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Magnetic Field Distribution of an Elliptical Permanent Magnet

Van Tai Nguyen1, 2, *, Tien-Fu Lu1, Will Robertson1, and Paul Grimshaw1

Abstract—The magnetic field distribution of an axially magnetised cylinder with an elliptical profile is
analytically modelled and analysed in this paper. An accurate and fast-computed semi-analytical model
is developed, based on the charge model and geometrical analysis, to compute three components of the
magnetic field generated by this elliptical cylinder in three-dimensional space. The accuracy of the
model is verified using Finite Element Analysis. The analytical expressions are efficient for calculating
the implementation of the magnetic field, taking less than one millisecond to execute on a modern PC.
Using the fast-computed analytical model, the distribution of the magnetic field of an axially magnetised
cylinder with different elliptical profiles is studied and compared with that of a circular cylinder. The
variations in magnetic field strength of axial, azimuthal and radial components can be used in novel
sensing applications. The derived analytical model can be extended to calculate the magnetic field
of arc-shaped elliptical and circular cylinders with axial magnetization, which can be used in Halbach
arrangements.

1. INTRODUCTION

Understanding magnetic field distribution of a permanent magnet plays a key role in developing magnetic
sensing devices [1] and medical appliances (i.e., magnetic resonance imaging) [2]. In other applications
such as magnetic suspensions, levitated magnetic disks, magnetic gears, and magnetic couplings, the

forces and torques generated by permanent magnets are of great interest [3]. These forces (
−→
F ) and

torques (
−→
T ) can be computed using the charge model, involving the magnetic field [4] as:

−→
F =

∫∫∫
v

−→
B extσmvdv +

∫∫
s

−→
B extσmsds

and
−→
T =

∫∫∫
v

(−→r ×−→
B ext

)
σmvdv +

∫∫
s

(−→r ×−→
B ext

)
σmsds

where
−→
B ext is the external magnetic field; σmv is the volume charge of a given magnet with a

magnetization vector
−→
J ; σmv = −−→∇·−→J ; σms is the surface charge of the given magnet; σms =

−→
J ·−→n ; −→n

is the normal vector to the impacted surface of the given magnet; −→r is the distance between the magnetic
field source and the given magnet; and V and S denote the volume and surface area of the given magnet,
respectively. A fast-computed model of the magnetic field source generated by a permanent magnet is
important to facilitate the design, optimization, and dynamical modelling of devices and systems using
permanent magnets.

Although magnetic field solutions for generalized geometries are available using Finite Element
Analysis (FEA), and this method is inefficient for 3D problems, with a substantial tradeoff between
computation time and accuracy. To address this issue, magnetic field solutions of permanent magnets
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with specific shapes and configurations have been analytically modelled and studied [3–15]. Ravaud et
al. [4] developed analytical models to calculate the magnetic field of ring-shaped permanent magnets
with axial and radial magnetization. Xu et at. [5] studied the strong magnetic field of a permanent
magnet array used in refrigeration. Ravaud et al. [6] derived the exact analytical model to compute the
magnetic field produced by a radially magnetized tile permanent magnet. Jian and Chan [7] analytically
calculated the magnetic field distribution of magnetic gears. Yonnet et al. [8] derived an analytical
model to calculate permanent magnet couplings. McClurg [9] studied the magnetic field distribution of
a sphere and ellipsoid. Based on a Coulombian approach, Rakotoarison et al. [10] modelled the scalar
potential and magnetic field of an arc-shaped permanent magnet with radial magnetization. Nguyen and
Lu [11] derived an analytical model to calculate the magnetic field of a circular cylinder with diametrical
magnetization. Ravaud and Lemarquand [12] analysed the magnetic field of a parallelepipedic magnet.
Nguyen and Lu [13] developed a fast-computed model to study the magnetic field distribution of an
elliptical cylinder with diametrical magnetization. However, the distribution of the magnetic field of
an elliptical cylinder with axial magnetization has not been analytically expressed and studied in the
literature.

Inspired by the fact that elliptical profiles have been widely found in physics, astronomy, and
engineering [13]. For example, the orbit of each planet in the solar system is approximately an
ellipse [16]. Elliptical gears have been found to acquire great efficiency in motion and power transmission
solutions [17–19]; hence, the magnetic field distribution and application of a permanent magnet with
elliptical profiles could be of great interest [9]. Moreover, a fast-computed model to calculate the
magnetic field could facilitate the design process of an elliptical permanent magnet used for surface
magnetic resonance imaging [20], a novel magnetic coupler [21], the design of permanent magnetic
gears [7], and couplings [8] with elliptical profiles as well as a non-contact cam mechanism [22] using
an axially magnetised driver with an elliptical profile. Furthermore, for educational purposes, this
research would assist students in understanding the magnetic field distribution of the elliptical cylinder
permanent magnet as an example beyond the common permanent magnets in cuboid, ring, and circular
cylindrical shapes, which are commonly found in textbooks [3]. In addition, having in hand a model of
the magnetic field of an elliptical cylinder with axial and diametrical magnetizations, the distribution of
the magnetic field of an elliptical cylinder with arbitrarily uniform magnetization, which is a combination
of the axial and diametrical magnetizations [23], can be predicted, thanks to the superposition principle.

These motivations led to the modelling and study of the magnetic field distribution of an elliptical
cylinder with uniformly axial magnetization in this paper. The charge model [3] and geometric analyses
are applied to derive the semi-analytical expressions of the axial, azimuthal, and radial components of the
magnetic field created by the cylinder in three-dimensional (3D) space. FEA was conducted to verify
the accuracy of the analytical model, and the efficiency of these expressions was also demonstrated.
Furthermore, the fast-computed analytical model makes it possible to study the distribution of the
magnetic field created by an axially magnetized cylinder with different elliptical profiles and compare
it with that of a circular cylinder.

This paper is organized as follows. Section 2 describes the mathematical formulation of the
analytical model. Section 3 presents the Finite Element verification. Section 4 discusses the distribution
of the magnetic field of a cylinder with different elliptical profiles. Section 5 draws the conclusion.

2. MATHEMATICAL FORMULATION

The geometry of an elliptical cylinder used to derive expressions of the three magnetic field components

is illustrated in Figure 1 and Figure 2. It is assumed that the magnetization
−→
J is uniformly distributed

along axis Z, as depicted in Figure 1(a), and the thickness of the cylinder is h. The elliptical profile of
the cylinder is presented in Figure 2; here, F1 and F2 are the foci of the ellipse; a is the length of the
semi-major axis; and b is the length of the semi-minor axis. The general equation for the ellipse Eq. (1)

has a parametric representation using sine and cosine functions as
−→
V = (x, y) = (a cos τ , b sin τ), 0

≤ τ < 2π; τ can be defined as shown in Figure 2, based on de la Hire [24], where A is on a circle with
a radius of a, and B is on a circle with a radius of b.

x2

a2
+
y2

b2
= 1 (1)
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(a) (b)

Figure 1. Computed elliptical cylinder: (a) 3D model of the elliptical cylinder; (b) Projection of the
cylinder on an O′X ′Y ′ plane.

Figure 2. Schematic of the elliptical profile of the cylinder [24].

Under static conditions, the well-known governing equations which are so-called Maxwell equations
(Eqs. (M.1)–(M.4)) for electromagnetism can be presented as follows:

−→∇ ×−→
H =

−→
j (M.1)

−→∇·−→B = 0 (M.2)
−→∇ ×−→

E = 0 (M.3)
−→∇·−→D = ρ (M.4)

and the constitutive equations linking
−→
B to

−→
H and

−→
D to

−→
E are expressed as

−→
B = μ0

−→
H +

−→
J (M.5) and−→

D = ε0
−→
E (M.6), respectively.

Here, j (A/m2) and ρ (C/m3) are the electric current density and electric charge density,
respectively; E is the electric field intensity (V/m); D is the electric flux density (C/m2); H is the
magnetic field intensity (A/m); B is the magnetic flux density (T ); μ0 (H/m) and ε0 (F/m) are the
permeability and permittivity of the vacuum, respectively; J(T ) is the intensity of magnetization.

By introducing the surface charge density σs and the volume charge density σv with some
simplifications, these equations (Eqs. (M.1)–(M.6)) can be turned into a new form which is called the
charge model (the derivation steps can be found in the work of Furlani [3].) to calculate the magnetic
field created by a permanent magnet in three-dimensional free space. Based on this charge model, the
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magnetic field intensity
−−→
HK at any point K(r, α, z) in a cylindrical coordinate system can be computed

using Eq. (2).

−−→
HK=

1

4πμ0

⎛
⎜⎝∫∫

s

σs∣∣∣−−→PK
∣∣∣3
−−→
PKds+

∫∫∫
v

σv∣∣∣−−→PK
∣∣∣3
−−→
PKdv

⎞
⎟⎠ (2)

where P is a point on the surface of the cylinder (Figure 1(a)); v and s denote the volume and surface
area of the given magnet, respectively.

The volume charge density σv in Eq. (2) can be calculated as follows:

σv=−−→∇·−→J (3)

Since the magnetisation vector
−→
J is uniformly axial, and its divergence is equal to zero, which means

σv = 0. This means that the volume charge has no contribution to the magnetic field; hence, the

magnetic field intensity
−−→
HK at point K can be calculated using only the surface charge:

−−→
HK=

1

4πμ0

∫∫
s

σs∣∣∣−−→PK
∣∣∣3
−−→
PKds (4)

where the surface charge density σs can be calculated as follows:

σs=
−→
J · −→n =

{
J for the upper surface
0 for the cylindrical surface
−J for the lower surface

(5)

Here, −→n is the unit vector normal to the surface, for the top and bottom bases of the cylinder, and −→n
is parallel to vector

−→
J and perpendicular to

−→
J for the cylindrical surface. Thus, only the upper and

lower surfaces of the cylinder contribute to the magnetic field.
From Eqs. (4) and (5), the magnetic field in a cylindrical coordinate system (r, α, z) with azimuth

coincident with axis X is:−→
HK(r,α,z) =

−→
H+

K(r,α,z) +
−→
H−

K(r,α,z)

=
J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

−−→
PK+∣∣∣−−→PK+

∣∣∣3 r1dr1dθ+
−J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

−−→
PK−∣∣∣−−→PK−

∣∣∣3 r1dr1dθ (6)

where the sign “+” refers to the magnetic field from the upper surface, and “−” refers to the lower
surface.

From Figure 2,

r0 = O′P0 =
√

a2 cos2 τ + b2 sin2 τ (7)

and

a cos τ = O′P0cos θ (8)

b sin τ = O′P0sin θ (9)

Dividing Eq. (8) by (9), we achieve:
a

b
cot τ = cot θ (10)

Inserting Eq. (10) into Eq. (7) produces:

r0=
ab√

a2sin2θ+b2cos2θ
(11)

Firstly, we compute the magnetic field created by the upper surface.

From Figures 1(a) and 1(b), the vector
−−→
PK+ can be projected on the radial, azimuthal, and axial

directions (−→ur, −→uα, and −→uz are the unit vectors respectively) as follows:
−−→
PK+ =

−−→
PP ′+ +

−−−→
P ′K ′+ +

−−→
K ′K+ = r1 sin (α− θ)−→uα + (r − r1cos (α− θ))−→ur + (z − h)−→uz (12)
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Inserting Eq. (12) into Eq. (6) gives:

−→
H+

K(r,α,z)=
J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

r1 sin (α− θ)−→uα + (r − r1cos (α− θ))−→ur + (z − h)−→uz(
r21 + r2 − 2r1r cos (α− θ) + (z − h)2

) 3
2

r1dr1dθ (13)

The axial, azimuthal, and radial components of the magnetic field can be derived from Eq. (13), as
detailed in the following sections.

2.1. The Axial Component H
(3D)
K(z)(r,α, z)

The axial component is expressed as the superposition of the contribution of two faces: H
(3D)
K(z) (r, α, z) =

H
(3D)+
K(z) (r, α, z) +H

(3D)−
K(z) (r, α, z). From Eq. (13), H

(3D)+
K(z) (r, α, z) can be expressed as follows:

H
(3D)+
K(z) (r, α, z) =

J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

(z − h)(
r21 + r2 − 2r1r cos (α− θ)+ (z − h)2

) 3
2

r1dr1dθ (14)

Integrating Eq. (14) based on r1 with some simplifications yields (Appendix A):

H
(3D)+
K(z) (r, α, z)=

J

4πμ0

∫ θ=π

θ=−π

(
2 (δr0 − 2ξ+)

(4ξ+ − δ2)
√

r0 (r0 − δ) + ξ+
+

4
√
ξ+

4ξ+ − δ2

)
(z − h) dθ (15)

where δ = 2r cos (α− θ) and ξ+ = r2 + (z − h)2.

It is noted that 4ξ+ − δ2 = 4r2 + 4 (z − h)2 − 4r2cos2 (α− θ) > 0 except the singularity case when
z = h and α− θ = lπ; l = 0, 1, 2, 3, . . .. This singularity can be easily removed when executing Eq. (15)
to avoid indefinite result.

The contribution of the lower surface can be derived, following the same steps as above to achieve,
with ξ− = r2 + z2. Similar to the above notation, 4ξ− − δ2 = 4r2 + 4z2 − 4r2cos2 (α− θ) > 0 except
the singularity case when z = 0 and α− θ = lπ; l = 0, 1, 2, 3, . . ..

H
(3D)−
K(z) (r, α, z) =

−J

4πμ0

∫ θ=π

θ=−π

(
2 (δr0 − 2ξ−)

(4ξ− − δ2)
√

r0 (r0 − δ) + ξ−
+

4
√
ξ−

4ξ− − δ2

)
(z) dθ (16)

2.2. The Tangential (Azimuthal) Component H
(3D)
K(α)(r,α, z)

The azimuthal component H
(3D)
K(α) (r, α, z) = H

(3D)+
K(α) (r, α, z) + H

(3D)−
K(α) (r, α, z). From Eq. (13),

H
(3D)+
K(α) (r, α, z) can be expressed as follows:

H
(3D)+
K(α) (r, α, z) =

J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

r21 sin (α− θ)(
r21 + r2 − 2r1r cos (α− θ) + (z − h)2

) 3
2

dr1dθ (17)

Integrating Eq. (17) based on r1 with some simplifications produces (Appendix A):

H
(3D)+
K(α) (r, α, z) =

J

4πμ0

∫ θ=π

θ=−π

(
ln
(
2
(√

r0 (r0 − δ) + ξ+ + r0

)
− δ
)
− 2

(
2ξ+ − δ2

)
r0 + 2δξ+

(4ξ+ − δ2)
√

r0 (r0 − δ) + ξ+

− ln(2
√

ξ+ − δ) +
2δξ+

(4ξ+ − δ2)
√

ξ+

)
sin(α− θ)dθ (18)
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The contribution of the lower surface can be derived, following the same steps as above to achieve:

H
(3D)−
K(α) (r, α, z) =

−J

4πμ0

∫ θ=π

θ=−π

(
ln
(
2
(√

r0 (r0 − δ) + ξ− + r0

)
− δ
)
− 2

(
2ξ− − δ2

)
r0 + 2δξ−

(4ξ− − δ2)
√

r0 (r0 − δ) + ξ−

− ln(2(
√

ξ−)− δ) +
2δξ−

(4ξ− − δ2)
√

ξ−

)
sin(α− θ)dθ (19)

2.3. The Radial Component H
(3D)
K(r)(r,α, z)

The radial component H
(3D)
K(r) (r, α, z) = H

(3D)+
K(r) (r, α, z)+H

(3D)−
K(r) (r, α, z). From Eq. (13), H

(3D)
K(r) (r, α, z)

can be expressed as follows:

H
(3D)
K(r)(r, α, z) =

J

4πμ0

∫ θ=π

θ=−π

∫ r1=r0

r1=0

(r − r1cos (α− θ))(
r21 + r2 − 2r1r cos (α− θ) + (z − h)2

) 3
2

r1dr1dθ (20)

Integrating Eq. (20) based on r1 with Υ = cos (α− θ) with some simplifications gives (Appendix A):

H
(3D)+
K(r) (r, α, z) =

J

4πμ0

∫ θ=π

θ=−π

(
2
(
δr + 2ξ+Υ− δ2Υ

)
r0 − 4ξ+r + 2δξ+Υ

(4ξ+ − δ2)
√

r0 (r0 − δ) + ξ+

−Υ ln
(
2
(√

r0 (r0−δ) + ξ+ + r0

)
−δ
)
−−4ξ+r + 2δξ+Υ

(4ξ+−δ2)
√

ξ+
+Υ ln(2

√
ξ+−δ))dθ(21)

The contribution of the lower surface can be derived, following the same steps as above to achieve:

H
(3D)−
K(r) (r, α, z) =

−J

4πμ0

∫ θ=π

θ=−π

(
2
(
δr + 2ξ−Υ− δ2Υ

)
r0 − 4ξ−r + 2δξ−Υ

(4ξ− − δ2)
√

r0 (r0 − δ) + ξ−

−Υ ln
(
2
(√

r0 (r0−δ) + ξ−+ r0

)
−δ
)
−−4ξ−r + 2δξ−Υ

(4ξ−−δ2)
√

ξ−
+Υ ln(2

√
ξ−−δ))dθ (22)

From the magnetic field intensity
−→
HK , the magnetic flux density

−→
BK can be computed with:

−→
BK = μ0

−→
HK (in the air space) (23)

−→
BK = μ0

−→
HK +

−→
J (inside the magnet) (24)

In the case where a = b, the elliptical cylinder is simplified to a circular cylinder; hence the derived
expressions could also be implemented to calculate the magnetic field generated by a circular cylinder
permanent magnet with uniformly axial magnetization.

Following the same derivation steps as presented above, the magnetic field created by an arc-shaped
elliptical cylinder (which is aligned with the Cartesian and cylindrical coordinate systems as presented
in Figure 3) with uniformly axial magnetization can be computed using the derived expressions for
the three components with an integral interval of θ from 0 to the arc angle γ instead of [−π, π]. The
calculation of magnetic field of this arc-shaped cylinder can facilitate the design and optimization of a
Hallbach permanent magnet [25] which may include pieces of permanent magnet of this kind.

3. FINITE ELEMENT VERIFICATION

Finite Element Analysis (FEA) is a commonly used method to study problems in various fields. In
static electromagnetism, this method aims at solving the governing and constitutive equations listed
in Section 2 (Eqs. (M.1)–(M.6)). In this research, FEA is implemented to verify the accuracy of the
semi-analytical model using Electromagnetic Simulation Software R©(EMS) (EMWorks, Inc., Montreal,
Quebec, Canada). The parameters of the used elliptical cylinder made of rare earth material (Figure 2)
are: a = 6mm, b = 3mm, h = 5mm, and magnetization J = 1T which is axially oriented.
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Figure 3. Arc-shaped elliptical cylinder.

 

      
    

  
   

Figure 4. FEA verification results for axial component (the parameters of the used elliptical cylinder
(Figure 2) are: a = 0.006m, b = 0.003m, h = 0.005m, J = 1T); plots along the radial distance with
z = 0.007m and r from 0m to 0.020m.
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Figure 5. FEA verification results for radial
component (the parameters of the used elliptical
cylinder (Figure 2) are: a = 0.006m, b =
0.003m, h = 0.005m, J = 1T); plots along the
radial distance with z = 0.007m and r from 0m
to 0.020m.
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Figure 6. FEA verification results for azimuthal
component (the parameters of the used elliptical
cylinder (Figure 2) are: a = 0.006m, b =
0.003m, h = 0.005m, J = 1T); plots along the
radial distance with z = 0.007m and r from 0m
to 0.020m.

The plots of three components of the magnetic field generated by the given elliptical cylinder are
illustrated in Figures 4, 5, and 6. Three components of magnetic field of ten points with random r
(mm) are extracted from these figures and listed in Table 1 including the errors of computed results
using the derived analytical model against those of Finite Element Analysis.
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Table 1. Analytical results vs FEA results for 10 points with random r (mm) and errors of results
between two methods (Max — Maximum; Aver — Average; Min — Minimum).

Points

(r mm, 

30°, 7 

mm)

Axial component

(Gauss)

Azimuthal component

(Gauss)

Radial component

(Gauss)

Analytical 

results 

FEA 

results 

Analytical 

results 
FEA results 

Analytical 

results 
FEA results 

1.01 2004.985 2012.765 142.500 147.123 282.559 286.766 

2.22 1828.209 1829.148 302.959 309.872 623.767 633.473 

3.43 1457.334 1457.554 417.049 411.765 931.164 933.559 

5.25 599.604 596.804 350.571 348.170 1019.055 1018.313 

6.67 145.592 144.049 185.266 184.216 733.565 730.477 

8.89 -58.102 -58.166 54.862 54.466 348.896 348.724 

13.13 -59.326 -59.374 7.207 7.217 92.435 92.307 

17.17 -34.112 -34.081 1.579 1.563 33.517 33.484 

18.18 -29.717 -29.686 1.135 1.133 26.859 26.834 

19.79 -24.015 -23.986 0.693 0.687 19.289 19.223 

Error 

(%) 

Max Aver Min Max Aver Min Max Aver Min 

1.07 0.25 0.015 3.14 1.08 0.13 1.53 0.45 0.049 

It can be seen from Table 1 and Figures 4, 5, and 6 that the results of the magnetic field computed
using the derived semi-analytical model are in excellent agreement with those computed using the FEA
model (the average errors between two models are 0.25% for axial component, 1.08% for azimuthal
component, and 0.45% for radial component (Table 1)).

Evaluated in MATLAB R2016b (MathWorks, Natick, MA, USA), it took an average of 0.75ms on
a personal computer (Intel Core i7-6700 CPU, 3.40GHz) to calculate each component, using the derived
expressions at a single location (2000 samplepoints were used in this evaluation), whereas on the other
hand, it could take up to several hours with small scale of mesh (the smaller the mesh is, the more
computation time it consumes) to complete the simulation using FEA on the same personal computer.

4. ANALYSIS OF THE MAGNETIC FIELD DISTRIBUTION

In this section, the magnetic field distribution created by an axially magnetized cylinder with different
elliptical profiles is plotted along the radial distance r in the interval [0mm, 20mm] with the azimuthal
angle α = π/6, and along the azimuthal angle α (alpha) in the interval of [−π, π] with the radial distance
r = 8mm. The thickness of the used cylinder is h = 5mm; the magnetic remanence J = 1T; the axial
coordinate of the computed profile is z = 7mm; the elliptical profiles of the cylinder vary due to the
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Figure 7. Distribution of the axial component (the thickness of the used cylinder is h = 5mm; the
magnetic remanence J = 1T; the axial coordinate of the computed profile is z = 7mm): (a) plot along
the radial distancer in the interval [0mm, 20mm] with azimuthal angle α = π/6; (b) plot along the
azimuthal angle α (alpha) with radial distance r = 8mm.

changes in the so-called axis ratio c of the major semi-axis a and semi-minor axis b, c = a/b. The plots

of the magnetic field distribution were carried out in six cases: c1 = 6/3 = 2/1; c2 =
√
18/

√
18 = 1/1;

c3 = 9/2; c4 = 18/1; c5 = 2/9 and c6 = 1/18. It is noted here that regardless of the variations in
profiles, the ellipses have the same area S = πab = 18πmm2.

Figure 7(a) shows that the amplitude of the axial component of a circular cylinder (c2 = 1/1) is
the largest (2143Gauss) at the beginning r = 0mm, and it eventually drops down to below those of
c1 (from r = 2.8mm), c3 (from r = 4.5mm) and c4 (from r = 6.1mm). All the other amplitudes
decrease when r increases. Figure 7(b) demonstrates that the magnetic field of a circular cylinder
(c2 = 1/1) is a negative constant (−57.64 Gauss) along the azimuthal angle (Table 2), whereas the
magnetic field distribution of an elliptical cylinder is periodic and obtains both positive and negative
values; the amplitudes of the periodical distribution (Table 2) are 62.69 Gauss for c1, 810.0 Gauss for
c3, 963.1 Gauss for c4, 810.0 Gauss for c5, and 963.2 Gauss for c6. It can be concluded that, for the
same area, the elliptical cylinder, compared with the circular cylinder, has the interesting properties of
producing larger magnetic field amplitudes and periodical distributions of the magnetic field.

Figures 8(a) and 8(b) show that the azimuthal distribution of the magnetic field of a circular
cylinder is zero (Table 2) due to its symmetry. However, elliptical cylinders can yield large amplitudes,
which vary according to changes of the axis ratio c. The magnetic field distribution along the radial
distance r can obtain both negative and positive values; their maximum amplitudes are 432.9 Gauss
at r = 4mm for c1, 683.8 Gauss at r = 4mm for c3, 522.2 Gauss at r = 3.8mm for c4, −433.8 Gauss
at r = 2.7mm for c5 and −306.1 Gauss at r = 2.3mm for c6. The magnetic field distribution of the
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Figure 8. Distribution of the azimuthal component (the thickness of the used cylinder is h = 5mm;
the magnetic remanence J = 1T; the axial coordinate of the computed profile is z = 7mm): (a) plot
along the radial distance r in the interval [0mm, 20mm] with azimuthal angle α = π/6; (b) plot along
the azimuthal angle α (alpha) with radial distance r = 8mm.

Table 2. Amplitudes of the periodical distribution of magnetic field.

Axis ratio c = a/b
Axial component

(Gauss)

Azimuthal component

(Gauss)

Radial component

(Gauss)

c1 = 2/1 62.69 89.45 594.0

c2 = 1/1 −57.64 0 411.7

c3 = 9/2 810.0 384.2 756.2

c4 = 18/1 963.1 536.0 248.6

c5 = 2/9 810.0 384.2 756.2

c6 = 1/18 963.2 536.0 248.6

azimuthal component (Table 2) is periodical along the azimuthal angle (Figure 8(b)); the amplitudes
of this distribution are 89.45 Gauss for c1, 384.2 Gauss for c3, 536.0 Gauss for c4, 384.2 Gauss for c5,
and 536.0 Gauss for c6.

In contrast with the distribution of axial and azimuthal components, the radial component of the
field consists of only positive values (Figures 9(a) and 9(b)). The amplitudes of the radial component
of a circular and an elliptical cylinder vary according to the changes of r; the maximum amplitudes are
1065 Gauss at r = 4.6mm for c1, 1224 Gauss at r = 4.1mm for c2, 725.4 Gauss at r = 4.8mm for c3,
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Figure 9. Distribution of the radial component (the thickness of the used cylinder is h = 5mm; the
magnetic remanence J = 1T; the axial coordinate of the computed profile is z = 7mm): (a) plot along
the radial distance r in the interval [0mm, 20mm] with azimuthal angle α = π/6; (b) plot along the
azimuthal angle α (alpha) with radial distance r = 8mm.

341.4 Gauss at r = 3.9mm for c4, 947 Gauss at r = 2.8mm for c5, and 553.3 Gauss at r = 2.3mm
for c6. The value of this component of the circular cylinder (c2 = 1/1) is a positive constant (411.7
Gauss) along the azimuthal angle (Table 2). The distribution of this component of an elliptical cylinder
along the azimuthal angle is periodical; however, its amplitudes and phases change due to the variations
of c. For the same area, elliptical cylinders with c1 = 2/1, c3 = 9/2, and c5 = 2/9 can produce
the periodical magnetic field with larger amplitudes than a circular cylinder. The amplitudes of the
periodical distribution (Table 2) are 594.0 Gauss for c1, 756.2 Gauss for c3, 248.6 Gauss for c4 and
c6, and 756.2 Gauss for c5. The variations in magnetic field strength of axial, azimuthal and radial
components may be used in novel sensing applications.

5. CONCLUSION

In this research, the semi-analytical expressions of three components of the magnetic field created by
an elliptical cylinder with axial magnetization in three dimensional space are derived. The magnetic
field distribution created by the permanent magnet is analysed. The results of the new expressions are
in excellent agreement with those of FEA. These expressions are fast-computed and can be extended to
compute the magnetic field created by an arc-shaped elliptical cylinder with axial magnetization which
can be used in a novel Halbach array as well as a circular cylinder with the same magnetization direction.
The magnetic field distribution of an elliptical cylinder with axial magnetization along the azimuthal
angle is periodical whereas a circular cylinder produces a constant value. Along the radial distance, the
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axial and radial components of the magnetic field of a circular cylinder can obtain larger values, but
eventually drop down over the counterparts of an elliptical cylinder. The azimuthal component of a
circular cylinder is zero due to its symmetry whereas an elliptical cylinder produces large amplitudes.

APPENDIX A. INTEGRATION STEP

This section presents the step integration used when integrating Eqs. (14), (17), and (20). For the
purpose of generality, the following step integration is carried out for two key components (Eqs. (A1)
and (A2)) in the mentioned equations. The integral variables in these equations are replaced by “t” for
briefness.

A.1. Step Integration of A =
∫∫∫

tdt

(t2−at+b)
3
2

with 4b > a2

A=

∫
tdt

(t2 − at+ b)
3
2

=

∫
tdt((

t− a
2

)2
+ 4b−a2

2

) 3
2

=

∫ (
t+a

2

)
dt((

t− a
2

)2
+ 4b−a2

2

) 3
2

−
∫ a

2dt((
t− a

2

)2
+ 4b−a2

2

) 3
2

(A1)

Denote u= t− a
2 , Eq. (A1) becomes

A=

∫
udu(

(u)2 +4b−a2

2

) 3
2

−
∫ a

2du(
(u)2 +4b−a2

2

) 3
2

(A2)

Integrating the basic integrals of Eq. (A2) based on u and then returning the variable to t with some
simplifications gives:

A =
2(at− 2b)

(4b− a2)
√

t (t− a)+b
+C (A3)

Here C is the integral constant.

A.2. Step Integration of B =
∫∫∫

t2dt

(t2−at+b)
3
2

with 4b > a2

B =

∫ (
t2 − at+ b

)
dt

(t2 − at+ b)
3
2

−
∫

atdt

(t2 − at+ b)
3
2

+

∫
bdt

(t2 − at+ b)
3
2

(A4)

Denote u = t− a
2 , Eq. (A4) becomes

B =

∫
du√

(u)2 + 4b−a2

2

− aA+

∫
bdu(

(u)2 + 4b−a2

2

) 3
2

(A5)

Integrating the basic integrals of Eq. (A5) and applying the result of the above integration, then
returning to variable t with some simplifications produces:

B = ln
(∣∣∣2(√t (t− a)+b+t

)
− a
∣∣∣)− 2t

(
2b− a2

)
+2ab

(4b− a2)
√

t (t− a)+b
+C (A6)
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