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Magnetically Controlled Electromagnetic Tunneling through
Symmetric Trilayer Containing Ferrite Layer

Sergey A. Afanas’ev*, Irina V. Fedorova, and Dmitry I. Sementsov

Abstract—Tunneling of microwave radiation through a symmetrical trilayer ENG-ferrite-ENG is
considered, where ENG refers to a medium of negative permittivity. Such a trilayer is an example of a
magnetically controlled structure that under certain conditions allows a complete (or perfect) tunneling
of the incident radiation. In this paper, the general conditions of perfect tunneling are analyzed, and
the transmissive properties of the structure are studied numerically. It is demonstrated that a broad
passband, in which the structure is almost completely transparent, may be obtained both above and
below the frequency of the ferromagnetic resonance. The bandwidth can be effectively controlled by an
external field that is magnetizing the ferrite layer.

1. INTRODUCTION

Nowadays, artificial composites, known as metamaterials, are engineered to have a wide diversity
of electromagnetic properties [1–3]. The material constants of metamaterials — permittivity ε and
permeability μ — can be either positive or negative. Metamaterials include double-negative (DNG)
media with ε < 0, μ < 0, and single-negative (SNG) media, which are divided into ε-negative, or
ENG (ε < 0, μ > 0) and μ-negative, or MNG (ε > 0, μ < 0). Electromagnetic waves in SNG media
are evanescent, so that the single SNG layers are opaque. However, the lossless multilayer structures
containing SNG layers can be totally transparent under certain conditions. This phenomenon is known
as the complete (or perfect) electromagnetic tunneling [3–5]. Typically, structures for the perfect
tunneling are composed of alternating layers of ENG and MNG media, or DNG and DPS (double-
positive) media [3–8], although many other combinations have been proposed in recent years [9–17].
One of the simplest combinations of layers is a symmetrical trilayer, for which the conditions of total
transmission can be easily obtained analytically using the transfer matrix method [6, 7, 13, 14].

The perfect tunneling is a resonant phenomenon, which is associated with the enhancement of
surface waves at the interfaces of the layers with contrast properties [5, 15]. Therefore, the layers
must be composed into the structure in such a way that certain resonance conditions are met as
precisely as possible. This suggests that it is possible to achieve the required correlations between
the parameters of individual layers using external magnetic field. For microwaves, we suggest obtaining
a magnetically tunable structure by inserting a layer of ferrite that is operated near the ferromagnetic
resonance frequency. In this paper, we show that the tunneling of the microwave radiation through such
a structure can be near-perfect if the low loss ferrite is used. As far as we know, the structures for the
perfect tunneling containing ferrite layers have not been analyzed in current literature.

We consider a symmetric trilayer ENG-ferrite-ENG, where the ferrite layer is magnetized in-plane
by an external magnetic field. The ferrite is an MNG medium in the cutoff region, i.e., at the frequencies
of interval fr < f < far, where fr and far are the frequencies of the ferromagnetic resonance and anti-
resonance, correspondingly. In the regions f < fr and f > far, the ferrite appears as DPS material.
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Accordingly, first we examine the resonant conditions of the perfect tunneling for symmetric lossless
trilayers ENG-MNG-ENG and ENG-DPS-ENG. The required conditions were obtained in [13, 14] via
the transfer matrix method. In contrast with [13, 14], we obtain and analyze all possible solutions
of the corresponding equations in their most general form. Secondly, we apply these solutions to the
lossy trilayer ENG-ferrite-ENG with a purpose to determine the optimal conditions for the near-perfect
tunneling through the structure.

2. PROBLEM FORMULATION

The geometry of this problem is illustrated in Fig. 1 in the Cartesian coordinate system. We consider
a symmetric trilayer structure placed in air. The thicknesses of its layers are d1/d2/d1. Each layer is
homogeneous and infinitely extended in the directions of x- and z-axes.

Figure 1. Geometry of the problem.

The outer layers 1 and 3 represent an ENG medium of negative permittivity. Further we assume that
ENG medium is isotropic and has the permeability μ1 = 1. For its complex permittivity ε1 = ε′1 − iε′′1 ,
we choose a simple Drude model of dispersion [9–11, 14–16, 18]:

ε1 = 1 − ω2
p

ω (ω − iΓ)
, (1)

where ω = 2πf is a circular frequency; ωp is the plasma circular frequency; and Γ is the damping
frequency. For the constant parameters in Eq. (1), we select the values of fp = (ωp/2π) = 7 GHz and
Γ = 10−3ωp. According to Eq. (1), the permittivity ε1 has a negative real part ε′1 < 0 when f < fp.

The inner layer 2 is a ferrite that is magnetized to the level of saturation by an external magnetic
field H0 that is applied along z-axis. The magnetic gyrotropy of the ferrite is induced via the magnetizing
field.

At microwave frequencies, the ferrite material is characterized by the scalar complex permittivity
ε2 = ε′2 − iε′′2 and the permeability tensor [19]

μ̂ =

(
μ iμa 0

−i μa μ 0
0 0 1

)
, (2)

μ =
ωH(ωM + ωH) − ω2

ω2
H − ω2

, μa =
ω ωM

ω2
H − ω2

,

where ωH = γμ0H0, ωM = γμ0M0, γ is the gyromagnetic ratio; μ0 is the vacuum permeability; and
M0 is the saturation magnetization. To account for the magnetic losses, we replace parameter ωH in
Eq. (2) with ωH−iγΔH, where ΔH is the ferromagnetic resonance linewidth. In our calculations we use
parameters of ferrite material with extremely low magnetic losses (single crystal films of yttrium-iron
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garnet): M0 = 147 kA/m, permittivity ε′2 = 14.8, dielectric loss tangent tgδ = ε′′2/ε′2 = 2 · 10−4 and
ΔH = 80 A/m [20].

We assume that a plane transverse (TEM) electromagnetic wave propagating along y-axis is
normally incident onto the structure (see Fig. 1). It has the electric vector E parallel to z-axis, and its
magnetic vector H is directed along x-axis. It is known [19] that for such a polarization of the electric
field, when E vector is parallel to the H0 vector, the ferrite is characterized by the scalar effective
permeability

μ⊥ = μ − μ2
a/μ = μ′

⊥ − iμ′′
⊥. (3)

The value of μ⊥ is strongly dependent on the frequency ω and the magnetic field H0 in the vicinity
of ferromagnetic resonance. Thus, the structure ENG-ferrite-ENG can be tunable with respect to the
transmission of microwave radiation. The real μ′

⊥ and imaginary μ′′
⊥ parts of the effective permeability

in Eq. (3) are shown in Fig. 2 as functions of frequency. The function μ′
⊥(f) has two zeros: the first is

at the ferromagnetic resonance frequency that is determined as [19]

fr = (1/2π)
√

ωH(ωM + ωH), (4)

and the second one is at the point of antiresonance far = (1/2π) (ωM + ωH). The effective permeability
μ⊥ is negative at the frequencies from fr to far and positive outside of this interval.

Figure 2. Real and imaginary parts of the effective permeability (3) versus frequency at H0 = 20 kA/m.

Throughout the paper, we use the values of H0 that give far < fp. In such a case, the ENG-ferrite-
ENG structure may be either ENG-MNG-ENG if fr < f < far or ENG-DPS-ENG if the frequency
belongs to the interval f < fr or far < f < fp. Further, we analyze both combinations in order to
detect the possibility of an extremely high transmission of the incident electromagnetic energy through
the structure, i.e., the near-perfect tunneling. Due to the small value of resonance linewidth ΔH, the
magnetic losses of the ferrite are significant only in the neighborhood of fr frequency (see the plot
of μ′′

⊥(f) dependence in Fig. 2). The dielectric losses of the ferrite and the ENG material are small
enough, so the conditions of the perfect tunneling obtained for lossless structures can be used. In the
next Section 3, we derive and analyze such conditions, assuming the structure to be lossless.

3. CONDITIONS OF PERFECT TUNNELING

The conditions of the perfect tunneling can be derived using the following procedure. Solving the
boundary problem of electrodynamics for a given geometry, a unimodular field-transfer matrix of the
structure can be obtained [18]. Assuming that wave fields are proportional to exp(iωt), the transfer
matrices for the individual layers are written as

Nj =

⎛
⎜⎜⎝

cos(kjdj) i
kj

k0μj
sin(kjdj)

i
k0μj

kj
sin(kjdj) cos(kjdj)

⎞
⎟⎟⎠ , j = 1, 2, 3. (5)
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Here j denotes the number of layer according to Fig. 1; k0 = 2πf/c is the wave number in vacuum; c is
the velocity of light in vacuum; the wave numbers kj for SNG media are imaginary and equal to

kj = −ik0

√
|εjμj |, (6)

and they are real for DPS media:
kj = k0

√
εjμj. (7)

The transfer matrix of the symmetric trilayer structure under study is the product of the respective
transfer matrices for the individual layers, G = N1N2N1. Using the elements of matrix G, both the
amplitude reflection coefficient

r =
G11 + G12 − G21 − G22

G11 + G12 + G21 + G22
(8)

and the amplitude transmission coefficient

t =
2

G11 + G12 + G21 + G22
(9)

can be determined. Then the transmittance (energy transmission coefficient) can be calculated as
T = |t|2. The tunneling of the incident electromagnetic wave is perfect when T = 1. At the same time,
in the absence of absorption, the reflectance R = |r|2 must be equal to zero. Since the structure is
placed in air, we determine that G11 = G22. Thus, in accordance with Eq. (8), the criterion of perfect
tunneling is obtained by equating the non-diagonal elements of matrix G to zero: G12 = G21 = 0.

3.1. Symmetric Structure ENG-MNG-ENG

Consider the lossless symmetric trilayer structure with the material parameters (−ε1, μ1)/(ε2,−μ2)/
(−ε1, μ1), where ε1,2 and μ1,2 are real positive numbers. The elements of the transfer matrix G obtained
for such a trilayer are the following:

G11 = G22 = cosh 2ϕ1 cosh ϕ2 − 1
2

(
Z1

Z2
+

Z2

Z1

)
sinh 2ϕ1 sinhϕ2, (10)

(
G12

G21

)
=

i

2Z2

(
1

−1/Z2
1

)⎡⎣ 2Z1Z2 coth ϕ2 sinh 2ϕ1 +
(

1
−1

)
(Z2

1 − Z2
2 )

−(Z2
1 + Z2

2 ) cosh 2ϕ1

⎤
⎦ sinhϕ2.

Here ϕ1,2 = k0n1,2d1,2 are the optical thicknesses of the layers; n1,2 = (ε1,2μ1,2)1/2 are the absolute
values of refractive indexes; and Z1,2 = (μ1,2/ε1,2)1/2 are the absolute values of layer impedances.

Applying the criterion G12 = G21 = 0 to Eq. (10), we get the further condition of the perfect
tunneling:

tanhϕ2 =
2Z1Z2 sinh 2ϕ1

η
(
Z2

1 − Z2
2

)
+
(
Z2

1 + Z2
2

)
cosh 2ϕ1

, (11)

where we denote η =
(
1 − Z2

1

)/(
1 + Z2

1

)
= (ε1 − 1)/(ε1 + 1).

Equation (11) is solved numerically with respect to the variable μ2 (it should be emphasized that
we are only interested in the real positive solutions). Fig. 3 represents a typical view of the solved μ2

as a function of frequency with fixed values of all other parameters found in Eq. (11).
One can see that Eq. (11) may have either one or two solutions depending on the frequency. The

first solution μ
(1)
2 exists at any frequency; its maximum value μ2(0) is achieved in the low frequency

limit. As the frequency increases, the value of μ
(1)
2 falls smoothly, tending in the high frequency limit to

the value of μ2(∞). The second solution μ
(2)
2 < μ

(1)
2 emerges at frequencies f > f0, its value increasing

with the frequency, tending to the same limit μ2(∞) as the first solution μ
(1)
2 .

The values of μ2(0), μ2(∞), and f0 may be estimated analytically, using the appropriate
approximations.
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Figure 3. The solutions μ2 of the Equation (11) versus frequency.

3.1.1. Low Frequency Limit

All three layers can be considered as optically thin (ϕ1,2 � 1), and we can allow for Eq. (11)
tanh ϕ2 ≈ ϕ2, sinh 2ϕ1 ≈ 2ϕ1, cosh 2ϕ1 ≈ 1. By doing this we obtain an approximate equation,
which has the following solution

μ2(0) ≈ 2ξ(ε1 + 1) − ε2 (12)

or

μ2(0) ≈ ε2

(
ξ

ξmin
− 1
)

, (13)

where the dimensionless parameter ξ = d1/d2 (thickness ratio) is introduced, and

ξmin =
ε2

2(ε1 + 1)
. (14)

Therefore, at low frequencies the solution μ
(1)
2 is weakly dependent on the frequency, tending to the

limit value (12), which is linearly dependent on the thickness ratio ξ. The expression (13) shows that
positive solutions exist only when the thickness ratio is sufficiently high (ξ > ξmin), where the value of
ξmin is determined by the layers’ permittivities.

3.1.2. High Frequency Limit

Noting that |η| < 1, the first term in the denominator of the right side of Equation (11) can be neglected.
Consequently, keeping in mind that when ϕ1,2 → ∞ we have tanh ϕ2 = tanh 2ϕ1 ≈ 1 we obtain

μ2(∞) = ε2/ε1. (15)

3.1.3. Estimation of f0

Near the frequency f0 μ2 → 0, and we can assume tanh ϕ2 ≈ ϕ2. As a consequence, we conclude that
the frequency f0, which gives μ

(2)
2 = 0, can be found as the solution of the following equation:

k0Z1ε2d2(η + cosh 2ϕ1) = 2 · sinh 2ϕ1. (16)

A rough estimation of f0 can be made using Eq. (16), by assuming that with a sufficiently large ϕ1 we
have sinh 2ϕ1 ≈ cosh 2ϕ1 � η and, therefore,

f0 ≈ c

πZ1ε2d2
=

c
√

ε1

πε2d2
. (17)

The conclusion is that the frequency f0 increases with permittivity ε1, decreases with d2, and has
relatively weak dependence on d1 (or parameter ξ).

The results of the accurate numerical solution of Equation (11) are represented in Fig. 4. The
frequency dependencies of the solutions μ2 depicted in Fig. 4 were obtained with fixed values of ε1,
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Figure 4. The solutions μ2 of the Equation (11) versus frequency at ε1 = 4, ε2 = 14.8, d2 = 2 mm,
ξ = 6, 4, 3, 2.2, 1.85, 1.84, 1.75, 1.65, 1.55 (curves 1–9).

ε2, and d2, and with different values of the ξ parameter. Data used in the calculations of Fig. 4 yield
μ2(∞) = 3.7, ξmin = 1.48, f0 ≈ 6.45 GHz (the latter is the rough estimation by Eq. (17) disregarding
the dependence on ξ).

One can see that the plots of μ2(f) dependencies are of the “standard” view depicted in Fig. 3
with only sufficiently large values of ξ lying above a definite “critical” value (curves 1–4). Curve 5
corresponds to that “critical” value, which equals to

ξcr =
ε2

2ε1
=

1
2
μ2(∞). (18)

At ξ = ξcr, μ2(0) = μ2(∞) and the solution μ
(1)
2 is frequency independent. The condition (18) of perfect

tunneling, known as the “matched trilayer condition” [13], is a specific case derived from more general
condition (11).

Within the interval of ξmin < ξ < ξcr, the shape of μ2(f) dependencies changes noticeably. Namely,
the plot splits into two branches (as curve 6 shows), and there is a frequency interval that has no
solution. With a further decrease of ξ, the second branch is shifted to the region of extremely high
frequencies, and there is only one solution that can be observed (the curves 7–9). It is localized in the
limited interval of low frequencies, restricted above by the frequency that is similar to the frequency f0

and also can be found with sufficient accuracy as the solution of Equation (16).

3.2. Symmetric Structure ENG-DPS-ENG

Consider a symmetric trilayer of material parameters (−ε1, μ1)/(ε2, μ2)/(−ε1, μ1), where ε1,2 and μ1,2

are real positive numbers. Now the elements of matrix G are

G11 = G22 = cosh 2ϕ1 cos ϕ2 − 1
2

(
Z1

Z2
− Z2

Z1

)
sinh 2ϕ1 sin ϕ2, (19)

(
G12

G21

)
=

i

2Z2

(
1

−1/Z2
1

)⎡⎣ 2Z1Z2 cot ϕ2 sinh 2ϕ1 +
(

1
−1

)
(Z2

1 + Z2
2 )

−(Z2
1 − Z2

2 ) cosh 2ϕ1

⎤
⎦ sin ϕ2,

where all designations are the same as above in Section 3.1. Correspondingly, the perfect tunneling
condition is written as

tan ϕ2 =
2Z1Z2 sinh 2ϕ1

η
(
Z2

1 + Z2
2

)
+
(
Z2

1 − Z2
2

)
cosh 2ϕ1

. (20)

Figure 5 represents an example of graphical solution of Equation (20) with respect to μ2 variable.
The left-hand side X and right-hand side Y of the equation are plotted versus square root of μ2. Note
that the function Y (μ2) has a discontinuity point at

μ2 = μY =
ε2

ε1

cosh 2ϕ1 + η

cosh 2ϕ1 − η
. (21)



Progress In Electromagnetics Research M, Vol. 88, 2020 39

Figure 5. Graphical solution of the Equation (20).

Here Y is positive within the interval of (0, μY ) and negative when μ2 > μY , vanishing if μ2 → ∞. The
tangent function in the left-handed side has zeros at

μ2 = μ0X(m) =
1
ε2

(
πm

k0d2

)2

, m = 1, 2, . . . , (22)

and discontinuities at

μ2 = μX =
1
ε2

(
π

k0d2

)2(
m − 1

2

)2

. (23)

There exists an infinite set of solutions of Equation (20). Each solution μ2m of order m is localized
in the interval of [μ0X(m − 1), μ0X(m)]. Within the framework of Fig. 5, one can see the solutions of
the first three orders m = 1, 2, 3, which correspond to the intersection points of the negative branch of
the function Y (μ2) with three negative branches of the tangent function X(μ2). One can see that the
values of μ2m are close to the corresponding zeros of the tangent function and, therefore, the expression
(22) can be used for their rough estimation. In addition, we should note that depending on the position
of the discontinuity point μY , the intersection of the positive branches of the functions X and Y is
possible. Moreover, one of the solutions may be absent.

Figure 6(a) shows the frequency dependences of the solutions μ2m of several orders m for fixed
values of ε1 and ξ, and two different values of the thickness d2. The plot represents a set of separate
branches, and each of them corresponds to a specific value of m. It is seen that as the thickness d2

decreases, the branches are shifted to higher frequencies. For the orders m ≥ 2, the values of μ2m

decrease with frequency, vanishing if f → ∞. At the same time, the solutions of the order m = 1 are
localized in the frequency interval, restricted above by some limit frequency. In addition, the shape of
dependence μ21(f) may be different, as one can see in Fig. 6(b).

Figure 6(b) depicts the frequency dependences of the solution μ21 for a fixed value of the permittivity
ε1 and the thickness d2, but for different values of the thickness ratio ξ. If ξ < ξcr (according to (17),
ξcr = 1.85) the dependence is increasing (the curves 3–5), and if ξ ≥ ξcr it is decreasing (the curves 1
and 2). When ξ > ξmin (where ξmin is determined, as before, by Eq. (14) and equals ξmin = 1.48), the
frequency domain of existence of the root μ21 is restricted not only from above, but also from below (by
a non-zero value).

4. TRANSMITTANCE OF ENG-FERRITE-ENG STRUCTURE

In this section, we assume that layers 1 and 3 are made of an ENG material, which is lossy and dispersive
in accordance with Eq. (1). Also, layer 2 is a magnetized ferrite, and in the calculations we take into
account its dielectric and magnetic losses. So, the material parameters of the layers (the permittivities
ε1, ε2 and permeability μ2 = μ⊥) are considered here as complex numbers. In addition, when solving
numerically Equations (11) and (20) in this Section, we take into account the dispersion of permittivity
ε1.
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(a) (b)

Figure 6. The solutions μ2 of the Equation (20) versus frequency at ε1 = 4, ε2 = 14.8: (a) the solutions
for different m at ξ = 10, d2 = 3, 1 mm (solid and dashed lines); (b) the solution of order m = 1 at
d2 = 2mm, ξ = 3, 1.84, 1.65, 1.48, 1 (curves 1–5).

(a) (b)

Figure 7. The effective ferrite permeability for (a) H0 = 20 and (b) 50 kA/m and the solutions of
the perfect tunneling conditions versus frequency: (a) ENG-MNG-ENG structure with d2 = 0.5 mm,
ξ = 8, 2.5, 0.5 (curves 1–3); (b) ENG-DPS-ENG structure: the solution of m = 1 with d2 = 1 mm,
ξ = 2 (1), d2 = 1.5 mm, ξ = 0.5 (2), d2 = 2.5 mm, ξ = 0.5 (3) and the solutions of m = 2, 3, 4 with
d2 = 1.5 mm, ξ = 0.5.

In Fig. 7, the absolute value of the real part μ′
⊥ of the effective permeability in Eq. (3) of ferrite

is plotted (using a logarithmic scale) versus the frequency. To reveal the possibility of the near-perfect
tunneling through this structure, we overlay on these plots the solutions of Equations (11) and (20).
At each intersection point with the plot of |μ′

⊥|(f) dependency there must exists the frequency of
transmittance peak with magnitude of T close to unity.

Figure 7(a) shows the solutions of Equation (11) for the ENG-MNG-ENG structure, and we must
look for intersections with the plot of |μ′

⊥|(f) in the region of fr < f < far. Based on the discussion
in Section 3.1, it follows that there are three possible options. If f0 > far, there can be only one
intersection point lying in the described region (curve 1). If f0 < far and ξ > ξmin, there can be two
intersections (curve 2), but there may be no intersection points (as for curve 3). It should be noted that
for a structure with fixed parameters, the situation could be easily changed using the external magnetic
field H0. A change in its magnitude shifts the points of resonance and antiresonance, as well as the
width of the interval fr < f < far is controlled.

Figure 7(b) shows the solutions of Equation (20) for the ENG-DPS-ENG structure. As for the
solution μ21 of the first order, three curves are shown for different sets of structure parameters. The
curves for the solutions of the order m ≥ 2 may have only one point of intersection with the plot of
|μ′

⊥|(f) in the region of f < fr. This is also characteristic of the case m = 1 (curve 1). But if the
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specific conditions are met, such as the values of ξ < 1, one can obtain more than one transmission peak
corresponding to m = 1. This situation is illustrated by curve 2, which has three intersection points.
The data used for curve 3 give one intersection point again, but it is located far from the resonant
frequency, where the structure is nearly lossless.

The transmittance T of ENG-ferrite-ENG structure is determined using the transfer matrix method
for the trilayer, as described in Section 3. A distinction consists of the complexity of the material
parameters ε1, ε2, μ2. Therefore, the complex wave numbers in Eq. (5) are now determined by

kj = k′
j − ik′′

j = ± k0
√

εjμj , j = 1, 2, 3. (24)

The sign of square root in Eq. (24) is chosen so that the imaginary part k′′
2 is positive, which corresponds

to the absorbing media.

Figure 8. The transmittance of ENG-ferrite-ENG structure versus frequency at H0 = 20 kA/m,
d2 = 1mm, ξ = 10, 5, 2.5, 1.8, 1.5, 1, 0.5 (curves 1–7).

Figure 8 shows the T (f) dependences calculated for different values of the thickness ratio ξ with
the fixed values of the magnetizing field and all other parameters of the structure. For comparatively
large ξ (curves 1–3), there are two well resolved peaks of the transmittance, which correspond to the
solutions μ

(1)
2 and μ

(2)
2 of Equation (11). (Under certain conditions, the right peak may be found in the

region f > far of positive μ′
⊥, where it corresponds to the first order solution μ21 of Equation (20)). The

left peak is located close to the resonant frequency and its position weakly depends on ξ. As the value
of ξ decreases, the right peak shifts toward the resonant frequency, and the following changes occur:

- the peak value of the transmittance approaches unity;
- the peak broadening is observed, and due to the overlapping of the two peaks, the transmittance

in the region between them gets higher;
- eventually, the region between two close peaks takes a form of a “plateau” with an almost constant

transmittance of more than 0.99 (curve 4).

It should be noted that the value of |ε′1| in the center of a “plateau” (|ε′1| ≈ 4.2 at f ≈ 3 GHz)
is such that the value of ξ = 1.8 taken for curve 4 is about “critical” value ξcr, given by Eq. (18). It
means that one can get the maximum bandwidth of the near-perfect tunneling if the structure within
the passband behaves as a “matched trilayer”.

For smaller values of ξ, the peaks keep shifting towards each other; the width of the “plateau”
decreases, and at a certain value ξ = 1.5 (curve 5) it contracts to a point. With smaller ξ, the solutions
of Eq. (11) in the region of μ′

⊥ < 0 cannot be detected. Also, a weakly pronounced, broadened peak of
transmittance with maximum value that is significantly less than unity (curves 6, 7) is observed.

The transmittance of ENG-ferrite-ENG structure can be easily controlled by a magnetizing field. If
the field H0 is varied, the shape of T (f) dependencies realized at various values of d2 and ξ, is generally
preserved. In Fig. 9 T (f) dependences are plotted at three different values of H0 for two sets of structure
parameters.

Figure 9(a) shows a passband of the near-perfect tunneling in the region fr < f < far of negative
effective permeability of the ferrite. As we demonstrated before, there can be two peaks of the
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(a) (b)

Figure 9. The transmittance of ENG-ferrite-ENG structure versus frequency for different values of the
magnetizing field H0: (a) ξ = 1.8, d2 = 0.5 mm; (b) ξ = 0.5, d2 = 1mm.

transmittance. At H0 = 10 kA/m the near-perfect tunneling is connected with the right peak of higher
frequency. As the field H0 increases, the passband initially becomes wider due to increased transmission
between two separate peaks, but then becomes narrower.

In Fig. 9(b) one can see several regions of high transmittance positioned in the frequency region
of f < fr. As shown above, there may be multiple peaks corresponding to the solutions μ2m of perfect
tunneling condition (20) for ENG-DPS-ENG trilayer. However, the solutions with m ≥ 2 are located
in the immediate vicinity of the resonant frequency. Due to the high magnetic losses in this region and
the peaks’ proximity to each other, only a limited number of peaks are resolved. Also, the peak values
of transmittance are usually small. The only exception is the peak corresponding to the first order
solution, which is the most remote from resonant frequency. In Fig. 9(b), the peaks of orders m ≥ 2 are
not observed at all. The narrow peak corresponding to m = 1 is well resolved, but the transmittance
at its maximum is low. When the magnetized field is sufficiently high, two additional solutions of order
m = 1 can appear far enough from resonant frequency. Such a situation has been illustrated above by
curve 2 in Fig. 7(b). Consequently, a wide passband of the near-perfect tunneling (T ≈ 0.997) is formed
with a “plateau” between two peaks of the transmittance (see the plot for H0 = 50 kA/m in Fig. 9(b)).

5. CONCLUSION

In this paper, we have theoretically examined the transmission of a plane TEM wave through a
symmetric trilayer structure that consists of two identical layers of ENG metamaterial and a ferrite layer
between them. The ferrite layer is magnetized by an external magnetic field, in order for the transmissive
properties of the structure under study can be magnetically controlled. Due to the presence of the layers
with negative permittivity, the incident wave tunnels through the structure and the tunneling can be
near-perfect if some specific conditions are met. The perfect tunneling conditions for the described
structure were derived, and all possible solutions of the corresponding equations were analyzed.

The transmittance of the structure has been calculated using the transfer matrix method for the
case of normal incidence while accounting the losses in the ferrite material (yttrium-iron garnet). Far
enough from the ferromagnetic resonance frequency, the losses are negligibly small. We have shown that
the structure can act as a bandpass filter of a broad bandwidth. The passband is restricted on both sides
by two maxima of transmittance with the peak magnitude nearly equaling unity. The positions of these
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two maxima are determined by the criteria of the perfect tunneling. In order to get the near-perfect
tunneling throughout the entire passband, the parameters of the trilayer must be matched in a certain
way. The passband can be located both above and below the ferromagnetic resonance frequency and
its position and bandwidth can be effectively controlled by a magnetizing field.
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