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Application of Symplectic MRTD with CPML in Analysis of EMP
Propagation in Tunnel

Guohui Li1 and Yawen Liu2, *

Abstract—In this paper, the implementation of convolution perfectly matched layer (CPML) with good
absorbing property is proposed for the symplectic multi-resolution time-domain (SMRTD) method, and
a side-wall vault-top tunnel model is established by using the equidistant equation. The radian of the
tunnel can be selected in the range of 0–π/2 according to actual needs. The absorbing performances
of perfect matched layer (PML) and CPML are compared in the proposed tunnel model. In addition,
based on the straight tunnel model and curved tunnel model with different radians, the characteristic
of field cross-section distribution of electromagnetic pulse (EMP) propagation excited by TE10 mode is
studied.

1. INTRODUCTION

Finite-difference time-domain (FDTD) [1–4] method has become a common method for electromagnetic
numerical calculation because of its simplicity and intuition. The FDTD method can directly solve the
Maxwell curl equation which depends on time, and it is easy to deal with the case of inhomogeneous
media by approximating the time and space differential operators in the curl equation with the second-
order accuracy of central difference. However, its calculation accuracy is relatively low, and the time
step of calculation is also relatively low. The size of time steps and spatial discrete grids must satisfy the
Courant-Friedrichs-Levy (CFL) stability condition, and the error will accumulate with the increase of
calculation time. To overcome these shortcomings of FDTD method, paper [5] proposed MRTD method
to improve the calculation accuracy, but MRTD method requires more stability conditions; Chen and
Zhang [6] proposed ADl-MRTD to get rid of CFL stability conditions. However, the numerical dispersion
of ADl-MRTD method is worse than that of FDTD method. In a word, the effect of these methods is
not satisfactory because they destroy the structure of Maxwell equation. Because Maxwell equation can
be regarded as an infinite dimensional Hamilton system, and the evolution of the system over time is
always symplectic transformation,the correct discrete algorithm should be symplectic transformation,
which is called Hamilton algorithm or symplectic algorithm [7–12].

In order to keep the internal structure of Maxwell equation in discrete solution, Wei et al. [13]
rewrote Maxwell equation into Hamilton equation. In time domain, symplectic propagator technique
was used to discretize the equation; in space domain, time domain multi-resolution method was used
to discrete the Maxwell equation; and symplectic algorithm for solving Maxwell equation, namely
symplectic time domain multi-resolution (S-MRTD) method, was constructed. The stability and
numerical dispersion of S-MRTD method are systematically discussed. It is reported that the stability
and numerical dispersion of S-MRTD method are better than FDTD and MRTD, that is, with the same
calculation conditions, the calculation accuracy of S-MRTD method is higher.
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In this work, the CFS-PML based on a stretched-coordinate and a recursive convolution is developed
for the S-MRTD scheme. This method referred here is called convolution perfectly matched layer
(CPML) [14, 15]. It is shown that the implementation of CPML is independent of the material medium,
that is no matter in homogeneous, inhomogeneous, lossy, dispersive, anisotropic, or nonlinear media,
the implementation can be used without any modification. In addition, due to the actual needs, the
study of the propagation characteristics of non-nuclear electromagnetic pulse in tunnels has attracted
the attention of many scholars, and the interest stems from two application areas: electromagnetic
protection against the EMP weapons, which are mainly of interest for the military applications and the
ultra-wideband (UWB) communication in tunnel driven by the commercial application. Predominating
the characteristic of the field cross-section distribution of the EMP propagation in tunnel, we could
install the sensitive electromagnetic devices or the shielding equipments such as wave-guide widows,
metallic doors, and filters at the place where the filed distribution is weak, or change the distributed
direction of some components to weaken the coupling energy. For the wireless communication, we could
install the antennae at the place where the field distribution is strong to get high coupling energy. In
this paper, we have established a model of side-wall arch-top tunnel. The radian of the model can be
chosen arbitrarily in the range of 0–π/2 according to actual needs. In order to compare the absorbing
performance of Berenger’s PML [16] and CPML in this tunnel model, we design a calculation example,
and the numerical results show that the CPML has a better absorbing performance. In order to study
the distribution of cross-sectional field intensity of non-nuclear electromagnetic pulses in tunnels, the S-
MRTD method with CPML absorbing boundary condition (ABC) is introduced into the tunnel model.
By analyzing the characteristics of field cross-section distribution of non-nuclear electromagnetic pulse
in straight and curved tunnels, some useful conclusions are obtained.

2. APPLICATION OF CPML TO SMRTD METHOD

When simulating electromagnetic wave propagation, it is usually necessary to truncate the analysis area
somewhere outside the physical region, which usually results in the reflection of the wave back to the
region of interest, and the non-physical wave reflection may interact with the incident physical wave.
To avoid this problem, we can specify an appropriate set of differential equations on the truncated
boundary, or add a layer capable of absorbing the propagation waves. In this work, we use the method
of adding a perfect matching layer (PML) to the downstream and forward positions of the truncated
boundary.

Following the work in [16], the Maxwell’s equations (MEs) are first rewritten to their equivalent
time harmonic equations. In addition to introducing the stretched coordinate metrics into MEs, the
recursive convolution method originally proposed in [17] is used to accelerate the convolution operator.
Then the modified MEs in the frequency domain can be transformed back to the time domain equation
by Fourier transform. And the MEs in CPML can then be derived.

In the CPML layer, the formula is posed in the stretched coordinate space. Without losing
generality, we assume a lossy medium here. Therefore, the x-projection of Ampere’s law is specified as

jωεEx + σEx =
1

sy

∂

∂y
Hz − 1

sz

∂

∂z
Hy (1)

where si is the stretched-coordinate metric and defined as

si = κi +
σi

αi + jωε0
, i = x, y, z (2)

where αi > 0, σi > 0, κi ≥ 1.
Defining that s′i = s−1

i , we can get:
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where σ′i = −σi, ε′i = ε0κ
2
i and α′
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where δ(t) is the unit impulse function, and u(t) is the step function. Inserting Eq. (4) into Eq. (1),
then transform Eq. (1) into time domain:

εrε0
∂Ex (t)

∂t
+ σEx (t) = s′y (t) ∗

∂

∂y
Hz (t)− s′z (t) ∗

∂
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1
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+

∫ t

0

∂
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Hz (t− τ) ζy (τ) dτ −

∫ t

0

∂
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Hy (t− τ) ζz (τ) dτ (5)

The field dispersion in space domain for symplectic MRTD method is consistent with that in MRTD
method. As for time discretization, unlike MRTD method, the symplectic MRTD method combines time
components and coefficients to form a new function, so for simplicity, the Ex field component is expanded
in terms of Daubechies scaling functions in space domain

Ex (r, t) =

+∞∑
i, j=−∞

Eφx
i+1/2, j, k (t)φi+1/2 (x)φj (y)φk (z) (6)

where Eφx
i+1/2, j, k is the coefficient for the field in terms of scaling functions which is equal to the

corresponding field. Indices i, j, and k are the discrete space indices related to the space coordinates
via x = iΔx, y = jΔy and z = kΔz, where Δx, Δy, and Δz represent the space discretization intervals
in x-, y-, and z-directions. Function φ(v) is defined as Daubechies’ scaling function.

With the wavelet-Galerkin scheme based on Daubechies’ compactly supported wavelets, the
following equations can be obtained
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where coefficients a(l) for 0 ≤ l ≤ 2 have been tabulated in [18]. Defining that
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After the time domain is discretized by 5-stage and 4-order explicit symplectic integral, the following
iteration equation can be obtained from Eq. (7)
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Similarly, the other Ampere’s and Faraday’s equations in the convolution perfect matching absorbing
layers are as follows
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where cv and dv are the symplectic integrator propagator time coefficients with the following values [13]

c1 = c5 = 0.17399689, c2 = c4 = −0.12038504, c3 = 0.89277630,

d1 = d4 = 0.62337932, d2 = d3 = −0.12337932, d5 = 0.
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3. ESTABLISHMENT OF THE TUNNEL MODEL

The model established in this paper is a vault tunnel model, which consists of three parts, two of which
are straight tunnel, and one of which is arc tunnel. Fig. 1–Fig. 3 show the tunnel’s 3D model, each
component and section, respectively. The corresponding radian of the arc tunnel is α, and the angle
between the two straight tunnels is π-α. The cross-section perpendicular to the direction of the tunnel
is a side-wall vault. As shown in Fig. 3(b), the vault is semi-circular, and the cross-section size along
the direction of the tunnel is equal everywhere. Each of the three curves in Fig. 3(a) consists of two
straight lines and an arc line. The left one is the projection of the left wall on the ground, which is
defined as Γ1; the middle one is the central curve along the direction of the tunnel, which is defined as
Γ0; and the right one is the projection of the right wall on the ground, which is defined as Γ2. Since
the cross-sections perpendicular to the direction of the tunnel are equal, the curves on the left and
right sides must be equidistant from the center line, and the distance between them is rr = (R − r)/2.
According to the equidistant equation, the equation of left and right curves can be derived from the
equation of central line, which are the projections of left and right side walls on the ground, so that the
position of side walls can be determined.

Figure 1. Three-dimensional model of the vault tunnel.

Figure 2. Components of the vault tunnel.

From Fig. 3, the center line equation can be obtained as follows

Γ0

⎧⎨
⎩

y = y1 + rr (z1 ≤ z ≤ z2)

y = yo −
√
r2m − (z − z2)2 (z2 < z ≤ zm)

y = ym + (z − zm) tanα (zm < z ≤ zme)

(22)

The equidistant equation can be shown as

Γ1, 2

⎧⎪⎪⎨
⎪⎪⎩

Y = y ∓ a√
1 + y′2

Z = z ± ay′√
1 + y′2

(0 < a) (23)

Here Eq. (23) is a parametric equation with z as its parameter, in which a denotes the distance of
any point on the central curve Γ0 moving in both positive and negative directions along the normal of



170 Li and Liu

x

y

x

y

z

y

x

y

z

(a) (b)

(x  , y )1 1 (x  , y )1 2

(x  , y )2 1 (x  , y )2 2

(x  , y  + rr)3 1

rr

rr + rr

(y , z )1 1 2 1(y , z )

(y , z )1 2 2 2(y , z )

(y , z     )0 max
(y    , z     )maxmax

(y , z )5 6

(y   , z    )meme

(y , z )6 5

(y    , z  )max 0

Γ1

0Γ

2Γ

(y , z )3 4

(y  , z  )mm

(y , z )4 3

(y  , z  )oo

rr = (R - r)/2

r  = (R + r)/2m

R

r

α

Figure 3. Profiles of the vault tunnel model. (a) Profile at x = x2. (b) Profile at z = z2.

the point. From Eq. (22), the equations of Γ1 and Γ2 can be obtained as follows

Γ1

⎧⎨
⎩

y = y1 (z1 ≤ z ≤ z2)

y = yo −
√
R2 − (z − z2)2 (z2 < z ≤ z4)

y = y3 + (z − z4) tanα (z4 < z ≤ z6)

(24)

Γ2

⎧⎨
⎩

y = y2 (z1 ≤ z ≤ z2)

y = yo −
√
r2 − (z − z2)2 (z2 < z ≤ z3)

y = y4 + (z − z3) tanα (z3 < z ≤ z5)

(25)

Since the side walls are perpendicular to the ground, Eqs. (24) and (25) are also the surface
equations of the side walls.

As shown Fig. 4, if we use a plane parallel to the ground to intercept the vault, we can get two
intersecting lines Γ3 and Γ4 on both sides of the vault. Since all cross-sections along the tunnel are
equal, the two intersections are similar to those of Γ1 and Γ2, and are equidistant from the center line
Γ0. However, the distances from the center line are different, and they vary with the height x. The line
spacing can be calculated from Fig. 3(a). Defining that the line spacing is rx, we can get

rx =
√
rr2 − (x− x2)2 (26)

Define that the left intersection line is Γ3, and the right intersection line is Γ4. Similar to the
derivation of Eq. (24) and Eq. (25), the equation of Γ3 and Γ4 can be obtained as follows

Γ3

⎧⎪⎪⎨
⎪⎪⎩

y = y1 + rr − rx (z1 ≤ z ≤ z2)

y = yo −
√

(R− rx)2 − (z − z2)2 (z2 < z ≤ zm + rx sinα)

y = ym − rx cosα+ (z − zm − rx sinα) tanα (zm + rx sinα < z ≤ zm + rx sinα+

(ymax −R+ rx cosα) cot α)

(27)

Γ4

⎧⎪⎪⎨
⎪⎪⎩

y = y1 + rr + rx (z1 ≤ z ≤ z2)

y = yo −
√

(r + rx)2 − (z − z2)2 (z2 < z ≤ zm − rx sinα)

y = ym + rx cosα+ (z − zm + rx sinα) tanα (zm − rx sinα < z ≤ zm − rx sinα+

(ymax − r − rx cosα) cotα)

(28)
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Figure 4. Diagram of equidistant line at the tunnel vault.

Γ3 and Γ4 represent any two intersecting lines at different x coordinates, so Γ3 is the left side surface
equation of the vault, and Γ4 is the right side surface equation of the vault. So far, the mathematical
model of the tunnel has been established completely. The constitutive parameters for the wall and edge
of the bending part can be defined via conformal technique [19], and the conformed sections of the
tunnel are shown as in Fig. 5.

Figure 5. The conformed sections of the vault and bending part of the tunnel.

4. PERFORMANCE COMPARISON AND ANALYSIS OF ABSORBING BOUNDARY
CONDITIONS

In this section, the proposed computational model is used to verify the absorption performance of the
PML and CPML. In the example, the calculation model is set up as shown in Fig. 6. The length of the
straight tunnel, the length of the bottom, and the height of the side wall are all 2.0m; the radius of the
vault is 1.0m; and the radian of the bend is π/2. The space steps and time steps of the computational
domain are chosen as Δx = Δy = Δz = δ = 0.02m and Δt = δ/3c, where c is the velocity of
light in vacuum. The computational region except the boundary layer contains 180 × 153 × 253 cells,
which are truncated by 8-layer PML and CPML absorbing boundary conditions, respectively. In order
to investigate the reflection error, a reference space is set up, which expands 100 space steps in all
directions on the basis of the original computational space. The results obtained are taken as reference
results.

Gauss pulse is chosen as the time function of the forced excitation source, whose expression is as
follows

g(t) = 104 exp

(
−4π

(
t− t0
τ

)2
)

(29)
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Figure 6. Computational model of the tunnel.

where t0 = 1.5× 10−9, τ = 2× 10−9. Here, TE10 and TM11 propagation modes are introduced into the
computational model as forced excitation sources, respectively. Suppose that the section width of the
tunnel is a and that the height is b, then the TE10 propagation mode is defined as

Ey = −jωμa
π

A sin
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a
x
)
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⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(30)

And the TM11 propagation model is defined as
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π
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)
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b
y
)
e−jβ11z

Ey = −jβ11
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π
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)
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(π
b
y
)
e−jβ11z

Ez = A sin
(π
a
x
)
sin
(π
b
y
)
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π
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(π
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)
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(π
b
y
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π

a
A cos

(π
a
x
)
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(π
b
y
)
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(31)

As shown in Fig. 6, we select a reference point A with coordinates (85, 18, 9), and the reflection
error is defined as

errordB = 20 log10

∣∣χi(t)− χiref (t)
∣∣∣∣∣χirefmax

(t)
∣∣∣ (32)

where χi(t) represents Ey component of point A in the original calculation space; χiref (t) represents Ey

component of point A in the reference space; and χirefmax
(t) represents the maximum value of χiref (t).

Fig. 7 and Fig. 8 show the electric field reflection errors with the PML and CPML when TE10 mode
and TM11 mode are introduced, respectively.

From Fig. 7 and Fig. 8, it can be seen that the reflection error in traditional PML lasts until
the late stage of the pulse. This is because the low-frequency evanescent wave is the main factor
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Figure 7. Reflection error (TE10).
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Figure 8. Reflection error (TM11).

in the late stage of the pulse, while the absorption ability of traditional PML to the low-frequency
evanescent wave is poor, which results in a large late reflection [20]. In contrast, CPML has shown great
advantages in solving this problem. The CPML can effectively absorb low-frequency evanescent waves
and overcome the late reflection caused by long-time calculation, thus ensuring the overall absorption
performance of the absorbing boundary conditions. In addition, compared with the traditional PML,
the implementation of CPML is independent of the nature of the media in the truncated region and
suitable for dispersive media, anisotropic media, and nonlinear media. All we need is to modify the
corresponding terms on the left side of Eq. (7), so CPML is simpler and more convenient to implement.

5. FIELD DISTRIBUTION ON CROSS-SECTION OF THE TUNNEL

5.1. Field Distribution on Cross-Section Excited by TE10 Mode in Straight Tunnel

The computational model in this section refers to Section 3. As a straight tunnel, α = 0; the length of
the bottom and the height of the side wall of the tunnel cross-section are defined as 4m; and the radius of
the vault is defined as 2m. It is known that a tunnel with vault section is essentially a lossy waveguide.
When the frequency is higher than the cutoff frequency, the wave can propagate along the tunnel axis. In
the process of wave propagation, it is attenuated because part of the electromagnetic energy penetrates
into the rock and soil medium. In this work, we use the field mode in the ideal waveguide to excite the
tunnel, which results in that the cross-section distribution of the field near the excitation surface varies
along the axis. The cross-sectional distribution of the field will be stable to the inherent field model of
the tunnel through a long distance propagation. Fig. 9 shows the field distributions on the cross-section
of the tunnel after the field distribution is stable. The UWB electromagnetic pulse is used as the time
function of the excitation source, and the field value is normalized. It can be seen from the figure that
the field distribution in the tunnel section is complex and far from that in the ideal waveguide, but
some characteristics are similar to that in the ideal waveguide, and the field distribution is still regular.

It can be seen from Fig. 9 that when TE10 mode excitation is applied, the field components in the
tunnel are still mainly Ey and Hx, while the other field components are smaller, which is similar to
the field components in the ideal waveguide. Ey and Hx components are basically standing waveform
along x-direction, which is similar to ideal waveguide. However, the distributions of Ey and Hx along
y-direction are very different from that of an ideal waveguide. In an ideal rectangular waveguide, Ey

and Hx are invariable along the y-direction while in the tunnel, and the variation of Ey and Hx along
the y-direction is similar to that along the x-direction, which is basically a standing wave. Therefore,
in the tunnel, the electromagnetic field is strong in the middle and weak around, and the energy mainly
concentrates in the center of the tunnel.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Cross-section field intensity distribution excited by TE10 mode. (a) Ex (V/m), (b) Ey
(V/m), (c) Ez (V/m), (d) Hx (A/m), (e) Hy (A/m), (f) Hz (A/m).

Ex and Hy components are no longer zero as in ideal rectangular waveguide, but they are smaller
except for the vault position. This is mainly because the boundary at the vault is not rectangular.
Compared with an ideal waveguide, not only the dielectric parameters are different, but also the shape
of the boundary changes abruptly.

The characteristic of Hz component in x-direction is similar to that in an ideal waveguide, that is,
the field intensities at the top and bottom atre the largest, and the middle is smaller. The directions of
field intensities at the top and bottom are opposite, and the characteristic of the field intensity along
y-direction is very different from that in ideal waveguide and is no longer regular. In addition, the Ez

component is no longer zero.

5.2. Field Distribution on Cross-Section Excited by TE10 Mode Near Bend

The calculation model used in this section refers to Section 3. In order to reflect the effect of bend on
the cross-section field distribution, this section analyses the cross-section field distribution at a distance
of 1.5 meters from the bend. α = π/18, 5π/18, π/2, respectively.

Taking the electric field as an example, Fig. 10–Fig. 12 show the cross-section field distribution
after TE10 mode excitation has reached a stable propagation in tunnels with different radians, and the
field values are normalized. It can be seen from the figure that with the increase of the curvature of the
bend, the cross-section distribution of each field becomes more and more disorderly, and the components
transmitted into the geotechnical medium become particularly obvious, especially the distribution of
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(a) (b) (c)

Figure 10. Cross-section field distribution excited by TE10 mode (α = π/18). (a) Ex (V/m), (b) Ey
(V/m), (c) Ez (V/m).

(a) (b) (c)

Figure 11. Cross-section field distribution excited by TE10 mode (α = 5π/18). (a) Ex (V/m), (b) Ey
(V/m), (c) Ez (V/m).

(a) (b) (c)

Figure 12. Cross-section field distribution excited by TE10 mode (α = π/2). (a) Ex (V/m), (b) Ey
(V/m), (c) Ez (V/m).
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Ex component on the cross-section, which can even blurs the boundary between the tunnel and the
geotechnical medium. However at the same time, we can see that the field intensity energy of each field
quantity tends to concentrate on one side of the tunnel, and the direction of concentration is consistent
with the direction of the tunnel bending, and the greater the curvature of the tunnel is, the more obvious
the trend of concentration is.

6. CONCLUSION

In this paper, a novel implementation of CPML for SMRTD method has been introduced, and a side-
wall vault-top tunnel model which can be selected in the range of 0–π/2 according to actual needs
is established. The proposed tunnle model is used to verify the absorption performances of the PML
and CPML. Numerical results show that the CPML can absorb low-frequency evanescent waves more
effectively and overcome the late reflection caused by long-time calculation. In addition, we also analyze
the characteristics of the cross-section field distribution in the tunnel excited by the TE10 mode. It is
shown that in the straight tunnel, the cross-section distribution of each field component follows certain
rules and has its own characteristics. Near the bend part of the tunnel, the energy of each field tends to
concentrate on one side of the tunnel, and the direction of concentration is consistent with the direction
of the bend of the tunnel. It is noted that the greater the curvature of the tunnel is, the more obvious
the trend of concentration is.
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