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Volume Fraction Extraction for Binary Mixture of Ethanol and
Methanol Using Optimized Microwave Microfluidic Sensor
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Abstract—An optimized microfluidic sensor for extracting volume ratio of binary mixture comprising
of ethanol and methanol using electrical resonance technique has been presented in this work. In order to
detect small changes in composition of binary mixture, a split-ring resonator structure with enhanced
sensitivity was designed to operate around 2.5 GHz. A resonator was designed using HFSS, which
possessed enhanced sensitivity. A novel algorithm for optimization was devised for binary mixture of
the two liquids. The resonator was fabricated and tested for validation of results. Samples of ethanol
and methanol mixture in different volume ratios were prepared and filled in micro-capillary tubes. These
tubes were placed inside the resonant structure to perturb electric field. Variations in resonant properties
due to change in volume ratio of liquid mixtures were analyzed. Resonant frequency, s-parameters, and
quality factor of structure were measured. It was observed that change in volume fraction as small as
1/100 resulted a shift of 0.25 MHz in resonant frequency (relatively high level of sensitivity). Measured
results were utilized by mathematical model to compute volume fraction of liquid in these mixtures.

1. INTRODUCTION

Volume fraction of liquids in mixtures is strictly maintained in various applications to ensure requisite
standard and quality. These fields include chemistry, biology, petroleum, petrochemistry, agriculture,
etc. [1–3]. Variation in liquid composition during mixing may lead to failure or poor performance.
In such applications, composition is determined at various stages to ensure conformance to the laid
down ratios. Numerous techniques like liquid chromatography, boiling point distillation, and capillary
electrophoresis are available to determine volume fraction of liquids in mixture [4]. These methods
are time consuming, require expensive equipment, and differ in techniques depending upon nature of
liquid(s). Microwave techniques for determining volume fraction of constituents in a mixture have
several advantages, like small sample volume [2], instantaneous result [4], small infrastructure, ease in
handling, high sensitivity [4], etc.

Microwave technique for determining volume fraction of constituents in a sample under test is
based on permittivity sensing capability of certain devices [2, 4, 5]. Resonant techniques are preferred
over other microwave techniques (e.g., transmission and reflection methods) due to high accuracy [4].
In resonant techniques, small volume of material sample is placed inside a resonator. The resonator is
then energized with electromagnetic waves. Placement of sample perturbs the resonator volume and
electromagnetic field due to which this method is referred as perturbation method [2, 4]. Resonant
parameters are measured before and after placement of the sample [2–4, 6]. S-parameters are measured
and shift in resonant frequency, and quality (Q) factor is obtained [5, 6]. Analysis of resonant frequency
and Q factor determines composition of constituents in a sample.
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Numerous works have been reported for permittivity sensing [7–14]. Different devices have been
used in these works; however, technique remains almost the same. Compositional analysis has been done
with liquid constituents placed in micro-capillary tubes [2, 3, 15]. It has been established in these works
that high-resolution results are achieved with resonators having better sensitivity for permittivity. This
observation motivated us to undertake this work. In earlier works, efforts have been made to design
a resonator with enhanced sensitivity. However, devising a resonant structure using an algorithm is a
novel idea which is reported in this work. Initially, a split-ring resonator structure, to operate around
2.5 GHz, was designed using Ansoft’s 3D full wave field solver High Frequency Structure Simulator
(HFSS) [16]. Sensitivity of structure was then optimized [17], using an algorithm devised for binary
mixture of ethanol and methanol. Samples of liquid solvents contained in micro-capillary glass tubes
were placed inside the resonator structure for measurement. A mathematical model was developed for
determining volume fraction of liquid in mixture using measured values.

2. MICROWAVE TECHNIQUE FOR DETECTION OF MATERIAL PERMITTIVITY
USING SPLIT-RING RESONATOR

2.1. Permittivity and Its Association with Resonant Behavior

Dielectric materials have an inherent capability of storing energy when being subjected to an electrical
field [9, 18, 19] known as permittivity. When this quantity is compared with free space, it is referred as
relative permittivity [18]. It is a complex quantity (ε∗r) and described as [19, 20]:

ε∗r = ε
′
r − jε

′′
r (1)

where real part (ε
′
r) signifies charge storage capability of material, and imaginary part (ε

′′
r ) determines

rate at which stored energy is dissipated (relative to free space). Each dielectric material has a unique
set of real and imaginary parts of permittivity.

Microwave techniques for determining complex relative permittivity are grouped into three major
categories namely reflection, transmission, and resonance [21, 22]. Present work is based upon resonance
method for obtaining results with high accuracy. In resonance perturbation method, resonant frequency
and Q factor are two parameters which are used to determine permittivity of material. In this method,
complex permittivity of a material is sensed when a small sample under test (SUT) is placed within
a resonator. Shift in resonant frequency (f0) and quality (Q) factor of resonator are observed for
cases before and after insertion of sample. These effects are analyzed by first order perturbation
theory [21, 23, 24]. Real and imaginary parts of materials’ permittivity are related with these shifts
as under [4]:

ε
′
r ∝ Δf0 (2)

ε
′′
r ∝ Δ

(
1
Q

)
(3)

Any change in resonant behavior of a sample loaded resonator is indicative of change in volume
fraction. Systems with high sensitivity yield larger shifts in these quantities for the same change in
volume fraction.

2.2. Split-Ring Resonator Technique for Permittivity Sensing of Liquid Mixtures

Theory of split-ring resonator (SRR) [25] was established in early 1980’s [25–27]. Single gap SRR
enclosed in a metallic cavity is shown in Figure 1 [27–29]. Resonator can be considered as a single-turn
inductor connected with a gap capacitor [30] which is surrounded by cavity/shield wall. A high Q factor
is achieved due to shielding. Numerous mathematical models have been formulated to predict resonant
frequency and Q factor [25–28, 31, 32].

Utilization of SRR for permittivity sensing of materials has been reported in various works [2, 3, 15].
Liquid samples contained in small containers, micro-capillary tube or micro-fluidic channel are placed
in resonator gap [2–4, 15, 33] which perturbs electric field in the gap [34]. This perturbation affects
resonant behavior [2, 15] and can be measured using Vector Network Analyzer (VNA). Shifts in resonant
frequency and Q factor are used for permittivity sensing/measurement [22].
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Figure 1. (a) Split-ring resonator structure, (b) cross-sectional view.

3. DESIGNING OF IMPROVED SPLIT-RING RESONATOR

It was observed while studying earlier works [3, 15, 21] that better resolution in permittivity sensing
was achieved when SRR gap was longitudinal in shape, and micro-capillary tube containing liquid was
placed parallel to electrical field. It was also observed that resonator with higher Q factor yielded better
resolution while performing compositional analysis of liquid solvents. These observations were used in
this work and sensitivity of a predesigned SRR [17, 29]. This was achieved with simulations designed in
HFSS, using a novel algorithm. Improved SRR structure, with enhanced sensitivity, was then fabricated
and tested for verification.

A predesigned SRR structure (initial design), accommodating micro-capillary tube parallel to
electric field plane, was initially designed with HFSS. This structure had a square cross-sectional
area. Copper was used for the resonator while shield was designed using aluminum [35, 36]. Variation
analysis [36] was performed, using the algorithm, to study the effect on output parameters with
changes in SRR geometry. For this analysis geometrical parameters were varied within allowable ranges.
Algorithm required observance of shift in resonant frequency and Q factor, when ε

′
r was varied from 1

to 85. These were noted for each change in the geometry. A design in this way was obtained which
could yield larger variation in resonant frequency and Q factor. Design and output parameters with
and without a micro-capillary tube are given in Table 1. Shifts in resonant frequency and Q factor,
with ε

′
r for final design, are shown in Table 2, Figures 2 and 3 respectively.

4. FABRICATION, EXPERIMENTATION AND MATHEMATICAL MODELLING
FOR VOLUME FRACTION EXTRACTION

An SRR structure was fabricated with dimensions as mentioned in Table 1. SRR was fabricated with
copper while aluminum was used for shield [35, 36]. Resonator gap was kept at 2mm to accommodate
Marienfeld cat. no. 2940202 capillary tube [37] which was used to store liquid samples. An identical
pair of magnetic loop coupling was prepared, with RG 402 semi-rigid coaxial cable. These couplings
were used for connecting SRR structure with VNA. At opposite sides of shield wall, a pair of holes was
made at the center of its height to facilitate insertion of magnetic loop coupling. A hole was also made
for placing micro-capillary tube within resonator gap. A low loss base was prepared with polystyrene
to place resonator inside shield.

Agilent E8362B VNA was used for two-port S-parameters measurements. Figure 4 shows
experimental setup. Resonant frequency and loaded Q factor of SRR structure without micro-capillary
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Table 1. SRR design parameters and output results.

Parameters Values

Design
Features

Inner Radius of Shield ‘R0’ (mm) 22
Inner Radius of Resonator ‘r0’ (mm) 5

Width of Resonator ‘W ’ (mm) 6
Length of Resonator ‘Z’ (mm) 3

Gap of Resonator ‘t’ (mm) 2
Height of Shield ‘h’ (mm) 32

Thickness of Shield ‘T ’ (mm)
(in all directions)

7

Output
parameters

Without tube
inside SRR gap

Resonant frequency
‘f0’ (GHz)

2.55

Q factor 2818

With tube
inside SRR gap

Resonant frequency
‘f0’ (GHz)

2.571

Q factor 3174.9

Table 2. Results of optimized SRR.

Parameter Min Max Δ
Resonant frequency f0 (GHz) 2.394 2.571 0.177

Q Factor 3007.6 3174.9 167.3

Figure 2. Variations in resonant frequency against ε
′
r.

tube were initially measured. Unloaded Q factor was calculated as:

Q =
QL

1 − 10IL/20
(4)

where IL represents measured insertion loss which was −15.68 dB. Measured and calculated values of
resonant frequency and Q factor were 2.6974 GHz and 2312.82 against 2.55 GHz and 2818, respectively.
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Figure 3. Variations in Q factor against ε
′
r.

(a) (b)

Figure 4. (a) Top view of resonator without lid. (b) Experimental setup.

Figure 5. S21 versus resonant frequency measurements.

This difference is attributed to factors as mentioned in earlier works [35].
Mixtures of ethanol and methanol were prepared with different volume ratios. Measurements were

made for mixture samples placed inside SRR structure. Figure 5 shows results of these measurements.
Shifts in resonant frequency and Q factor were observed due to change in effective permittivity of
mixtures. Values of resonant frequency and loaded Q factor in each case were measured as shown in
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Table 3. Measured results.

Volume Ratio Resonant
Frequency f0 (GHz)

Loaded
Q Factor QL

Insertion
Loss IL (dB)

Calculated
Q FactorEthanol : Methanol

0 : 1 2.4944 67.63 −34.95 68.86
1 : 3 2.4999 61.80 −35.00 62.92
1 : 2 2.5022 59.31 −35.41 60.34
1 : 1 2.5071 54.33 −35.61 55.25
2 : 1 2.5125 49.48 −35.26 50.35
3 : 1 2.5151 47.36 −35.40 48.18
1 : 0 2.5209 44.01 −35.92 44.73

Figure 6. Resonant frequency and Q factor against volume ratio.

Table 4. Fraction of ethanol calculation.

Volume Ratio Resonant
Frequency f0 (GHz)

Calculated
Q Factor

Fraction of Ethanol
Ethanol : Methanol Actual Calculated

0 : 1 2.4944 68.86 0.00 1.023 × 10−11

1 : 3 2.4999 62.92 0.25 0.25
1 : 2 2.5022 60.34 0.3333 0.33333
1 : 1 2.5071 55.25 0.50 0.50
2 : 1 2.5125 50.35 0.6666 0.66666
3 : 1 2.5151 48.18 0.75 0.75
1 : 0 2.5209 44.73 1.00 1.00

Table 3. Figure 6 shows graphical results for different volume ratios.
Obtained values of resonant frequency and Q factor given in Table 3 were used to derive 3rd order

equation with Wolfram’s Mathematica [38]. Volume fraction of ethanol was extracted using following
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equation:

Volume fractionEthanol = 860.470179 + 100.477334 × f0 − 44.130482 × f2
0 − 47.232291 × f3

0

−35.791211 × Q + 0.483681 × Q2 − 0.000333 × Q3 − 1.717178 × f0 × Q

−0.167012 × f0×Q2 + 5.710639 × f2
0 × Q (5)

Table 4 shows results obtained for volume ratios against resonant frequency and Q factor. The
obtained equation represents a model to predict fraction of ethanol in sample mixtures with high
accuracy.

Resonant frequency and Q factor has been shown graphically as a function of volume ratio in
Figures 7 and 8, respectively. Such a behavior conforms to earlier analysis.

Figure 7. Resonant frequency as a function of volume ratio.

Figure 8. Q factor as a function of volume ratio.
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5. CONCLUSION

An optimized SRR and mathematical model for volume fraction extraction has been presented.
Optimized resonator was designed, fabricated, and tested. Optimization was focused for enhancing
sensitivity of resonator to permittivity variation. Mixtures of ethanol and methanol in different volume
ratios were prepared. S-parameters were measured for each sample of mixture. Resonant frequency and
Q factor were observed as a function of volume fraction and mixture permittivity. A mathematical model
for extracting volume fraction of ethanol in mixture was worked out. Optimized structure exhibited
large variation in resonant frequency for small variation in composition of liquid mixture. Resonant
frequency varied by 25.8 MHz for complete range whereas Q factor varied by 21.83. This means that
change in volume fraction as small as 1/100 would result in shift about 0.25 MHz in resonant frequency.
A fractional change as small as 1/1000 could be detected if measuring equipment can sense variation of
0.025 MHz. Benefits of optimized resonant structure can also be utilized in applications like oscillator,
frequency meter, tuned amplifier, filter, electron paramagnetic resonance, food grading, quality control,
etc.
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