III Fa1 Fb1 Fc1

IV Fa2 Fb2 Fc2

3. DESIGN OF SECOND-ORDER SLIDING MODE CONTROLLER

Suspension subsystem is a complex sensitive system, which is greatly affected by the outside world. In
order to ensure the stability and dynamic performance of the control system, SOSM control is introduced
into the BBLDCM suspension control subsystem.

3.1. Design of Second-Order Sliding Mode Displacement Controller

The suspension subsystem of BBLDCM is time-varying, non-linear, and has the characteristics of a
variable structure. The control of rotor displacement is mainly changed in different control structures
to meet the control requirements of stable suspension force. The structure of the SOSM-DSFC control
is shown in Fig. 6.
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Figure 6. Schematic diagram of SOSM-DSFC.

The sliding mode displacement controller is designed by taking the x-axis single-degree-of-freedom
displacement of the rotor as an example. Let the rotor x axial single degree of freedom displacement
be d and the positioning displacement to d∗, the displacement tracking error can be expressed as:

e = d∗ − d (4)

Using a linear combination of e, ė, define the sliding mode variable as:

σ = ce + ė (5)



22 Yue, Yuan, and Tao

where c is the gain factor, if the system moves to the sliding surface (σ = 0), then:

e(t) = e(t0)e−c(t−t0) (6)

In the formula, the value of the gain coefficient c determines the speed at which the sliding mode
variable tends to zero.

Combining with the mathematical model of BBLDCM rotor suspension subsystem and Newton’s
law of motion, it can be concluded that:

md̈ = Fx + fl (7)

where Fx is the radial levitation force in the x-axis direction of the rotor; Fx = kxx+kli, fl is the radial
interference force in the x-axis direction of the rotor; and m is the rotor mass of the motor. Since the
suspension subsystem uses a DSFC structure, the radial levitation force in the x-axis direction of the
rotor is defined as the control amount, that is, u = Fx

Let y1(t) = σ(t), y2(t) = σ̇(t), and get:⎧⎨
⎩

ẏ1(t) = y2(t)

ẏ2(t) = cd̈∗ + d∗ +
c

m
(fl − u) − 1

m
u̇

(8)

In summary, the suspension force control problem of the BBLDCM suspension subsystem can be
equivalent to the stability of the system within a certain period of time on the basis of the basic principle
of the SOSM.

For the SOSM control law, the super twisting control algorithm is chosen. The algorithm does not
need to calculate the derivative of the sliding mode variable and its symbol information, and σ− σ̇ plane
converges to the origin in a finite time. The second-order super-twisting control law is:

u (t) = u1 (t) + u2 (t) (9)

and there are: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u̇1 =
{ −u |u| > 1

−ωsign(σ), |u| ≤ 1

u2 =
{ −λ |σ0|ρ sign(σ), |σ| > σ0

−λ |σ|ρ sign(σ), |σ| ≤ σ0

(10)

where, ω, λ, ρ are the parameters to be set.
Due to the numerous parameters of the super-helical algorithm, the disturbance boundary is

unknown, and the parameter debugging is difficult in practical engineering applications. Therefore,
the generally simplified controller is selected as follows:{

u(t) = −λ1 |σ|0.5 sign(σ) + Z

Ż = −λ2sign(σ)
(11)

where σ = ce + ė, the control law has a simple structure, and the parameters are easy to adjust. The
tuning method is similar to the Ziegler-Nichols tuning method in PID. First, λ2 is set, and the value
of λ2 is increased until the output signal oscillates. Then the value of λ2 is decreased until it is stable.
The value of λ2 is 85%∼ 90% at the time of oscillation. The tuning process of λ1 is similar to λ2 tuning
process.

3.2. Improvement of Second-Order Sliding Mode Displacement Controller

In view of the requirements of the control precision, buffeting and robustness of the BBLDCM
suspension subsystem, the linear control theory is combined with the optimization of the proposed
SOSM displacement controller.

Consider the higher order derivative of the position error:{
Fx = λ1 |σ|1/2 sgn(σ) + λ2σ − Z

Ż = −λ3sgn(σ) − λ4σ
(12)
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Uncertain bounded interference can be expressed as FR=FR0 + kRf(t), which can be transformed
into:

ξR=ε1 +
∫ t

0
ε2dt (13)

where ε1, ε2 is a boundary condition and can be written as:⎧⎪⎨
⎪⎩

|ε1|max =
∣∣∣∣max(F

R0
)

m

∣∣∣∣+ |cv|max +
∣∣∣cḋ∗∣∣∣

max

|ε2|max = max(kRkT)
(14)

where v is the displacement velocity of the suspended rotor. Rewrite Equation (12) into a vector form,
with z = [z1, z2]T, where z1=σ, z2=Z+

∫ t
0 ε2(τ)dτ . Then the bounded condition of ε1, ε2 can be written

as: {
|ε1| ≤

[
Δ1 |z1|1/2 +Δ3 |z1|

]
|ε2| ≤ Δ3+Δ4 |z1|

(15)

where Δ1 > 0, Δ2 > 0, Δ3 > 0, Δ4 > 0. The closed-loop system equation can be obtained by derivation
and arrangement of Z: {

ż1 =
[
λ1 |z1|1/2 sgn(σ) + λ2z1 − z2 + ε1

]
ż2 = −λ3sgn(σ) − λ3z1+ε2

(16)

3.3. Stability Analysis

Construct the Lyapunov function and simplify it to a quadratic form:

V = 2λ3 |z1| + λ4z
2
1 + 0.5z2

2 + 0.5
(
λ1 |z1|0.5 sgn (z1) + λ2z1 − z2

)2

= ζTΠζ (17)

where ζT = [|z1|0.5sgn(z1), z1, z1], ‖ζ‖2 = |z1| + z2
1 + z2

2 , ‖ζ‖2 is the norm of ζ and

Π = 0.5

⎡
⎣ 4λ3 + λ2

1 λ1λ2 −λ1

λ1λ2 2λ4 + λ2
2 −λ2

−λ1 −λ2 2

⎤
⎦ .

When λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0, Π is a positive definite matrix. If z1 �= 0, then V can be
continuously different and has the following relationship:

Lmin (Π) ‖ζ‖2 ≤ V ≤ Lmax (Π) ‖ζ‖2 (18)
where Lmin(Π) represents the minimum eigenvalue of Π; Lmax(Π) represents the largest eigenvalue of
Π.

V̇ =
1

|z1|0.5 ζTΘ1ζ − ζTΘ2ζ + �T
1 ζ +

1
|z1|0.5 �T

2 ζ (19)

where,

Θ1 =
1
2
λ1

⎡
⎣ 2λ3 + λ2

1 0 −λ1

0 2λ4 + 5λ2
2 −3λ2

−λ1 −3λ2 1

⎤
⎦ , Θ2=λ2

⎡
⎣ λ3 + 2λ2

1 0 0
0 λ4 + λ2

2 −λ2

0 −λ2 1

⎤
⎦ ,

�T
1 =

[
λ1 (1.5λ2δ1 − δ2)

(
λ2

2 + 2λ4

)
δ1 + λ2δ2 −λ2δ1

]
, �T

2 = δ1

[
2λ3 + 0.5λ2

1 0 0.5λ1

]
.

From the boundary formula of the interference function:⎧⎪⎪⎨
⎪⎪⎩

1
|z1|0.5 �T

2 ζ ≤ Δ1

|z1|0.5 ζTΩ1ζ + Δ3ζ
TΩ1ζ

�T ≤ 1
|z1|0.5 ζTΩ2ζ + ζTΩ3ζ

(20)
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where,

Ω1 =

⎡
⎣ 2λ3 + 0.5λ2

1 0 0.25λ1

0 0 0
0.25λ1 0 0

⎤
⎦ , Ω2 =

⎡
⎣ Δ2λ1 0 0

0 λ1 (1.5λ2Δ3 + Δ4) +
(
λ2

2 + 2λ4

)
Δ1 0

0 0 0

⎤
⎦

and

Ω3 =

⎡
⎣ λ2 (Δ2 + 1.5λ1Δ1) 0 0.5λ2Δ1

0
(
λ2

2 + 2λ4

)
Δ3 + λ2Δ4 0.5λ2Δ3

0.5λ2Δ1 0.5λ2Δ3 0

⎤
⎦ .

The first derivative of Lyapunov function can be written as follows:

V̇ = − 1

|z1|1/2
ζT (Θ1 − Ω2 − Δ1Ω1) ζ − ζT (Θ2 − Ω3 − Δ3Ω1) ζ (21)

Lyapunov stability criterion V̇ < 0, that is, the condition that σ, σ̇ tends to zero in a certain
period of time is equivalent to the discrimination of the positive definite matrix (Θ1 − Ω2 − Δ1Ω1),
(Θ2 − Ω3 − Δ3Ω1). When λ1, λ2, λ3, λ4 satisfies Eq. (22), (Θ1 − Ω2 − Δ1Ω1 = 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 > 2max
(
Δ1,

√
Δ2

)
λ2 >

3
8
Δ3 +

1
4

√
9
4
Δ2

3 + 8Δ4

λ3 > λ1

Δ1λ1 +
1
8
λ2

1 + λ2

2
(

1
2
λ1 − λ1

)

λ4 >

λ1

[
1
2
λ1

(
λ1 +

1
2
Δ
)2(

2λ2
2 −

3
2
Δ3λ2 − Δ4

)
+
(

5
2
λ2

2 +
3
2
λ2Δ3 + Δ4

)]
p1

2

(
p1 − 1

2
λ1

(
λ1 +

1
2
Δ1

)2
)(

1
2
λ1 − Δ1

) − 1
2
λ2

(22)

where p1 = λ1

(
1
4λ2

1 − Δ2

)
+ (1

2λ1 − Δ1)(2λ3 + 1
2λ2

1).
Simplify ζT(Θ2 − Ω3 − Δ3Ω1)ζ to get:

ζT (Θ2 − Ω3 − Δ3Ω1) ζ = ηTϑ1η + zTϑ2z (23)

where,

ϑ1 =

⎡
⎢⎢⎣

λ2

((
λ3 + 2λ2

1

)− Δ2 − 3
2
λ1Δ1

)
−
(

2λ3 +
λ2

1

2

)
Δ3 −1

2

(
λ2Δ3 +

λ2
1

2

)
Δ3

−1
2

(
λ2Δ1 +

1
2
λ1Δ3

)
1
2
λ2

⎤
⎥⎥⎦ ,

ϑ2 =

⎡
⎢⎢⎣

λ2

(
λ4 + λ2

2

)− (
λ2

2 + 2λ4

)
Δ3 − λ2Δ4 −λ2

(
λ2 +

1
2
Δ3

)

−λ2

(
λ2 +

1
2
Δ3

)
1
2
λ2

⎤
⎥⎥⎦ .

To verify whether matrix ζT(Θ2 − Ω3 − Δ3Ω1)ζ is positive definite, the inequality conditions to be
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satisfied are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2 > 2Δ3

λ3 >

(
λ2Δ1 +

1
2
λ1Δ3

)2

2λ2(λ2 − 2Δ3)
+

(
Δ2 + 3

2Δ1λ1

)
λ2 − 2

(
λ2 − 1

4
Δ3

)
λ2

1

λ2 − 2Δ3

λ3 >

(
λ2Δ1 +

1
2
λ1Δ3

)2

2λ2 (λ2 − 2Δ3)
+

(
Δ2 + 3

2Δ1λ
)

2
+

λ2 − 2
(
λ2 − 1

4Δ3

)
/42

λ2 − 2Δ3

λ4 > λ2

[
λ (λ2 + 3Δ3) +

1
2
Δ2

3 + Δ4

]
λ2 − 2Δ3

(24)

In summary, when Equations (23) and (24) are established, (Θ1 − Ω2 − Δ1Ω1), (Θ2 − Ω3 − Δ3Ω1)
is a positive definite matrix; the stability condition V̇ < 0 is established; and the system in Eq. (16)
converges in a finite time. From Eq. (17):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ζ‖max = V 1/2/L
1/2
min (Π) ≥ ‖ζ‖ ≥ V 1/2/L

1/2
max (Π) = ‖ζ‖min

‖ζ‖ ≥ |z1|1/2

‖ζ‖ ≥ ‖ζ‖2
min / ‖ζ‖max

‖ζ‖2 ≥ |z1|1/2 L
1/2
min (Π) /Lmax (Π) V 1/2

‖ζ‖2 ≥ 1/Lmax (Π)V

(25)

Therefore, {
ζT (Θ1 − Ω2 − Δ1Ω1) ζ ≥ λmin (Θ1 − Ω2 − Δ1Ω1) ‖ζ‖2

ζT (Θ2 − Ω3 − Δ3Ω1) ζ ≥ λmin (Θ2 − Ω3 − Δ3Ω1) ‖ζ‖2 (26)

Find the first derivative of the Lyapunov function with respect to time:

V̇ ≤ −γ1V
1/2 − γ2V (27)

where, {
γ1 = λmin (Θ1 − Ω2 − Δ1Ω1)λ

1/2
min (Π) /λmax (Π)

γ2 = λmin (Θ2 − Ω3 − Δ3Ω1) /λmax (Π)
(28)

Solve the following differential equations,⎧⎨
⎩

V̇ = −γ1V
1/2 − γ1V

V (0) = V0

V (Tc) = 0
(29)

Thus, Tc = 2
γ2

ln(1 + γ2/γ1V
1/2
0 ), and Eq. (16) can approach the equilibrium point at Tc certain time.

4. SIMULATION AND RESULT ANALYSIS

The direct suspension force control strategy based on SOSM control and the DSFC strategy based on
PID control are based on MATLAB/Simulink simulation platform to build a simulation model, perform
simulation comparisons by keeping the set parameters unchanged and setting radial interference and
radial interference-free, respectively, and then carry out related research.
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Figure 7. Diagram of DSFC for suspension subsystem of BBLDCM.

4.1. Structure Block Diagram of Suspension Control Subsystem

The block diagram of the DSFC of the suspension system of the magnetic suspension brushless DC
motor is shown in Fig. 7. In the figure, x∗ and y∗ are the given rotor displacements, respectively, and x
and y are the motor rotors x and y actually detected by the eddy current sensor. Fxg, Fyg are the given
levitation force, and Fxf , Fyf are the actual radial suspension force of the rotor. The displacement
errors x∗ − x and y∗ − y are generated by the SOSM controller. The suspension force errors are output
by the suspension force two-point regulator to the switching signal of the suspension winding. The
conducting phase of the suspension winding is selected according to the rotor position signal. Finally,
the suspension subsystem of the motor is controlled by the power converter.

4.2. Analysis of Simulation Results without Radial Interference

Figure 8 shows a simulation result of rotor displacement control by direct suspension force control with
improved SOSM. After adding the improved SOSM, the time for the motor rotor to return to the
center position is 0.25 s, and it can be seen that the rotor does not show overshoot during the dynamic
displacement. After the rotor moves to the center position, it is shaken between −0.02mm ∼ 0.012 mm
from the center position, and the maximum jitter amplitude is 0.032 mm.

Figure 9 shows the results of simulation of rotor displacement based on PID direct suspension
force control. When the rotor is operated under the direct suspension force control based on PID, the
maximum displacement amplitude of the x-axis in the initial rotor is −0.06 mm, and the maximum
displacement amplitude in the y-axis is 0.05 mm. After 0.3 s, the rotor is stably suspended between
−0.025 mm and 0.03 mm, and the maximum jitter amplitude is 0.055 mm.
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Figure 8. Rotor position with SOSM-DSFC method. (a) x-axis rotor displacement. (b) y-axis rotor
displacement.
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Figure 9. Rotor position with PID-DSFC method. (a) x-axis rotor displacement. (b) y-axis rotor
displacement.

In general, compared with the direct suspension force control strategy based on PID control, the
rotor damping suppression performance is improved by 51% based on the improved second-order sliding
mode direct suspension force control, and the dynamic response performance of the suspension rotor is
also greatly improved.

4.3. Analysis of Simulation Results under Radial Interference

In order to verify the robust performance of the proposed control scheme, radial disturbance force is
applied to the suspension control subsystem to observe the displacement trajectory of the rotor under
external disturbance.

Figure 10 shows the radial suspension force and displacement trajectory of the rotor under the
control of direct suspension force based on PID. Fig. 10(a) shows x-axis rotor displacement trajectory.
After the suspension rotor is stably operated, the radial interference force in the x-axis is applied at 1 s.
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Figure 10. Rotor position and suspension with PID-DSFC method. (a) x-axis rotor displacement. (b)
x-axis suspension force. (c) y-axis rotor displacement. (d) y-axis suspension force.
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Figure 11. Rotor position and suspension with SOSM-DSFC method. (a) x-axis rotor displacement.
(b) x-axis suspension force. (c) y-axis rotor displacement. (d) y-axis suspension force.

Under the action of radial force, the rotor controlled by direct suspension force is eccentric to 0.12 mm
from the center position and restores stability within 0.3 s, with a small overshoot. Fig. 10(b) is the
corresponding suspension force waveform after radial interference. After receiving the interference force,
the corresponding suspension force value increases. Fig. 10(c) and Fig. 10(d) show the y-axis suspension
force and displacement after the rotor is disturbed in the x-axis. After the x-axis is disturbed, the rotor
y-axis is slightly affected.

Figure 11 shows the displacement trajectory and suspension force waveform of the rotor based on
the second-order sliding mode direct levitation force control under radial disturbance. Fig. 11(a) shows
the x-axis rotor displacement trajectory. Under the action of the x-axis interference force, when the
rotor is operating stably, the system axis is used as the reference offset to not exceed 0.07 mm, which is
42% lower than the displacement deviation based on the PID direct suspension force control strategy,
indicating that the rotor vibration problem has been improved. It returns to the center position at 0.25,
stabilizes the suspension, no overshoot, and has a 33% increase in dynamic response speed compared to
the PID method. Fig. 11(b) shows the suspension force in the x-axis of the rotor. Under the influence
of interference, the corresponding suspension force increases.

A comprehensive analysis of Figs. 8–11 shows that the SOSM controller based on the DSFC strategy
further enhances the robustness of the suspension subsystem, effectively reduces the external suspension
to the stable suspension of the rotor, and improves the control accuracy of the suspension subsystem.

5. CONCLUSION

Aiming at the shortcomings of DSFC method for BBLDCM, a new type of DSFC strategy based on
improved SOSM control is proposed. The mathematical model of SOSM controller is deduced, and the
new model is clarified. The working principle and adjusting process of the new direct suspension force
are expounded. Results show that the improved second-order sliding mode controller is based on the
PID direct suspension force control strategy, which further enhances the robustness of the suspension
subsystem, effectively reduces the influence of external disturbance on the stable suspension of the rotor,
and improves the control accuracy of suspension subsystem.
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