
Progress In Electromagnetics Research M, Vol. 88, 11–20, 2020

A New Analytical Method for Studying Higher Order Modes
of a Two-Wire Transmission Line
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Abstract—Regarding the increasing application of trahertz (THz) technology, the interest in using
two-wire waveguides is getting more and more popular due to their favorable propagation properties.
Therefore, a more accurate analysis of these structures is very important. In this paper, a simple
analysis of the guided waves in a two-wire waveguide based on Bipolar Coordinate System (BCS) has
been investigated. The structure under study is two infinite, perfect electric conductor (PEC) cylinders
in z direction, whose axes are positioned at a distance d from each other. The solution of TE and TM
modes is sought by the aid of electromagnetic formulation, and an analytical expression is proposed
for electromagnetic fields and cutoff wavenumbers, which have not been present in any of the previous
studies. In this study, for the first time a BCS is used to formulate two-wire waveguide problem, and the
validity range of the answer is discussed. The values of the cutoff wavenumbers are calculated for the
first few modes of TE and TM, using both the proposed method and Finite Difference Method (FDM).
The precise correspondence of the obtained values with the proposed method with those of FDM, along
with the high speed and simplicity in implementation, introduces the present method as an appropriate
candidate for analyzing transmission lines using parallel cylinders.

1. INTRODUCTION

With the rapid progress of THz technology in recent years, THz waveguides, which are the main
components of a THz system, have gained a lot of attention [1]. Several microwave and optical
waveguide structures have been used for THz applications such as coplanar strip line, metal pipes,
and dielectric fibers. But they all suffer from high loss or high dispersion [2]. It has been demonstrated
both experimentally and numerically that two-wire waveguide can be used at THz frequency region
successfully with many advantages such as no dispersion, low loss, easy fabrication, and good coupling
with common THz sources [3–8]. Besides, there have been lots of work based on this type of waveguide
which shows its high importance in microwave and THz frequencies [9–14]. From the point of view of
physics, theoretical studies on two-wire waveguide have been based on traditional electrostatic methods,
such as image method, distributed parameter theory with equivalent L and C parameters, mapping
approach, and approximate field analysis [15–19]. These approaches have been available for solving
the problems of its low frequency applications, and they assume only the dominant mode (TEM) on a
given structure more often, but for its modern applications of THz or even higher frequencies, a more
accurate analysis is necessary. Although there have been some efforts to investigate the higher order
modes in two-wire waveguides, they were either unsuccessful or substantially inaccurate [20, 21].

In [20], a method of transforming an eccentric coaxial as well as a double wire line of parallel
cylinders into coaxial configuration was used with the aid of the bilinear transformation expressed
in terms of mutually inverse points. The cutoff wavelength for TM and TE modes are found from
the solution of weighted Helmholtz equation. The weighted Helmholtz equation resulting from the
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transformation was used for finding cutoff wavelengths. This eigenvalue equation was similar to that for
a coaxial line except for the presence of a multiplication factor which made the dielectric inhomogeneous.
The cutoff wavelengths for TM and TE modes were found from the solution of the weighted Helmholtz
equation. The most important point regarding this work is that the numerical data for the two-wire
waveguide were not accurate because of the approximations mode in the numerical computation.

In [21], an analytical method was given to study the TEM mode of a two-wire waveguide using
a BCS. Considering the finite conductivity of the gold two-wire waveguide in the THz frequency, the
equivalent impedance and ohmic loss of two-wire waveguide were calculated. One of the important
shortcomings of this paper is the lack of the analysis of TE and TM modes.

Having said that, the features of the dominant mode of the two-wire waveguide can be obtained
easily by using conformal mapping. However, for higher-order modes (TE and TM), this method cannot
be used. Considering the geometry of the problem and features of the BCS, one can expect that the BCS
is very useful in the theoretical investigation of two-wire waveguides. It is noteworthy that Gholizadeh
et al. have recently applied a BCS to the analysis of an eccentric coaxial waveguide successfully [22].
Considering the shortcomings in the previous works, this study investigates the higher order modes
of a two-wire waveguide. The cutoff wavenumbers of TM and TE modes are determined by enforcing
the boundary conditions at the boundaries of the two-wire waveguide, and an analytical expression is
proposed for electromagnetic fields. There has been no numerical analysis of the higher order modes of
two-wire waveguides. However, in this paper, rather than the proposed analytical solution, the values
of cutoff wavenumbers are obtained using FDM in BCS. Zhou et al. have recently applied FDM in BCS
to the analysis of an eccentric cable successfully [23]. We have applied the same approach as [23] to
calculate the cutoff wavenumbers of TM and TE modes of a two-wire waveguide.

This paper is organized as follows. Section 2 presents the formulation of the problem and its
solution. The obtained results are discussed in Section 3. Finally, Section 4 concludes this research.

2. GENERAL ANALYSIS

2.1. Defining the Structure in BCS

The schematic of a two-wire waveguide is shown in Figure 1(a). It contains two PEC cylinders with
radii of R1 and R2, where d is the distance between their centers. This type of waveguide can be easily
described using BCS (ζ, η, z) as shown in Figure 1(b). The coordinates ζ and η are both dimensionless
and change as −∞ ≤ ζ ≤ ∞ and 0 ≤ η ≤ 2π, respectively. The equations describing ζ and η circles are

x = ax = -a
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= 1= -1
= 2= -2
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= /2
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Figure 1. Defining the structure in BCS. (a) The schematic of two-wire waveguide, (b) BCS.
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as follows:

(x− xc)
2 + y2 = R2, xc =

a

tanh (ζ)
, R =

a

|sinh (ζ)| (1)

x2 + (y − yc)
2 = r2, yc =

a

tan (η)
, r =

a

|sin (η)| . (2)

where a is an arbitrary positive real number, and 2a shows how far apart the poles of the BCS lie.
Moreover, the relation between the BCS and the Cartesian coordinate system is as follows:{

x = h1 sinh(ζ)
y = h2 sin(η)
z = h3z

. (3)

The transversal scale factors are defined as:⎧⎨
⎩ h1 = h2 =

a

cosh (ζ)− cos (η)
= h

h3 = 1
(4)

From Eqs. (1), (2), and Figure 1, we have:

R1 =
a

|sinh(ζ1)| , R2 =
a

|sinh(ζ2)| (5)

d = a× (coth ζ1 + coth ζ2) . (6)

It is obvious that ζ = −ζ1 and ζ = ζ2 show the surface of the conductors in the BCS.

2.2. The Helmholtz Equation and Boundary Conditions

The Helmholtz equation in the BCS can be written as:

∂2ϕ(ζ, η)

∂ζ2
+
∂2ϕ(ζ, η)

∂η2
+
a2

(
k2 − k2Z

)
ϕ(ζ, η)

(cosh ζ − cos η)2
= 0 (7)

and its answer for |ζ| ≥ 3 is as follows:

ϕ(ζ, η) = (A1 sinnη +A2 cosnη)×
(
B1Jn

(
2aKce

−|ζ|
)
+B2Yn

(
2aKce

−|ζ|
))

(8)

where ϕ represents the scalar function that illustrates the longitudinal component of the field (ez in
TM modes and hz in TE modes), kc = k2 − k2z and k = ω/c [22].

2.2.1. TM Modes

By employing the Dirichlet boundary condition ϕ(−ζ1, η) = ϕ(ζ2, η) = 0 for TM modes, we have the
following equations: {

B1Jn
(
2akce

−ζ1
)
+B2Yn

(
2akce

−ζ1
)
= 0

B1Jn
(
2akce

−ζ2
)
+B2Yn

(
2akce

−ζ2
)
= 0

(9)

By omitting B1 and B2 in Eq. (9), the dispersion equation for TM modes can be obtained as follows:

Jn

(
2akce

−ζ1
)
Yn

(
2akce

−ζ2
)
− Jn

(
2akce

−ζ2
)
Yn

(
2akce

−ζ1
)
= 0. (10)

Equation (10) can be reformulated as follows:

Jn(bp)Yn(p)− Jn(p)Yn(bp) = 0 (11)

where b = eζ2−ζ1 and p = 2akce
−ζ2 .

Consequently, the cutoff wavenumbers of TM modes can be derived from the following expression:

kc =
(pnm

2a

)
eζ2 (12)

where pnm denotes the mth root of Eq. (11).
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2.2.2. TE Modes

By employing the Neumann boundary condition ∂ϕ (ζ1, η) /∂ζ = ∂ϕ (ζ2, η) /∂ζ = 0 for TE modes, we
have the following equations:{

B1J
′
n

(
2akce

−ζ1
)
+B2Y

′
n

(
2akce

−ζ1
)
= 0

B1J
′
n

(
2akce

−ζ2
)
+B2Y

′
n

(
2akce

−ζ2
)
= 0

(13)

By omitting B1 and B2 in Eq. (13), the dispersion equation for TE modes can be obtained as follows:

J ′
n

(
2akce

−ζ1
)
Y ′
n

(
2akce

−ζ2
)
− J ′

n

(
2akce

−ζ2
)
Y ′
n

(
2akce

−ζ1
)
= 0. (14)

Equation (14) can be reformulated as follows:

J ′
n

(
bp′

)
Y ′
n

(
p′
)− J ′

n

(
p′
)
Y ′
n

(
bp′

)
= 0 (15)

where b = eζ2−ζ1 and p′ = 2akce
−ζ2 .

As a result, the cutoff wavenumbers of TE modes are obtained from the following expression:

kC =

(
p′nm
2a

)
eζ2 (16)

where p′nm denotes the mth root of Eq. (15).
It is clear that the characteristic equations of TE and TM modes (Eqs. (10) and (14), respectively)

do not have a unique answer for ζ1 = ζ2. Hence, the condition ζ1 �= ζ2 must be considered. In this
paper, we have supposed ζ1 < ζ2.

2.3. The Solution of the Electric and Magnetic Fields

To obtain an explicit solution for electric and magnetic fields of TE modes in a two-wire waveguide, we
have:

H2 = (A1 sinnη +A2 cosnη)
(
B1Jn

(
2aKce

−|ξ|
)
+B2Yn

(
2aKce

−|ξ|
))

e−jβz (17)

Therefore, for electric fields:

Eζ =
−jωμ

h (ω2με− β2)

∂

∂η
(HZ) =

−jωμ
h (ω2με− β2)

(nA cosnη − nB sinnη)(
B1Jn

(
2aKce

−|ζ|
)
+B2Yn

(
2aKce

−|ζ|
))

e−jβz, −ζ1 < ζ < ζ2, 0 < η < 2π (18)

Eη =
jωμ

h(ω2με− β2)

∂

∂ζ
(Hz)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

jωμ

h (ω2με− β2)
(A1 sinnη +A2 cosnη)

(−2aKce
−ζB1J

′
n

(
2aKce

−ζ
)

−2aKce
−ζB2Y

′
n

(
2aKce

−ζ
))
e−jβz, 0 < ζ < ζ2, 0 < η < 2π

jωμ

h (ω2με− β2)
(A1 sinnη +A2 cosnη)

(
2aKce

ζB1J
′
n

(
2aKce

ζ
)

+2aKce
ζB2Y

′
n

(
2aKce

ζ
))
e−jβz, −ζ1 < ζ < 0, 0 < η < 2π

(19)

And for magnetic fields:

Hη =
−jβ

h (ω2με− β2)

∂

∂η
(Hz) =

−jβ
h (ω2με− β2)

(nA1 cosnη − nA2 sinnη)(
B1Jn

(
2aKce

−|ζ|
)
+B2Yn

(
2aKce

−|ζ|
))

e−jβz, −ζ1 < ζ < ζ2, 0 < η < 2π (20)
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Hζ =
−jβ

h(ω2με− β2)

∂

∂ζ
(HZ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−jβ
h (ω2με− β2)

(A1 sinnη +A2 cosnη)
(−2aKce

−ζB1J
′
n

(
2aKce

−ζ
)

−2aKce
−ζB2Y

′
n

(
2aKce

−ζ
))
e−jβz, 0 < ζ < ζ2, 0 < η < 2π

−jβ
h (ω2με− β2)

(A1 sinnη +A2 cosnη)
(
2aKce

ζB1J
′
n

(
2aKce

ζ
)

+2aKce
ζB2Y

′
n

(
2aKce

ζ
))
e−jβz, −ζ1 < ζ < 0, 0 < η < 2π

(21)

The solution for electric and magnetic fields of TM modes can be obtained similarly.

2.4. FDM

To apply the FDM to the Helmholtz equation, firstly, according to the Taylor series of ϕi,j in the BCS,
we can write:

∂2ϕi,j

∂ζ2
=
ϕi+1,j − 2ϕi,j + ϕi−1,j

(Δζ)2
+ o[(Δζ)2] (22)

∂2ϕi,j

∂η2
=
ϕi,j+1 − 2ϕi,j + ϕi,j−1

(Δη)2
+ o[(Δη)2] (23)

Considering Eqs. (7), (22), and (23), we can simply extract the differential form of the Helmholtz
equation in the BCS on an orthogonal mesh. Accordingly, using the equation and boundary conditions,
a differentiation matrix (X) can be derived to solve the eigenvalue problem:

Xψ = k2cψ = λψ (24)

where ψ represents the eigenvector of ϕ values, and λ = k2c is the required eigenvalue [23]. It is obvious
that the entire region of the two-wire waveguide in the BCS can be defined as −ζ1 ≤ ζ ≤ ζ2 and
0 ≤ η ≤ 2π. Hence, rather than the Dirichlet and Neumann boundary conditions (for TM and TE
modes, respectively) at ζ = −ζ1 and ζ = ζ2, the periodic boundary conditions should be applied at the
boundaries η = 0 and η = 2π. Also, we can write the parameters of the BCS based on the dimensions
of the two-wire waveguide as follows:

a =

√(
(R1 +R2)

2 − d2
)
×

(
(R1 −R2)

2 − d2
)

2d
(25)

ζ1 = arcsinh (a/R1) (26)

ζ2 = arcsinh (a/R2) (27)

In order to be convenient for comparison and conversion, we have considered α = R2/R1 and β = d/R1.
Hence, Equations (25)–(27) can be reformulated as follows:

a =

√
((1 + α)2 − β2)× ((1− α)2 − β2)

2β
(28)

ζ1 = arcsinh(a) (29)

ζ2 = arcsinh(a/α) (30)

The main parameters used in the calculations are summarized in Table 1.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Evaluation of the Proposed Method

Unlike the introduced parameters ζ1 and ζ2 which are dimensionless, the waveguide has physical
dimensions that can be expressed in cm, mm, inch, wavelength, etc. The relationship between ζ1
and ζ2 with physical dimensions of the waveguide is illustrated in Figure 2. Looking at this figure, it is
clear that as ζ1 increases, the value of β increases, too. Obviously, |ζ| ≥ 3 means β ≥ 20. The values of
β can be plotted against α, corresponding to any arbitrary value of ζ1 larger than 3.



16 Gholizadeh and Hojjat Kashani

Table 1. Main parameters for the calculations using FDM.

Parameters Values

R1 1

R2 α

d β

Range of ζ −ζ1 ≤ ζ ≤ ζ2; ζ1 and ζ2 calculated from Equations (28)–(30)

Range of η 0 ≤ η ≤ 2π

Δζ 0.01

Δη 0.01

Figure 2. The values of β against α.

3.2. Investigating the Accuracy of the Proposed Method

The answers of Eqs. (11) and (15) are calculated using MATLAB software, and the values of pnm and
p′nm are given in Table 2. Moreover, the cutoff wavenumbers (knm) of TE and TM modes are given
in Table 3 and Table 4, respectively. In these tables, the cutoff wavenumbers are calculated using our
analytical method, and the results are compared with those given in [20]. Due to the complexity of the
manufacturing process of the structure and the lack of a precise solution for it, we have used the FDM
as a reference for the comparison between the two methods. Considering Eqs. (22) and (23), since we
chose Δζ = Δη = 0.01 for these calculations, an accuracy of 0.0001 can be achieved.

From the tables we can find that our analytical results coincide with those of the FDM. Our results,
both analytical and numerical ones, do not agree with those given in [20]. This is predictable, since in
[20] the authors have clearly mentioned that the numerical data for the two-wire waveguide were not
accurate because of the approximations mode in the numerical computation. In other words, for solving
the weighted Helmholtz equation resulting from the bilinear transformation for the two-wire waveguide,
they considered a baseless assumption (w = ρ1ρ2) in order to just obtain a final expression for the cutoff
wavenumbers, no matter how the results would be accurate.

Finally, a comparison between the cutoff wavenumber of TE11 predicted by our analytical method
and those of the FDM is proposed in Figure 3. Although we have stated that the validity range of our
analytical method is |ζ| ≥ 3 ↔ β ≥ 20, it is clear from the figure that the method works fairly well,
even out of this range. For example, the relative error for β = 6 is only 3 percent.
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Table 2. The values of p′nm and pnm for TE and TM modes, respectively.

p′nm pnm

m m

n 1 2 3 4 5 1 2 3 4 5

β = 20,

α = 0.3

0 1.416120 2.740029 4.079102 5.423540 6.770382 1.328114 2.688640 4.043420 5.396343 6.748453

1 0.475445 1.545459 2.801154 4.118196 5.452276 1.416120 2.740029 4.079102 5.423540 6.770382

2 0.892379 1.886231 2.983809 4.235345 5.538347 1.645554 2.888773 4.184711 5.504586 6.835915

3 1.256814 2.321038 3.284045 4.430800 5.681553 1.952933 3.120060 4.356072 5.637897 6.944302

4 1.597504 2.751540 3.680303 4.706136 5.882286 2.292225 3.413173 4.586522 5.820931 7.094348

5 1.928786 3.149435 4.119634 5.060624 6.142400 2.640368 3.745977 4.867034 6.050206 7.284453

β = 20,

α = 0.5

0 3.208332 6.335964 9.479927 12.628506 15.778995 3.134891 6.297118 9.453717 12.608763 15.763169

1 0.678140 3.294034 6.376742 9.506739 12.648508 3.208332 6.335964 9.479927 12.628506 15.778995

2 1.342334 3.542342 6.497992 9.586832 12.708365 3.418422 6.451185 9.558174 12.687576 15.826395

3 1.981725 3.930427 6.696694 9.719213 12.807638 3.740117 6.639044 9.687341 12.785502 15.905127

4 2.591726 4.427961 6.968510 9.902333 12.945620 4.144478 6.893925 9.865658 12.921522 16.014796

5 3.174859 5.002306 7.308540 10.134236 13.121377 4.606183 7.209022 10.090826 13.094616 16.154869

Table 3. The cutoff wavenumbers (knm) for TE modes. Comparison with [20] and the results of the
FDM.

β = 20, α = 0.3 β = 20, α = 0.5 β = 20, α = 0.7

Our method FDM [20] Our method FDM [20] Our method FDM [20]

TE11 1.585176 1.579914 0.306907 1.357132 1.352219 0.031141 1.184670 1.180112 0.005250

TE21 2.975272 2.932471 0.425961 2.686356 2.680042 0.047501 2.367487 2.358168 0.015884

TE31 4.190330 4.179753 0.232982 3.965942 3.958754 0.030560 3.546621 3.449959 0.008971

TE41 5.326217 5.309969 0.462192 5.186711 5.181450 0.033447 4.720309 4.708141 0.005709

TE51 6.430741 6..397414 0.231801 6.353709 6.340638 0.049872 5.886891 5.867714 0.008603

β = 25, α = 0.4 β = 25, α = 0.6 β = 25, α = 0.8

Our method FDM [20] Our method FDM [20] Our method FDM [20]

TE11 1.463508 1.461141 0.068420 1.263571 1.263061 0.013788 1.114856 1.107802 0.002410

TE21 2.846150 2.832471 0.050690 2.518992 2.509422 0.014934 2.229442 2.218168 0.003677

TE31 4.114150 4.108997 0.068126 3.758638 3.743054 0.013615 3.343484 3.329959 0.002365

TE41 5.290239 5.279556 0.050085 4.976131 4.960187 0.009706 4.456714 4.448141 0.003633

TE51 6.413229 6.400664 0.067529 6.167193 6.158638 0.023116 5.568863 5.558477 0.004898

3.3. Investigating the CPU Computation Time of Our Method and the FDM

In Table 5, the CPU computation times of our analytical method and the FDM are compared. The
time is measured using the Tic-Toc functions in MATLAB software. For this measurement, a personal
computer with the following specifications is used:

• CPU: Core i5, 2.5GHz.
• RAM: 4GB

Considering the results in this table, our analytical method is significantly faster than the FDM in
calculating the cutoff wavenumbers.
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Table 4. The cutoff wavenumbers (knm) for TM modes. Comparison with [20] and the results of FDM.

β = 20, α = 0.3 β = 20, α = 0.5 β = 20, α = 0.7

Our method FDM [20] Our method FDM [20] Our method FDM [20]

TM1 4.428049 4.419144 0.309592 6.273724 6.265761 0.032054 10.512977 10.509137 0.019137

TM11 4.721467 4.716471 0.077735 6.420697 6.419422 0.047687 10.579667 10.564593 0.015933

TM21 5.486420 5.479753 0.306804 6.841142 6.838305 0.031000 10.777206 10.770177 0.005177

TM31 6.511249 6.498556 0.462487 7.484935 7.471189 0.047314 11.098452 11.015836 0.015836

TM41 7.642479 7.630664 0.232542 8.294166 8.280638 0.050324 11.532820 11.518840 0.008840

β = 20, α = 0.4 β = 20, α = 0.6 β = 20, α = 0.8

Our method FDM [20] Our method FDM [20] Our method FDM [20]

TM1 5.196193 5.188441 0.041146 7.853183 7.848336 0.014108 15.759716 15.750012 0.002481

TM11 5.404252 5.398924 0.064944 7.954753 7.945631 0.010197 15.799131 15.788168 0.003691

TM21 5.979003 5.965097 0.068348 8.251627 8.245937 0.013746 15.916786 15.909959 0.002399

TM31 6.813000 6.806675 0.050491 8.722939 8.714211 0.014855 16.110951 16.100981 0.003662

TM41 7.803645 7.789206 0.067904 9.340856 9.329724 0.013482 16.378881 16.364771 0.004925

Table 5. The CPU computation time comparison of using our analytical method and FDM.

β = 20, α = 0.3 β = 20, α = 0.5

Our analytical method FDM Our analytical method FDM

TE11 0.014512 5.765457 0.038425 8. 357141

TE21 0.018874 5.835261 0.063325 8.397877

TE31 0.023345 5.884356 0.081732 8.463256

TE41 0.031149 5.953547 0.095671 8.537683

TE51 0.038892 5.995379 0.117438 8.638943

Average time 0.025354 5.886800 0.079318 8.478980

Figure 3. The cutoff wavenumber of TE11, comparison with its value using FDM at different values
of β(α = 0.5).
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4. CONCLUSIONS

The problem has been investigated in a fully analytical manner, and analytical expressions have been
obtained for the electric and magnetic field functions and cutoff wavenumbers. The presented method
gives accurate results for β ≥ 20. An excellent agreement between the calculated cutoff wavenumbers
and those obtained by the FDM is observed. The combination of accuracy, analyticity, and ease
of implementation makes this method an appropriate option for analysis of transmission lines using
parallel cylinders. Future steps of this study can fall into the following subjects: analysis of circular
waveguides which are loaded with eccentric dielectric materials, analysis of dielectric coating on the
inner conductor of an eccentric coaxial waveguide, and analysis of scattering of electromagnetic waves
from an eccentrically coated circular PEC cylinder.
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