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Radiation from Reflector Antenna of Finite Thickness and
Conductivity in Resonant Scattering Band
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Vitaly Vasylets1, and Serhy Fryz2

Abstract—A method is proposed for calculating the radiation characteristics of a reflector antenna in
the resonant wavelength range. The method uses the solution of the problem of electromagnetic field
scattering from a well-conducting non-closed screen of finite thickness. This problem is solved by an
E-field integral equation and on approximate boundary conditions by Leontovich, which are applied
onto a surface of a well-conducting screen.

1. INTRODUCTION

Many applied problems in the theory of reflector antennas involve the need to know the antenna radiation
characteristics in the range of wavelengths, which are resonant with respect to the size of its reflector.
In particular, such a task may arise when transmitting (receiving) antennas are designed for ultra-
wideband (UWB) signals given that the entire spectrum of the signal falls within the specified range.
In this case, the well-known methods of short-wave diffraction [1] cannot be applied. When calculating
the radiation characteristics of such antennas, the problem of electromagnetic waves scattering from
conductive non-closed thin screens of resonant sizes needs to be solved.

In a number of works [2–13], this problem has been solved under assumptions of infinitely thin and
perfectly conducting screens. However, as shown in [14], in resonant wave scattering band (k0b ∼10,
where k0 is the wavenumber in free space, and b is the characteristic size of the screen described by the
radius of the reflector’s aperture), such an assumption can lead to great errors.

In works [15, 16], the problem of wave scattering from the finite thickness screens was solved by
means of E-field integral equation. Singularity of an equation kernel was eliminated by shifting boundary
conditions from the screen surface onto an auxiliary surface within the screen as in [17, 18]. Nevertheless,
in [15, 16], the scattering characteristics were calculated under the assumption of perfectly conducting
screens. However, elements of real antennas are made of materials with great but finite conductivity.
Conductivity of metals and alloys that reflectors are made of can vary in a wide range. For instance,
conductivity of aluminum is 3.54 × 107 Sm/m, and that of duralumin 2024 (alloy of Al-Cu-Mg) is
1.74 × 107 Sm/m.

However, in the known works, the study of scattering from thin (but not zero thin) screens having
great (but not perfect) conductivity was not carried out.

Nevertheless, development of the method for computing the scattering characteristics of the
structures mentioned here was not our only purpose. We propose a method of numerical implementation
to apply a computation of impulse responses of reflector antennas including thin (but not zero thin)
screens having great (but not infinite) conductivity.
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So, this paper presents a generalization of the E-field integral equation onto the case of non-
perfectly conducting screens of finite thickness. Besides, we obtain a system of integral equations
(SIE) that utilizes impedance boundary conditions at the screen’s surface. We present an example of
employing SIE for evaluating radiating properties of reflector antenna with regard to UWB signals.

2. PROBLEM FORMULATION

Let’s suppose that a well-conducting object V (Fig. 1) is placed into an infinite homogeneous isotropic
medium with permittivity ε0 and permeability μ0. Let S be the surface of object V .

Electromagnetic field at point M can be expressed as

�E (M) = �E0 (M) + �Es (M) ,

�H (M) = �H0 (M) + �Hs (M) ,

where �Es (M), �Hs (M) is the scattered electromagnetic field, and �E0 (M), �H0 (M) is the incident
electromagnetic field.

Our objective is to find the field �Es (M), �Hs (M) scattered by the object.
We use the integral representation of electromagnetic field at point M (Fig. 1) with respect to

electric field intensity �E [19, 20]

�E (M) = �E0 (M) −
∮

S

jωμ0g (r) �J dsp −
∮

S

{((
�np × �E

)
× �∇g (r)

)
+

(
�np · �E

)
�∇g (r)

}
dsp, (1)

where g(r) = 1
4π

ejk0r

r ; r is the distance from observation point M to point P , the latter sitting at the
surface S (Fig. 1); �np is the unit vector of internal normal to the surface S at point P ; �J (P ) = �np × �H
is the surface current density at point P .

Figure 1. Geometry of the problem.

The field dependence upon time is assumed to have the form of e−jωt.
Now, we suppose that the Leontovich approximate boundary condition holds at the surface S [21]:

�np × �E = W
(
�np × �J

)
at S, (2)

where W =
√

μ0

ε0
Z =

√
μa

εa
is the surface impedance of the boundary surface S; εa is the permittivity;

and μa is the permeability of material that object V is made of.
Substituting expression (2) into (1), we receive integral representation for electromagnetic field

scattered by the impedance object V :

�E(M) = �E0(M) −
∮

S
jωμ0g(r) �Jdsp −

∮
S

{
W

((
�np × �J

)
× �∇g(r)

)
+

(
�np · �E

)
�∇g(r)

}
dsp. (3)

In the problem at hand, object V is a metallic one with non-perfect conductivity. Depth of the wave
penetration into metal is described by the depth of skin layer Δ0 =

√
2

ωμ0μσ [21]. At high frequencies,
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this penetration depth is small enough, and we can assume that at the depths significantly exceeding
this skin layer depth there will be no electromagnetic field inside the metal. This gives us grounds to
apply the null-field method [22–24] to the form in Eq. (3). We introduce an auxiliary surface Σ within
V . This surface is placed at the depth Δ under the surface S, with the distance Δ being much greater
than the skin layer depth and the shape of Σ repeating that of S. In our computations, we set Δ equal
to 10Δ0, which corresponds to wave attenuation by the factor of e10. We have also repeated calculations
given other values of Δ, particularly 8Δ0 and 12Δ0, and the computational results deviate by not more
than 0.8%.

Let’s now move observation point M to a point P0 that sits at the surface Σ (Fig. 1). Then, let’s
suppose that total field �E (P0) at point P0 at the surface Σ would be equal to zero.

After some transformations of formula (3), we obtain the vector-integral equation of the first kind:

�E0 (P0) =
∮

S

jωμ0g (r) �J dsp +
∮

S

{
W

((
�np × �J

)
× �∇g (r)

)
+ En (P ) �∇g (r)

}
dsp, P0 ∈ Σ. (4)

In Equation (4), the surface current density �J (P ) and normal component of electric field En (P ) =
�np · �E (P ) at point P of surface S are unknowns.

Now, the integral in the right-hand part of Equation (4) becomes non-singular one. The latter is
because the observation point P0 and source point P are now situated at different surfaces. The latter
simplifies numerical integration of Equation (4).

Now, we multiply Equation (4) by �np0 (the unit vector of internal normal to surface Σ at point P0)
on the right, and we multiply it twice, the first product being the vector one and the second being the
scalar one (dot product). In this manner, we get the following SIE [25, 26]:∮

S
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jωμ0g (r)
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)
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)
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+W
[(
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S
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)
. (6)

Solutions of SIE in Eqs. (5) and (6) have the form of equivalent current components that are excited
at the surface S of impedance object by the incident field �E0.

Next, we consider an example. The scattering object surface S will have the form of spherical
screen. The most convenient coordinate system for this example is spherical.

Now, we find scalar products of Equation (5) with each of the unit vectors of spherical coordinate
system �eρ0 , �eθ0 , �eϕ0 at the observation point P0. By doing this, we obtain three scalar integral equations:∮
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were �f1 = �eθ0 × �np0; �f2 = �eϕ0 × �np0; �f3 = �eρ0 × �np0.
Taken together with Eq. (6), these equations make up the system of scalar integral equations with

respect to the sought-for currents at the screen’s surface S.
Let’s consider the screen generated by intersection of the spherical metallic screen of thickness h

and internal radius a, with the right circular cylinder, its radius being b, and its axis of symmetry
coinciding with axis Oz (see Fig. 2).

Figure 2. Axial cross-section of the antenna.

Let’s break down the surface of spherical screen in the following form: S = S1∪S2∪S3 (see Fig. 2).
Now, the surface current density �J at the screen’s surface S shall be found as sum:

�J = J i
θ (θ, ϕ)�eθ + J i

ϕ (θ, ϕ)�eϕ at Si (i = 1, 2), (10)
�J = J3

z (z, ϕ)�ez + J3
ϕ (z, ϕ)�eϕ at S3, (11)

where �eθ = (− cos θ cos ϕ,− cos θ sinϕ,− sin θ); �ez = (0, 0, 1); �eϕ = (− sinϕ, cos ϕ, 0).
Here �eθ, �eϕ are orthogonal unit vectors of the spherical coordinate system at surfaces Si (i = 1, 2),

and �ez, �eϕ are orthogonal unit vectors of the cylindrical coordinate system at surface S3.
Next, we introduce the piecewise constant approximation of components of the surface current �J

at the screen’s surface S. To do this, we break the surfaces Sm down into Nm areas Smj , each having

constant surface current density: Sm =
Nm∑
j=1

Smj (m = 1, 2, 3).

Having done the latter approximation, we get the system of linear algebraic equations (SLAE) with
respect to components of surface current density Jm

θj , Jm
ϕj , Jm

zj over the areas Smj of constant current
densities. Coefficients of this SLAE are calculated as double integrals of smooth functions, which are
computed as in [24]. Besides, the computational errors were controlled by comparing the integration
results given various numbers of integration intervals in the Gauss compound formula. The integration
error was kept below 0.2%.

The SLAE mentioned above was solved by the co-location method. The surface current density
components found by solving the SLAE were used later for computing the field scattered by the screen
at point M using Equation (1).

3. VERIFICATION OF COMPUTATIONAL METHOD

The computational method was verified by cross-checking the values of the radar cross-section (RCS)
σ [27] obtained for the spherical screen against the corresponding measured values presented in [14].
For the convenience of cross-checking, we substituted the plane electromagnetic wave into the equation
system of Eqs. (6)–(9). This plane wave has the following form:

�E0
(

�X
)

= �p 0ejk0(	R0· 	X), (12)
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where �p 0 is the unit vector of the incident wave polarization; �R0 is the unit vector of incidence direction;
�X is the radius vector of observation point.

Besides, results of computations by our method were also cross-checked against the data obtained
for the perfectly conducting screen of zero thickness by Vinogradov [6].

Work [14] presents experimental RCS measurements for the aluminum spherical screen probed along
its axis. The measurements were carried out for monochromatic illumination signals, whose frequency
ranged from 26.2 GHz through 38.4 GHz, and the latter transforms into the values of k0b from 6.89
through 10.12. The specimen under study had the following geometrical parameters: radius of spherical
screen was a = 18.08 mm; radius of spherical screen’s aperture was b = 12.55 mm; screen’s thickness
h = 0.15 mm.

The measurement of interest corresponded to the millimeter wavelength range. Our computations
indicated that in this particular range of values k0b, RCS of the screen strongly depends on the shape
of its edge. The screens for the experiment in [14] were made manually; therefore, it was difficult to
maintain the exact shape of the screen’s edge according to variants 1 or 2 (as shown in Fig. 3) since
the screen itself was quite small. Taking the latter into account, we have conducted two rounds of
computations for two extreme cases corresponding to the two shapes of the screen’s edge, and we had
to present the results for both these cases. Besides, we assumed that specific conductance of aluminum
was equal to 3.54 × 107 Sm/m.

Figure 3. Shapes of the screen’s edge.

Figure 4 presents the normalized RCS σ
πb2

computed using our method together with the measured
data given this particular spherical screen, whose features were specified above. The same figure presents
the computed RCS of the zero thickness screen of perfect conductivity [6] (curve 4).
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Figure 4. Normalized RCS of spherical screen versus k0b (1 — measurement data [14]; 2 – results of
computation given aluminum screen with the reflector’s edge of first kind; 3 — results of computation
given aluminum screen with the reflectors edge of second kind; 4 — results of computation given perfectly
conducting screen of zero thickness [6]).
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From Fig. 4, one can see that most part of experimental measurement curve is confined between the
computed curves 2 and 3. Some differences given smaller values of σ

πb2
(7.25 < k0b < 8.25) are due to

manufacturing inaccuracy of the spherical screens used in the experiment, due to measurement errors,
and due to the influence of auxiliary elements used to fix the screens onto the value of field scattered
by the screen in [14].

We notice that the curve corresponding to the perfectly conducting screen of zero thickness [6]
(curve 4 in Fig. 4) differs significantly from both measured and computed scattering data given the
screen of non-zero thickness and non-perfect conductivity.

Method for solving the system of Equations (5), (7)–(9) is not different in principle from the
numerical method for computing the field scattered from the perfectly conducting screens of zero
thickness presented in [15]. Therefore, for simplicity sake, we present here the comparison of
computations pertaining to the scattering of plane wave from the perfectly conducting disk of thickness
h = 0.05λ. Fig. 5 shows the RCS versus illumination frequency given that disk was probed along its
axis. RCS values were computed using numerical implementation of the method described in the paper
(curve 1) and using the “Altair Feko” solver [28], the latter employing the method of moments (curve
2). The same plot presents the RCS computed using the physical optics (PO) method (curve 3).

 

Figure 5. Computed RCS of the disk of thickness equal to 0.05λ (1 — the E-field integral equation
solution, 2 — “Altair Feko” solution, 3 — physical optics solution).

It should be noted that the RCS curve computed using the PO method differs significantly from
the first two curves. Curves 1 and 2 are pretty close to each other, which can be considered as certain
verification of the method proposed here.

However, employment of the “Altair Feko” for significantly thinner screens can be problematic.
Works [25, 26] present the RCSs computed for spherical screens given k0b ranging from 1 to 6,

1 < k0b < 6 as compared with the case of perfectly conducting screens of zero thickness. It is this
comparison that indicated the need for taking into account the actual conductivity and thickness of
screens in the frequency range of interest.

4. COMPUTATION OF SIGNAL RADIATED BY ANTENNA WITH ALUMINUM
SPHERICAL REFLECTOR

Below, we consider an example of employing our method to computing the radiation characteristics
of reflector antennas with regard to ultra-wideband pulsed signals in time domain. We consider a
reflector antenna with an aluminum reflector that has finite conductivity of 3.54×107 Sm/m. Geometric
characteristics of the antenna were as follows: b = 0.19 m; a = 0.269 m; h = 1 mm. Antenna feed was
placed at point O, Fig. 2.

We used a model source of ultra-wideband signal as the antenna feed, its radiation pattern for a
spectrum component at the wavelength λ0 being described by the field radiated by elementary Huygens
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source [1, 29]:

E0
θ (P ) =

g (R)
λ0

(1 + cos θ) cos ϕ, (13)

E0
ϕ (P ) =

g (R)
λ0

(1 + cos θ) sin ϕ, (14)

where R is the distance between the source and the point P at the reflector’s surface (Fig. 2).
We considered antenna radiation ranging from 500 MHz through 1 GHz, which corresponded to the

range of 2 < k0b < 4. Signals with such a bandwidth belong to the class of ultra-wideband ones (the
ratio of spectrum width to central spectrum frequency, also known as the index of bandwidth, was equal
to 0.67).

Figure 6 shows the computed antenna directivity patterns (DP) F (θ) with respect to the radiated
field in the plane yOz given a set of discrete frequencies within the range specified above. All DPs in
Fig. 6 were normalized to the DP maximum at the radiation frequency of 1GHz.

"

Figure 6. Normalized directivity patterns of antenna given various frequencies of the feed radiation.

Analysis of curves in Fig. 6 shows that individual DPs at fixed frequencies strongly depend on
the frequency. In time domain, the latter translates into the waveform, whose shape depends on the
radiation direction. Besides, the latter means that one cannot apply traditional concept of DP by field
to the ultra-wideband signals.

Directional properties of an antenna with regard to transmission (reception) of UWB signals can
be comprehensively described by the space-frequency dependence of its radiated (received) electric field
component �E (ω,�r) (or magnetic field component �H (ω,�r)). Here, �r is the radius-vector of an observation
point, and ω is the circular frequency. In contrast to antennas radiating monochromatic (narrowband)
signals, for which ω is constant, the UWB antennas are characterized by functional dependence of the
radiated field �E (ω,�r) on the frequency ω1 ≤ ω ≤ ω2 for every point in space �r. This dependence
determines the shape of pulse radiated by reflector antenna in different directions.

We find it more convenient to work with space-time dependence of field �E (t, �r), when dealing with
UWB signals. The latter characteristic is related to the space-frequency one via the inverse Fourier
transform:

�E (t, �r) =

ω2∫
ω1

�E (ω,�r) e−jωtdω. (15)

In our computations, we used the analog of Equation (15) with respect to wavenumber k0:

�E (ct, θ) =

k2∫

k1

�E (k0, θ) e−jk0ctdk0, (16)

where c is the speed of light; k1 and k2 are the wavenumbers that correspond to the boundaries of
signal’s spectrum range.
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So, we have computed the field radiated by antenna for a given set of discrete values of k0b within
the range of 2 < k0b < 4 spaced by the value of 0.03125 (like those in Fig. 6). We also repeated
these computations given various radiation directions θ. In this manner, we have obtained frequency
responses of antenna given various radiation directions θ.

Next, we applied the inverse Fourier transform (16) to these frequency responses to obtain the
signal waveforms in time domain given various values of θ. Fig. 7 shows the normalized radiated field
amplitude A/|A0|max versus value of ct. There are two parts to it. Fig. 7(a) presents the waveform that
illuminates the antenna reflector (maximum of the field radiated by the antenna feed being aligned with
the reflector’s center), and Fig. 7(b) presents the waveform radiated by the antenna in axial direction
θ = 0◦.

(a) (b)

Figure 7. Signal waveform radiated by the antenna: (a) the waveform radiated by the feed towards
the center of reflector; (b) the waveform radiated by the antenna in axial direction.

Bold lines in Fig. 7 correspond to the signal envelope. Comparison of Figs. 7(a) and 7(b) shows that
after bouncing from the reflector the pulse radiated by the feed stretches up in time. In the example
above, the duration of pulse radiated by antenna is greater by 7% than that of pulse illuminating
the reflector as measured by the half-amplitude signal level. Besides, the signal envelope stretch is
accompanied with its notches getting occluded.

From the standpoint of antenna directivity, which strictly speaking cannot be any longer described
using the DP concept as long as the UWB signal is concerned, and it is convenient to consider the
envelopes of the said UWB signal radiated in different directions.

Figure 8. Envelopes of signals radiated in the directions θ = 0◦, 30◦, and 60◦.
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So, we need to figure out the shape of signal radiated by antenna in directions other than the
axial one. Fig. 8 presents the computed signal envelopes |A|/|A0|max radiated by the antenna in the
directions of θ = 0◦, 30◦, and 60◦. All the envelopes are normalized with respect to the maximum signal
magnitude that corresponds to the axial radiation direction.

Finally, the results shown in Fig. 8 characterize directivity properties of the antenna at hand. It is
obvious from the plots that the peak radiation in the direction of θ = 30◦ drops to 0.62 with respect to
that in the axial direction, and given the radiation direction of θ = 60◦, this peak drops to 0.24 with
respect to that in the axial direction.

5. CONCLUSION

The article presents the method developed by the authors for computing scattering characteristics of
well (but not perfectly) conducting screens of finite thickness (thin but not zero thin).

Comparison of RCSs obtained by rigorous computation with RCSs obtained by measurement as well
as by computation under a simplifying assumption of infinitely thin and perfectly conducting screens
indicated that in the resonant scattering region (screen sizes getting into the range 7 < k0b < 9) there
is considerable difference between these RCSs. Therefore, there is the necessity of accounting for the
screen thickness and conductivity of the material that the screen is made of.

An example of using the method to evaluate the space-time characteristics of UWB signal radiation
by a reflector antenna with a spherical reflector in the resonant frequency range was given. As a model
of a UWB antenna feed, an idealized signal source was used, its spectral components being described
by the field radiated by elementary Huygens element. The method allows to evaluate the distortion of
the UWB signal introduced by its scattering from an antenna. The method proposed here can be used
for computing the radiation properties of antennas with reflectors, whose shapes differ from spherical
ones (for example, parabolic, elliptical, cylindrical, and others).
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