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Monitoring of Multicell Converter and DC Motor

Nabila Adjissi’» * and Belkacem Sait?

Abstract—This paper presents a hybrid sliding mode control of a multicell power converter. It takes
into account the hybrid aspect of the conversion structure which includes the converter continuous
and discrete states. The idea is based on using a hybrid control and an observer-type sliding mode
to generate residuals from the observation errors of the system by including different types of faults
in the transition between modes. The case when a DC motor is coupled to the multicell converter is
also considered. In this case, it is shown that under certain admissible assumptions, the voltages across
the capacitors and the speed of the motor can be acceptably estimated. The simulation results are
presented at the end to illustrate the performance of the proposed approach using stateflaw in sumulink
(matlab). The developed method is illustrated in an example of the DC motor supply via a three cell
converter which is a real example of an SDH characterized by continuous and discrete variables.

1. INTRODUCTION

Power electronics have been evolving through the last decade due to the development of semiconductor
power components and new systems of energy conversion [1].

Among these systems, multicellular converters, which appeared at the beginning of the 1990s [2, 30],
are based on the association in series of the elementary cells of commutation. During the last decade,
these systems have become more and more attractive to industrial applications, especially in high-power
applications [3].

Moreover, modeling is a very important step for control laws and observers synthesis. In literature,
several approaches have been considered to develop methods of control and observation of multicell
converters. Initially, models have been developed to describe their instantaneous [4], harmonic [5], or
averaging [6] behaviors.

To benefit as much as possible from the large potential of the multicellular structure, an appropriate
distribution of the voltages crossing each cell is needed.

These voltages are generated when a suitable control of switches is applied in order to obtain a
specific value. The control of switches allows to cancel the harmonics at the switching frequency and to
reduce the ripple of the chopped [11]. Some control laws have been proposed [8] and [9].

Anyway, the knowledge of capacitor voltages is always needed. Furthermore, it is important to
note that the use of physical extra sensors in order to measure such voltages increases the cost and
complexity of the system. That is why its estimation by means of an observer becomes an attractive
and economical solution.

Different observer based methods have been developed for nonlinear systems such as [7] which talks
about the sliding mode control, adaptive observers [21], observers by input-output injection [10], higher
order sliding mode observers or finite time observers [16].

Both DC and AC motors have been extensively used in control systems, but each has its own
characteristics. The main advantages of DC motors are easy control and wide adjustable range.
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Therefore, DC motors are often used in a variety of industrial applications such as robotic manipulators,
where a wide range of motions are required to follow a predetermined trajectory under variable load [22].

In literature, many researches try to find a solution for the problem of observability of a hybrid
system such as [26], from these solutions the sliding mode observer to control a DC motor [11], fault
tolerant control for multicell converter four quadrants drive, [12,13] binary control of converter [14],
adaptive-gain second-order sliding mode observer [15], robust finite time observer [16,17], adaptative
observer for multicell chopper [18, 19].

For the first-order sliding modes, it is common to deal with the issues of stability, robustness, and
convergence rate of the equilibrium by means of a Lyapunov approach [20]. For higher sliding mode
and finite-time observers, the proof of stability is usually done using geometric homogeneity-based
methods. Hence, the estimation of the convergence time and the study of robustness properties may be
problematic in [16].

In this paper, multicellular converter can be used as a power interface between a sliding mode type
control and a DC motor. We have used stateflow matlab to show the good functioning and to also
show the faults that can happen when the program is running; for example a transitions fault or the
transition blocked in the same mode which can be problematic must be salved.

2. SYSTEM MODELING

2.1. State Representation

The multicell converter consists of a series combination of p elementary switching cells and one cell being
composed of two complementary switches. It has secondary sources produced by floating capacitors
showing in Figure 1 [9]. It is a variable structure system that changes during operation. It is
characterized by the choice of supply voltage F and a switching logic. Compared to conventional
converters, it provides a greater number of voltage levels and reduces the harmonic content of the
output signals. In comparison, a conventional inverter (H-bridge) is a converter which has two cells
providing only two voltage levels. This structure has additional advantages: the possibility of modular
construction and the use of components of general circulation. Safety and proper operation of the
power converter are directly dependent on the proper distribution of voltages across each cell [25,23].
Therefore, it is very important to ensure the balance of the voltages across floating capacitors. The
characteristics of the converter ensure this balance by acting directly on the control signals of its switches.

The system includes discrete variables (control of semi-conductor components) and continuous ones
(building tension, current, and voltage output). A modeling representation of hybrid state can be used.

\Y 3y )
- /,’ .-"".—z r - -
& & & ~ o
(] [ ]
P 1 I )
E(Z) - vl T = p——

\ :f’ R
. A . P A
o = \
.I
i k. o\

Figure 1. Topology of a converter with p independent commutation cells connected to a DC motor.
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The behavior of multicell converter associated with a DC motor is governed by the following differential
equations:

J w(t) = Tu(t) — Tr(t)
Ton(t) = kem I(t) (1)
T.(t) = f w(t)

\ T, = Cte

( T, : motor torque
T, : resistant torque

with T, : useful torque
\ T}, : torque loss
-1
: R E kem  Vei(t)
I(t) = _fl(t) + 7w w(t) — £ 7 (wit1 — ;)
. I
and Ve(t) = — (i1 — i) (2)

w(t) = El(t) — i,w(t) - T,

J J
y(t) = 1(t)
where [ is the load current, R the resistance, L the inductor, ¢; the ith capacitor, V,; the voltage of the
ith capacitor, and E the voltage of the source. w, k, ke, f, and j represent respectively the speed,
electromechanical coefficient torque, constant of motor, generally k.,, = k, the viscosity coefficient, and
the total inertia of the DC motor, and u; is the switch states.

S € {0,1} is the signal for controlling the switches of the ith cell. The control signal S; is equal
to 1 when the switch of the upper part of the ith cell is conductive and equal to 0 when it is on the
contrary. The output voltage can be expressed by the following relationship:

p—1
Vs :E'SerZV&(Sz‘—Sz‘H)
i=1
A multicellular converter with p cells is defined with 2P switching modes and (p + 1) voltage levels
available at the output.

Each cell ¢ must support V.; — V.;_1 voltage for i = (1,...,p — 1). To obtain a fair distribution

power of voltage on each cell (p — 1) references are chosen such that:

E
‘/cirelegu /L:17°°°7p_1
Assuming that only the load current I can be measured, it is easy to represent systems 1 and 2 as a

hybrid system. The dynamics of the converter is given by:

&= A(u)x + B(u)
ey 3
where z = [I, V1, ..., Vep—1,w]? is the continuous state vector, and u = [u1, ug, ..., up]7 is the switching
control signal vector which takes only discrete values. The matrices A(u), B(u),C are defined as:
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B(u) = [fup o...o]T

C=1[10..0

After we represent the system with the differential equations, we will use the hybrid automata for the
graphic modeling.

2.2. Hybrid Automata Modeling of Three Cells Converter

A hybrid automata is presented basically as a finite state of automat with differential equations
associated with its discrete states. Thus, the overall condition of a hybrid automata, at a given time, is
defined by a pair (¢, X). ¢ represents the status (discrete status) and X the value of the state vector.
This global state is changed for two reasons. Crossing a discrete transition, which abruptly changes the
situation and then often the evolution of the continuous state or directly the value of the state (jump).
This crossing happens on the occurrence of an appropriate event and/or if an event condition becomes
true; the temporal evolution affects X according to the differential equation associated with the current
situation. This situation remains unchanged [28, 27].

The advantage of this representation is its simplicity. Describing unambiguously possibility of
System Dynamic Hybrid (SDH) developments, it will be the basis of the analysis to establish formal
properties. At every moment, a single discrete state is active, so there is only one set of equations (one
continuous model). The hybrid nature is marked by the fact that a discrete event may cause the change
of state, so switching the equations, but reaching a threshold value on a continuous variable can also
lead to a change of discrete state.

The hybrid system is completely described by eight elements as follows [25, 27]: {Q, X, Init, F, Xq, H,G, R}
with

e Q={q1,9,q3,...,} the set of discrete states.

e X = R" are continuous states.

e Init C () x X is a set of possible initial conditions.

e Fy(): @ x X — R"is the vector field associated with each discrete state; Fy;(X) = A(q)X +b(q).
e Xq:Q — P(X) associates with an invariant field for the discrete state q.

e H C Q x @ is the set of possible transitions in the automata (T; ;).

e GG: H — 2X the constraint in the continuous field for validating a transition e and H, with e being
one possible transition.

e R:G(e) — P(X) is the reinitialization relation of continuous variables at the time of a discrete
transition.

2.3. Application of Hybrid Automata for the Three Cells Converter

We distinguish eight modes given by @ = {q1,q2,...,qs}, and each mode is defined in the space
XqieR3, q;eQ, where v = Ve, Vea, I, w]" is the state vector of the system. The transitions T;; have
been derived in order to bring the state vector X inside a prescribed region around desired references
Xref = [Vief1 Vier2 Iref wreg]T. With initial values Xo = [0 0 0 0]7 and initial state Qp = gs as shown
in the following Figure 2 [24,27], we can resume the initial form of the system.

Table 1 gives different values of switches and different possible configurations, called mode g;.

After modeling, diagnosis must take place using an observer in the first place and the faults detection
in the second place.

2.4. Diagnosis the Fault in Cell Converter

The approach is based on using the observer of sliding mode to detect and isolate fault cell type. To
generate the residuals, we begin with determining the dynamic behavior of the state variables of the
converter, then they are compared to those obtained by the observer [10, 11].
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Figure 2. Hybrid automata for three cells converter.

Table 1. The different states of cells.

Mode ¢; | ug | us | uq
q1 0010
q2 0 0 1
qs3 0 1 0
q4 0 1 1
qds 1 0 0
Q6 1101
qr 11110
qs 1 1 1

2.5. Application of Sliding Mode

Studies show that we cannot have the observability of floating voltages V.1 and V.o at the same time
for the three cell converter, so the instantaneous model is not valid for building an observer that can
reconstruct state variables of the converter. To remedy the problem of observability, we use a compact
model of the converter so that the system can be observable [10]. Therefore, we talk about an observer
based on sliding mode [31]. The principle of the latter is to force the dynamics of a system of order n
to converge to an interval, called sliding surface [27].

In the case of observer of sliding mode, the dynamics concerned are those of the errors of observation
X = X — X. From their initial values X (0), these errors converge to the equilibrium values in two steps:

In the first step, the path of the observation errors move towards the sliding surface on which the
error between the output of the observer and the output of the real system (measurement) § = ¢ —y
are zero. This step, which is usually very dynamic, is called reaching mode.

In the second step, the trajectories of the observation errors slide on the sliding surface defined by
g = 0. This later mode is called sliding mode [25].

Using the general compact form of a three cell converter, we can construct the observer that takes
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the set of observation equations:
Xi(t) = Al@)X(t) + By (a,0,9) + Hi (4, X) + @ (y ~ 9) @
§(t) = CXi(t), i=1,2
pP=3; 1 =uz —uy, g =uz—uz C=1[010]

A . 0 0 0 1 =l . .
where X; = | [ |; A(gi) = [ —% 0]? Hi(g,x) = 7|0 X ¢Vei| and Bi(q,u, ) =
W L J=15#
. Qic%. ]
%I—I—%u;),—%w
ki — L

The gain of observation is written as A = [A; Ao A3]T, S = (I — I) is the switching surface.

~

X I o
Vey = qr— + Agsign (I — I)
C1

: I .
Vey = ga— + Agsign (I _ I)
(&) .

X RA kem ~ Vc VC . ~
I:_ZI_ I w(t)—(th—QQTQ—F%u;g—l—)\g&gn (I—I)
. k. .
w(t) = 31(75) — § 0(t) + Agsign (I — I)

)\1 = %L (U2 - ul)
we have ¢ \o = 23[ (ug —up) with Af = f(2,u) — f(z,u).
)\3 > |Af3|max
The goal of the gain A3 is to ensure the attractivity of the sliding surface. During this time interval,
the intermediate voltage observed remains unchanged.
Gains A1, A2, A3 and A4 are given in order to impose the dynamics of the error of observation in
sliding mode [13]. The theoretical dynamics of evolution of the tension with terminals of the floating
capacitor depends on the current of maximum loading, and the value of the latter is:

dv |1

R max 6
dt C (6)
The time-constant 7 must be fixed at
3L 7)
T

It is noted that capacitors voltages and load current converge quickly towards their actual values.
However, the convergence of the capacitors voltages is slower than load current [29]. The sliding surface
converges consequently towards zero and remains there.

2.6. Residual Generation

The main idea is to generate residues which reflect inconsistencies between operation of nominal and
defective system. Defects are present when the distribution of residual sequence is changed. In this
case, one residue will be used only to detect a possible blockage (On and off) of switches [25,11, 13].

"L AX;
2%

=1 ref

R = with n =4

Xi= [‘/cl - ‘/cl_obsVCQ - VcQ-obsI - Iobsw - wobs]
And
Xref = [V;”eflv;"efQIrefwref]
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Figure 3 gives the diagram of fault generation and detection in a multicell converter. The faults F; are

affected in residue generation.

Fault
generation
F1¢ F; ¢ Fsl
Multicell
— converter

U
Regulator

[’ Hybrid

observer

Residue
generation

Figure 3. Block diagram of fault generation and detection in multicell converter.

3. SIMULATION RESULTS

The system is constitute by a three cell converter, with two load capacitors associated with DC motor,
which is represented by a resistance R, an inductance L, and an electromagnetic force e. Table 2 shows

the used parameters.

Table 2. The deferent system of parameters.

R 1.8

L 1.5mH

E 30V

k 1.58 NmA

f 5Nm/rd/s

7 79e-8 kgm?

Cl == CQ 40 LLF

Vier 10V
Vief2 20V
Ier 12A

T, Os

3.1. Functioning without Fault

For a simulation time t = 0.3s. The results of simulation are show in Figures 4 and 5.
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Figure 4. Evolution of state variables of the converter observed. We notice that we have obtained the
same results as the work done in [11].
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Figure 5. Evolution of output voltage V.

Figure 6 shows the evolution of the residue signal which converges to zero showing the rehabilitee
of the observer used.
3.2. Functioning with Fault

The approach is based on the use of an observer for detecting and locating the faulty cell; therefore, we
must test every possible case of errors between the estimated variables and the system exits, which is a
residue generator. Table 3 gives the effects blocking switches on the states of the system.

3.3. Fault Discrete of System Functioning

There are three possible scenarios for a fault:
e Blocked of a switch;
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Figure 6. Evolution of the residual R, the residue is zero in the absence of fault [25].

Table 3. Signature of operation with fault for blocking switches.

blocking switches Effects on the states of the system
Ve | Ve | 1 w
1 Lt 1
U
' 0 R !
I N 1
U
’ 0 R !
1 EERE 1
U
’ 0 R !
with: l: ( c'lecrease.
T: increase.

e Non transition,

e Transition to a non successor mode.

3.4. Blocked of a Switch

For example, the blocked switch, us = 0, and the hybrid automata model of the converter will be
reduced to 4 modes. The introduction of the blocking of us = 0 from ¢t = 0.1s to t = 0.2s gives the
results of simulation as follows. Figure 7 shows the evolution of the state variables of the converter,
and Figure 8 shows the evolution of the output voltage V. Figure 9 presents the evaluation of modes
which shows only one mode active go.

Figure 10 clearly shows that the residue signal is deferent from zero in the time interval [0.11s
0.21s] due to blocking the switch ug = 0.

3.5. Non-Transition

We consider blocking the functioning of the system in mode ¢gg from ¢t = 0.1s to ¢t = 0.2s. The evolution
of the variables of state and output voltage Vs are shown respectively in Figure 11 and Figure 12.
Figure 13 indicates that the residue is not zero in the interval from ¢ = 0.1s to t = 0.2s, indicating
the appearance of the default due to no transition.
Figure 14 shows the state of each cell during the non-transition fault and therefore shows cell 2
and blocked tomporairement 0. Figure 15 presents the state of the switches, which shows blocking the
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Figure 7. Evolution of the state variables of the converter due to blocking the switch ug = 0. We
notice that we obtained the same results as the results obtained on [28] showing in the next figure.
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Figure 8. Evolution of the output voltage V; due to blocking the switch ug = 0.

functioning of the system in mode gg indicated by the states of uy = 1, ug = 0, ug = 1, in the time
interval [0.11s 0.21s] (blocking mode does not mean blocking switches).

3.6.

Transition to a Non-Successor Mode

Each transition Tj; € H is associated with a condition of crossing. The transition cannot be crossed if
the condition is true.

There are two possible cases for this fault: Transition to a non-successor mode with blocking and

transition to a non-successor mode without blocking.

Transition to a non-successor mode with switch blocking

For fault transition from mode ¢gs to mode g2 which is not successor at ¢ = 0.1s, the results the
functioning the system are shown in Figures 16 and 17.

Figure 18 indicates that the residue is not zero on the interval from ¢t = 0.1s to t = 0.2s, indicating
the appearance of the default due to a transition to mode not successor.
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Figure 10. Evolution of the residue due to blocking the switch us = 0. When the switch w3 is blocked
in 0 we have same results as [25].

Figure 19 presents the state of the switches, which shows the transition to not successor at
t = 0.1254 s, indicated by the change of more than one state of switches from ¢g: u; = 1, ug = 1,
uz =1to g up =1, upg =0, uz =0.

e Transition to a non-successor mode without blocking
It is the case where the fault is a fault of condition of transition from mode g7 to mode gg. Figure 20
shows the evolution of variables of state of the converter in the event of fault transition. The changes
of the state variables are shown in Figure 21 and the output variable in Figure 22.

The residual signal presented in Figure 23 shows that there is a fault in the system functioning in
the time interval [0.11s 0.21 s].

We can see clearly that the localization fault of switches does not detect any problem of function
where both of the residual signal and detection signal show that there is a fault. Then we find a
solution to this problem by creating a localization bloc that can detect and localize any possible fault
of transition.
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With this block of detection of fault transition we can find that there is a fault transition in mode
6, but the problem is how we can find the non-successor mode that sends the transition.

To find a solution, we create a block which checks all origins of coming transition and compare
with the successors modes; if the coming transiting is from a successor mode, the signal is equal to 0,
and the block reserves the origin mode of coming transition, else equal to 1 and also reserves the origin
mode of the coming transition. By this signal we can find the origin of the fault transition.

With Figure 24 we can find exactly where is the fault transition in this case, and mode 7 is the
non-successor mode.

With this signals we can detect, localize, and find where the fault is in the system if it exists. In
this article, we inject deferent types of fault and observe that with the detection and localization blocks
we can detect and localize any possible fault whatever its nature.
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4. CONCLUSION

In this paper, a hybrid modeling of the converter of three cells associated with DC motor is proposed.
Then an observer based on sliding mode is presented to estimate the voltages of the capacitors C; and
Cs. We discuss a hybrid approach for fault diagnosis which is based on the generation of residues with
an observer. The simulation results validate the used method. Furthermore, it has been shown that the
DC motor speed coupled to the multicell consider can be estimated with an acceptable error because
the dynamics of the electrical part (multicell chopper) is much faster than that of the mechanical parts
(DC motor). Some additional results show an observer for partial state observation and the conditions
under which it can be designed.
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