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Design of Reconfigurable Monopole Antenna with Switchable Dual
Band-Notches for UWB Applications

Ji Li and Yufa Sun*

Abstract—A reconfigurable antenna with on-demand single-band or dual-band rejection capability for
ultra-wideband (UWB) applications is presented. A modified monopole structure is integrated with a
U-shaped slot and an open-ended slot to realize band-rejection. The antenna operates in four modes:
a full UWB (3.1–10.6 GHz) coverage antenna, a UWB antenna with a single-band WiMax or wide
local area network (WLAN) rejection, and a UWB antenna with dual-band WiMax/WLAN rejection.
On-demand single and dual-band rejections are implemented by controlling two slots using two PIN
diodes. Thus, the adopted control technique is quite easy and requires low operating power. Details
of the design process and reconfiguration mechanism are presented. The band-rejection performance
is explained by return loss and surface current distribution at single-band mode. A prototype is built
on a Rogers substrate and tested to validate the performances. The antenna exhibits stable radiation
characteristics and almost flat gain responses across the whole band, while significantly gain reduction is
achieved at the rejected bands. Therefore, this antenna is suitable for high-performance UWB systems
in WiMax/WLAN dense environments with the aim to improve signal quality, system capacity, and
communication efficiency.

1. INTRODUCTION

In the last few years, ultra-wideband (UWB) technology operating across the band 3.1–10.6 GHz has
received fascinating attention due to its merits, such as low-power requirement, large channel capacity,
and resistance to jamming [1, 2]. Owing to these advantages, UWB technology has been adopted
widely in many fields such as short-range indoor communications, imaging systems, radar and target
localization, and automotive applications [3–5]. Therefore, UWB antenna is well researched, and many
low-profile printed antennas have been proposed [4–8]. There are several narrow band standards that
coexist within the UWB, of which the commonly used bands are IEEE 802.16 WiMax (3.3–3.6 GHz,
5.25–5.825 GHz), IEEE 802.11a wide local area network (WLAN) (5.15–5.35 GHz, 5.725–5.825 GHz),
and ETSI HiperLAN/2 (5.15–5.35 GHz, 5.47–5.725 GHz). The overlap of bands causes electromagnetic
interference when a number of devices run simultaneously at these bands [9–13]. In such a case, in-band
interference occurs between the narrow band communication device with strong signal transmission and
the UWB system, and the UWB system may also interfere with those narrow band devices that receive
a weak signal. In this regard, many UWB antennas with inherent band-rejection properties have been
investigated using different techniques [14, 15]. However, band-rejection is not constantly required, but
on-demand band-rejection is more desirable. Thus, adapting reconfigurable band-rejection technique
with UWB antenna is an effective way to satisfy on-demand band-rejection requirements [9, 10, 12, 16].

Recently, several UWB antennas with reconfigurable band-rejection capability using active switch-
ing elements such as PIN diodes [17, 18], varactors [19], radio frequency (RF) microelectromechanical
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systems (MEMS) [13] and optically controlled switches [20, 21] have been reported. Different types of
switches can be used in different types of antenna designs [22–24]. Most of these antennas are capable
of rejecting or tuning a single band only (WiMax or WLAN separately). UWB antennas with multiple
rejection modes are also reported, but they do not support the full UWB (no rejection) mode. There-
fore, to be fully compatible with planar UWB systems, besides the simple construction and easy control,
UWB antenna must possess reconfigurable rejection ability to reject single, dual band (WiMax/WLAN)
or none, as required by the user.

In this paper, a planar, simple construct and easy to control UWB antenna with on-demand
rejection capability is proposed. The antenna can work in UWB, single band-rejection (WiMax or
WLAN), and dual band-rejection (WiMax and WLAN) modes. The proposed antenna incorporates a
U-shaped slot in the feedline of a monopole and an open-end slot near the upper edge of the radiator.
Four reconfigurable modes are realized by using two PIN diodes. Thus, it requires low operating power.
The design details, performances analysis, and measured results are presented as follows. In addition, the
antenna performances are compared with some recently reported works to present its added flexibility
and distinctive reconfigurable features using a simple control technique.

2. ANTENNA DESCRIPTIONS

2.1. Antenna Structure

Based on the aforementioned introduction, the design procedure of the proposed antenna can be
presented as the following figures. The basic antenna structure is composed of a rectangular patch fed
by a microstrip line and a ground plane. The substrate is Rogers RT/duroid5880 (dielectric constant
εr = 2.2, height h = 0.787 mm, and loss tangent = 0.0009). The fundamental resonant frequency of a
printed antenna with ground plane can be approximated by the formula given in [25]:

fr =
144

Lg + Lr + g + (Ag/2πLg
√

εe) + (Ar/2πLr
√

εe)
(1)

Here, Lg and Lr are the lengths of the ground plane and radiator, respectively; g is the gap between
them; Ag and Ar are the areas of the ground plane and radiator, respectively; and the effective dielectric
constant is εe = (εr + 1)/2, where εr is the dielectric constant of the substrate. The basic structure
of microstrip antenna does not have a desirable frequency response in UWB. However, according to
Figure 1, the initial structure of the antenna is transformed to improve the frequency response, and
their return losses (S11) for different antennas are plotted in Figure 2.

The proposed design gradually evolves from Antenna 1 to Antenna 6 as shown in Figure 1. For the
lowest resonance, the lengths of the radiator (Lr≈Ls) should be approximately λe/4, where λe is the
effective wavelength at the target frequency. With these preliminary assumptions, the UWB antenna
design is initiated from Antenna 1, while using Equation (1) to estimate its fundamental resonance.
The design parameters of the antenna are shown in Table 1.

Table 1. Dimensions of the proposed antenna.

Parameters L Lf Lg Ls Lt Lv

Value/mm 35 (0.41λ0) 16.8 (0.20λ0) 16.4 (0.19λ0) 17 (0.20λ0) 14.7 (0.17λ0) 4.6 (0.05λ0)
Parameters Lu Lw Le La W Wu

Value/mm 3.1 (0.04λ0) 10.9 (0.13λ0) 10.4 (0.12λ0) 12.3 (0.14λ0) 25 (0.29λ0) 1.5 (0.02λ0)
Parameters Wg Wgg Wf Ws R1 R2

Value/mm 0.3 (0.004λ0) 1.2 (0.01λ0) 2.5 (0.03λ0) 18 (0.21λ0) 7.4 (0.09λ0) 2.5 (0.03λ0)

λ0 is the wavelength of the center frequency of the first band notch.

Antenna 2 is formed by inserting a rectangular slot in the middle of the ground plane of Antenna 1.
As shown in Figure 2, Antenna 2 has good impedance matching in the wide band of 3.6–14 GHz,
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Figure 1. Evolution of the proposed antenna.

Figure 2. Return loss |S11| of various antenna structures.

but it still cannot completely cover the low frequency of UWB. Thus, Antenna 2 is further improved
with arc-slits to form Antenna 3. It can be seen from Figure 2 that Antenna 3 has better impedance
matching than Antenna 2 at low frequency, but the high frequency impedance matching is deteriorated.
In order to improve the high frequency impedance matching, two chamfers are added on the ground
plane of Antenna 3 to form Antenna 4. As shown in Figure 2, Antenna 4 covers a very wide band (3–
13.8 GHz) and matches well (S11 ≤ −10) within the UWB. By adding resonant structures, Antenna 5
and Antenna 6 generate notched bands in the frequency response of WLAN and WiMax/WLAN,
respectively.
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2.2. Design of the Reconfigurability and Simulated Performances of the Antenna

After designing the well-matched UWB antenna (Antenna 4), band-rejection function is realized by
utilizing an open-ended slot (slot1) and a U-shaped slot (slot2) in Antenna 6. The rejected resonances
fr1 and fr2 are controlled by adjusting the lengths of slots (Lslot1 and Lslot2). The relations of fr with
Lslot are shown in Equation (2) and Equation (3).

fr1 =
C0

4Lslot1εe
, (2)

fr2 =
C0

2Lslot2εe
, (3)

where C0 is the light speed, and fr1 and fr2 are the center frequencies of rejected bands, respectively. The
two slots affect the surface current distribution on the antenna at the respective frequency, and fr1, fr2

can be easily controlled by adjusting Lslot. Figure 3 shows the effect of Lslot on tuning the rejected band
within the UWB range. As the lengths of Lt and Lw become longer, the center frequency of the rejected
band shifts toward the low frequency. This is consistent with the result derived from Equation (2) and
Equation (3). According to Equation (2), the length of open-ended slot, Lslot1 (Lt) = 14.7 mm is
approximately λe/4 at the WiMax band, thus the antenna rejects this band at 3.6 GHz. Similarly, from
Equation (3), the length of U-shaped slot, Lslot2 = 2 ∗ Lw + Wg is approximately λe/2 at the WLAN
band. When Lw = 10.9 mm, the antenna rejects this band at 5.5 GHz.
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Figure 3. Effect of Lslot on return loss of the proposed antenna. (a) Open-ended slot (Lt). (b)
U-shaped slot (Lw).

As shown in Figure 4, slot1 is controlled by PIN diode D1, and slot2 is controlled by PIN diode D2.
Four reconfigurable modes can be realized from the single antenna. Depending on biasing conditions
of D1 and D2, the two slots become active or inactive in playing their band-rejection roles. Thus, the
antenna can be switched from a normal UWB to a single or dual band rejection mode. Figure 4(a)
depicts the details of the proposed antenna including the biasing circuit. The MA-COM PIN diode
MA4AGFCP910, which has a very low capacitance (Ct = 0.018 pF) and low resistance (Rs = 5.2Ω at
10 mA), is considered for switching purpose. The diode exhibits 2–3 ns switching characteristics, and
the ultra low capacitance of the MA4AGFCP910 allows it to use through millimeter frequencies for RF
switch applications. Thus, this diode becomes a suitable choice. The ‘ON’ and ‘OFF’ states of the PIN
diode and its biasing circuit are given in Figure 4(c). In the biasing circuit, a 28 nH biasing inductor L
together with a high impedance biasing line is used for choking RF signal, and a resistor R = 120 ohm
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(a)

(b)

(c)

Figure 4. Details of the proposed reconfigurable UWB antenna design. (a) Antenna configuration.
(b) Partial view of the DC bias circuit. (c) DC biasing circuit of the PIN diode.

in the biasing line is used for limiting the maximum forward bias current of the diode at the supplied
voltage. In addition, a capacitor is used to conduct RF and separate the positive and negative terminals
of the direct current (DC) power supply across the diode. Many small rectangular grooves engraved on
patch, PIN diode, and its biasing circuits will affect the performance of antenna. To compensate the
effects of diode and these slots, slot1 and slot2 are adjusted to maintain λe/4, λe/2 for proper WiMax
and WLAN band-rejection.

The simulation and optimization are done in an Ansys HFSS electromagnetic simulator. The |S11|
in the four modes of operation is shown in Figure 5. When two diodes are in ON state, antenna radiates
in the UWB (Case 1). When D1 is OFF and D2 ON, the UWB operating bandwidth with notch band
at WiMax is obtained (Case 2). In Case 3, when D1 is ON and D2 OFF, UWB with notch band at
WLAN is achieved. Moreover, when two diodes are OFF, UWB with dual notch band characteristics
is achieved (Case 4). The relationship between the switch states and the different modes is shown as
Table 2. In addition, the operating bandwidth and rejected bandwidth for each mode can also be seen
from Table 2. Therefore, the changes in switching state of PIN diodes provide the reconfigurability
among available notch bands in the UWB.

Table 2. Operation conditions of reconfigurable antenna.

Case 1 Case 2 Case 3 Case 4
D1 ON OFF ON OFF
D2 ON ON OFF OFF

RBW (GHz) No band rejection 3.1–3.95 4.8–6.15
3.3–3.96
4.7–5.85

OBW (GHz) 2.8–13.8 2.7–13.4 2.6–13.3 2.5–13

RBW, rejected bandwidth; OBW, operating bandwidth.

The principle of the rejection is that the slot excites resonance at the frequency corresponding to its
length, such that the current path is blocked and concentrated around the slot. The current distribution
on the antenna surface at single-band rejection modes is depicted in Figure 6, which provides a better
understanding about the role of the open-ended slot and U-shaped slot in creation of the band notch
performance. Figure 6(a) shows the current distribution at the center frequency of the lower band notch
(Case 2). It can be seen that the current flow is concentrated around the open-ended slot. At the center
frequency of the higher band notch (Case 3), the current distribution which is concentrated around the
U-shaped slot is shown in Figure 6(b).
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Figure 5. Simulated return loss of the proposed antenna in four operation modes.

(a) (b)

Figure 6. Surface current distributions of the proposed antenna at (a) Case 2, (b) Case 3.

3. MEASURED RESULTS AND DISCUSSION

To verify the proposed design, an antenna prototype is fabricated, as shown in Figure 7. A 50 Ω sub-
miniature A (SMA) connector is used to feed the antenna. A bias DC is provided from the side of the
antenna to minimize the effects of the bias circuit on the antenna radiation. Surface mountable chip
capacitor (10 pF) and inductor (28 nH) from Murata and MA4AGFCP910 PIN diodes are soldered at
their predefined positions on the top surface. The simulated and measured return losses for various bias
conditions of the PIN diodes are plotted in Figure 8. It can be observed that good agreement exists
between the measured and simulated results. However, there are some differences in notch bandwidth
due to the fabrication process, implementation of the PIN diodes, and their biasing circuits. The
antenna works commonly from 2.8 GHz to above 13.5 GHz in all modes. The measured rejected bands
are 3.1–4 GHz (Case2) with a peak at 3.45 GHz and 4.95–6.1 GHz (Case3) with a peak at 5.3 GHz.
When the antenna works in Case4, it rejects the WiMax band (3.3–3.96 GHz) centered at 3.6 GHz and
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Figure 7. Prototype of the proposed antenna.
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Figure 8. Comparison between simulated and measured return loss of the proposed antenna in four
operation modes.

the WLAN band (4.7–5.9 GHz) centered at 5.3 GHz. The measured normalized E-plane (y-z plane)
and H-plane (x-z plane) patterns at 4.5, 7, and 9 GHz are shown in Figure 9. The H-plane patterns
are almost omnidirectional, which is an advantage for UWB applications. In addition, the measured
maximum gain for full UWB coverage and dual band notch performances of the fabricated antenna are
compared in Figure 10. It can be seen that the gain drops dramatically at notched frequency bands
for Case4. Measured results of |S11|, gains, and radiation patterns are obtained by Agilent N5247A
network analyzer and a SATIMO antenna measurement system.

The performance and measured results of the proposed antenna are compared with some of the
recently reported reconfigurable band-rejection UWB antennas in terms of the size, full UWB coverage,
number of PIN diodes, number of reconfigurable operation modes, etc. Detailed comparisons are listed in
Table 3. The proposed antenna has reconfigurability between the rejection modes and the normal UWB
operation. Although the antenna in [21] has similar functions, the driver arrangement on the antenna
requires an extra height, and each switch requires more control power, which increases the cost and
limits its application. In comparison, the proposed antenna is controlled by PIN diode and requires less
control power, while it still serves the on-demand band-rejection purpose. With this reconfigurability,
this antenna adds more freedom to choose the operation mode as required by the UWB system. Thus,
it will reduce mutual interference and power loss of the communication systems, and shows potential
for many applications.
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Figure 9. Normalized measured radiation patterns of the proposed antenna at (a) 4.5 GHz, (b) 7 GHz
and (c) 9 GHz.
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Figure 10. Measured peak gain of the fabricated antenna for Case 1 and Case 4.

Table 3. Comparison with previously published works.

This work [7] [9] [12] [18] [21]
antenna size

(mm)
35 × 25 × 0.787 38 × 32 × 1.6 20 × 20 × 0.8 41 × 35 × 1.5 32 × 27 40 × 35 × 1.5

UWB bandwidth,
(GHz)

2.8–14 3.05–13 3.1–12.5 2.5–10.8 2.7–10.7 2.6–11

rejected bands,
(GHz)

3.1–4
4.95–6.1
3.3–3.96/
4.7–5.9

3.1–4.05
5.1–6.0
3–3.85/
5.0–5.95

3.12–3.82
5.0–6.06

3.5
5.5

3.35–3.85
5.05–5.95
3.3–3.8/
5.1–6.0

3.55
5.08

3.56/5.1

number of
PIN diodes

2 3 2 5 3 2

number of
operation modes

4 4 3 3 4 4

4. CONCLUSION

In this paper, a UWB antenna with band-stop reconfigurability is proposed. The antenna can work in
four modes full UWB, individual WiMax or WLAN rejection, and dual rejection (WiMax and WLAN).
An open-ended slot and a U-shaped slot are used to achieve the rejected bands. Reconfigurability
is controlled by a low-power control unit consisting of two PIN diodes and a DC bias circuit. For
better understanding, the design process and detailed analysis of the reconfiguration mechanism are
proposed. Stable radiation characteristics are obtained across the full UWB mode. Gain characteristics
are obtained in UWB and dual rejection modes, respectively. When the corresponding rejected band
occurs, a significant gain reduction is achieved at the rejected band. With the added flexible rejection
capability, avoiding mutual interference between UWB and WiMax/WLAN receivers, the proposed
antenna can improve signal quality and communication efficiency.
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