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Backward Cloud Model Based Feature Extraction of Aircraft Echoes
and Target Classification

Qiusheng Li1, 2 and Li Wang3, *

Abstract—As a kind of complicated targets, the nonrigid vibration of aircraft, their attitude change,
and the rotation of their rotating parts will induce complicated nonlinear modulation on their echoes
from low-resolution radars. These kinds of modulation play an important role in target classification.
However, due to the influence of clutter and noise, these kinds of modulation have the characteristics
of fuzziness and randomness. As a quantitative to qualitative conversion model based on traditional
probability statistics theory and fuzzy theory, backward cloud model can be used to model and analyze
the modulation characteristics of the conventional low-resolution radar echoes from aircraft targets. By
considering the sample values of the echo data as individual cloud droplets, the paper extracts cloud
digital features such as the expectation, entropy, and hyper-entropy of each group of echo data, and
investigates the application of these features in aircraft target classification based on support vector
machine. The research results show that the backward cloud model can describe the aircraft echoes
well, and the echo cloud digital features can be effectively used for the classification and identification
of aircraft targets.

1. INTRODUCTION

Active surveillance radars mostly adopt conventional low-resolution radar systems. Due to lower pulse
repetition frequency (PRF), narrower system bandwidth, and shorter irradiation time, it is always
difficult to achieve classification and identification of targets on these radars [1]. Aircraft is an important
kind of targets surveilled by such radars. They are complex in shape, with non-rigid vibrations of the
fuselage and rotation of rotating parts on the aircraft (such as rotor, propeller, and turbine fan).
They will cause nonlinear modulation on radar echoes from an aircraft target, which is embodied in
the echo characteristics, such as amplitude, phase, frequency, and polarization [2–5]. These kinds of
modulation reflect micro-motion characteristics of aircraft targets, their spatial structure, and material
composition. Therefore, the features reflecting these kinds of modulation can be extracted effectively,
which will contribute to the classification and identification of aircraft targets [6, 7].

So far, relevant scholars [8–11] have proposed a number of feature extraction methods for aircraft
echoes from low-resolution radars based on the study of the echo mathematical models, such as complex
cepstrum, periodogram, singular value decomposition (SVD), and Empirical Mode Decomposition
(EMD) [12–17]. These existing features are mostly the characteristics in the time domain or the Doppler
domain. They can reflect the echo modulation characteristics to a certain extent; however, when the
beam irradiation time is relatively short, an echo contains less information, and the Doppler spectrum
resolution will decrease. When the PRF is low, the sampling rate of the time domain signal is low, and
the echo Doppler spectrum aliasing may lead to the decline of the classification performance of these
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features. Therefore, the existing features usually require higher radar beam irradiation time and higher
PRF. However, it is difficult for a conventional low-resolution radar to meet these requirements under
its actual working conditions.

In fact, due to the influence of clutter and interference, the target characteristics of radar echoes
will inevitably have fuzziness and randomness. As a quantitative to qualitative conversion model based
on traditional probability statistics theory and fuzzy theory, backward cloud model (BCM) [18] can be
used to model and analyze the characteristics of aircraft echoes from the conventional low-resolution
radars. This paper intends to regard sampled values of the radar echo data from aircraft targets as cloud
droplets, extracting the cloud digital features, such as the expectation, entropy, and hyper-entropy of
each group of echo data, and investigates the application of the proposed BCM based digital features
in aircraft target classification based on the support vector machine (SVM) classifier.

2. BACKWARD CLOUD MODEL

2.1. Basic Definitions

Things in nature generally have both uncertainties of fuzziness and randomness. In order to solve such
problems, Li proposed a model for uncertainty conversion between a qualitative concept expressed by
linguistic values and its quantification — the cloud model (CM) [18]. The relevant concepts are defined
as follows:

Definition 1 Degree of certainty. The degree of certainty is the degree of membership of the element
x to the qualitative concept T , denoted by CT (x), and has CT (x) ∈ [0, 1].

Definition 2 Cloud. Let U be a quantitative universe of discourse expressed by exact numerical
values, X ∈ U, and T is a qualitative concept on U. If the degree of certainty of an element x (x ∈ X)
to T is a random number with a stable trend, then the distribution of T mapped from U to interval
[0, 1] in number space is called cloud.

Definition 3 Cloud droplet. A cloud droplet is a tuple consisting of element x which constitutes
the cloud and its degree of certainty CT (x), expressed as Drop(x,CT (x)).

For a concept with a quantitative description, it is usually desirable to calculate its qualitative
characteristics. For example, according to the distribution of certain training samples, the category
characteristics of this category can be solved. At this point, we need to use the backward cloud model
(BCM). BCM is the reverse operation of CM.

Definition 4 BCM is an uncertainty conversion model that implements a random transformation
between a numerical value and its qualitative value, and is a mapping from quantitative to qualitative.

BCM is based on the known numerical distribution (quantitative description) of a concept in the
number domain space and calculates the qualitative characteristics of the concept, that is, the digital
features (qualitative description).

2.2. Digital Features

The digital features of BCM are generally characterized by three values: Expectation Ex, Entropy En
and Hyper-entropy He, which reflect the qualitative concept of quantitative features.

1) Expectation Ex. The expectation Ex of spatial distribution of cloud droplets in the universe
of discourse is the most representative point of qualitative concept. It is the most typical sample of
quantification of this concept. It reflects the cloud center of gravity of all the cloud droplets in this
concept.

2) Entropy En. Entropy represents the measurable granularity of a qualitative concept. The larger
the entropy is, the more macroscopic the concept is. It is also a measure of the uncertainty of the
qualitative concept, which is determined by the fuzziness and randomness of the concept. On the one
hand, En is a measure of the randomness of the qualitative concept, reflecting the degree of dispersion
of cloud droplets that can represent this qualitative concept; on the other hand, it is also a measure of
the character that it is both a value belonging to the qualitative concept and the value not belonging to
the qualitative concept which reflects the range of values of cloud droplets that can be accepted by the
concept in the universe of discourse. Using the same digital feature to reflect fuzziness and randomness
also necessarily reflects the correlation between them.
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3) Hyper-entropy He. The uncertainty measure of entropy, namely the entropy of En, is determined
by the randomness and fuzziness of entropy. It reflects the degree of cohesion that each value belongs
to this linguistic value, i.e., the degree of cohesion of the cloud droplets. The larger the hyper-entropy,
the greater the degree of dispersion of the cloud, the more random the degree of membership, and the
greater the thickness of the cloud.

Figure 1 shows the concept of a “number of 5 or so”, from which the geometric meaning of each
digital feature can be seen. 5 is the expected value of the concept, that is, 5 is the most typical sample
to satisfy the concept; more than 99% of cloud droplets fall within the range of [Ex− 3En, Ex + 3En];
He represents the thickness of the cloud corresponding to the concept.
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Figure 1. A cloud representing a number of 5 or so.

2.3. Normal Cloud and Its Algorithm of Backward Cloud Generator

CM is the concrete realization method of the cloud and is also the basis of methods such as cloud
computing, cloud clustering, cloud inference, and cloud control. The process from qualitative concept
to quantitative representation, that is, the specific realization of cloud droplets generated by the digital
features of the cloud, is called forward cloud generator; the process from quantitative representation to
qualitative concept, that is, the specific realization of the digital features of the cloud calculated by the
cloud droplet group, is called backward cloud generator.

There are many concrete implementation methods for CM, which constitute different types of
clouds. Commonly, there are symmetric cloud models and semi-cloud models. Symmetric cloud
models usually represent qualitative concepts with symmetric characteristics, while semi-cloud models
usually represent qualitative concepts with unilateral uncertainties. The normal cloud model is a
typical symmetric cloud model. As we all know, the normal distribution is one of the most important
distributions in probability theory, which is usually expressed by mean and variance. Bell-shaped
membership function is the most frequently used membership function in fuzzy sets, usually expressed
in μ(x) = exp[− (x−a)2

2b2
]. Normal cloud model is a new model developed on the basis of both, and its

definition is as follows.
Definition 5 Let U be a quantitative universe of discourse expressed in exact numbers, and T is

a qualitative concept on U . If the quantitative value x ∈ U , and x is a random implementation of T ,
and if x satisfies: x ∼ N(Ex,En′2), where En′ ∼ N(En, He2), and the degree of certainty of x to T
satisfies

CT (x) = exp

[
−(x − Ex)2

2En′2

]
,

then the distribution of x on U is called normal cloud. Obviously, Fig. 1 shows a normal cloud.
As mentioned earlier, backward cloud generator (CG−1) is a model that implements the

transformation from quantitative values to qualitative concepts. It converts a certain amount of accurate
data into a qualitative concept expressed in digital features (Ex, En, He), as shown in Fig. 2.
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Figure 2. Backward cloud generator.

The algorithm of CG−1 is based on statistical principles. There are two basic algorithms: one
needs to use the information of degree of certainty, and the other does not need to use the certainty
information of certainty. Only the algorithm of CG−1 without degree of certainty is given here, because
in practical applications, only a set of data values representing a concept are given, and the value of
the degree of certainty CT (x) representing the concept is not given or difficult to obtain; especially, it
is difficult to perform high-dimensional expansion of the algorithm, and the high-dimensional backward
cloud will have more errors than the one-dimensional backward cloud. However, it can be proved
that the algorithm using the information of degree of certainty and the algorithm without the degree
of certainty are essentially equivalent [18]. According to statistical characteristics of the cloud, the
algorithm only uses the quantitative value of cloud droplets xi to restore the three digital features of
the cloud without the value of degree of certainty CT (x). Since normal cloud is the most important
cloud model, its general adaptability is based on the universality of the normal distribution and the
bell-shaped membership function. The algorithm of CG−1 for the normal cloud is given below. The
specific steps are as follows:

Input: sample points xi, where i = 1, 2, . . . , n.
Output: digital features (Ex, En, He) reflecting a qualitative concept.
Steps:

(1) Calculating the sample mean X̄ =
n∑

i=1
xi/n, the first-order sample absolute center moment

n∑
i=1

∣∣xi − X̄
∣∣/n, and the sample variance S2 = 1

n−1

n∑
i=1

(
xi − X̄

)2 according to the data xi;

(2) Ex = X̄ ;

(3) En =
√

π
2 ·

n∑
i=1

|xi − Ex|/n;

(4) He =
√

S2 − En2.

The correctness of the above algorithm is proved as follows.
The random variable X is used to represent the cloud droplets produced by the cloud {Ex,En,He}.
Since the expectation of X is Ex, the sample mean X̄ can be used as the estimate of Ex, which is

(2) in the algorithm step.
Nextly, the first order absolute center moment E|X−Ex| of X is calculated. According to statistical

properties of the normal cloud model, the probability density of X is [18]

f(x) =
1

2πHe

∫ +∞

−∞

1
y

exp

[
−(x − Ex)2

2y2
− (y − En)2

2He2

]
dy,

therefore, we have

E |X − Ex| =
∫ +∞

−∞
|x − Ex| f(x)dx

=
1

2πHe

∫ +∞

−∞

∫ +∞

−∞
|x − Ex| · 1

y
exp

[
−(x − Ex)2

2y2
− (y − En)2

2He2

]
dydx

=
1

2πHe

∫ +∞

−∞
exp

[
−(y − En)2

2He2

]
dy ·

∫ +∞

−∞

|x − Ex|
y

exp

[
−(x − Ex)2

2y2

]
dx
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and ∫ +∞

−∞

|x − Ex|
y

exp

[
−(x − Ex)2

2y2

]
dx =

∫ Ex

−∞

Ex − x

y
exp

[
−(x − Ex)2

2y2

]
dx

+
∫ +∞

Ex

x − Ex

y
exp

[
−(x − Ex)2

2y2

]
dx

In the formulas above, if let t = (x − Ex)/y, then there is∫ +∞

−∞

|x − Ex|
y

exp

[
−(x − Ex)2

2y2

]
dx =

∫ 0

+∞
(−t) exp

(
−1

2
t2

)
ydt +

∫ +∞

0
t exp

(
−1

2
t2

)
ydt

= 2y
∫ +∞

0
t exp

(
−1

2
t2
)

dt = −2y
∫ +∞

0
exp

(
−1

2
t2
)

d
(
−1

2
t2
)

= 2y

So there is

E |X − Ex| =
1

πHe

∫ +∞

−∞
y · exp

[
−(y − En)2

2He2

]
dy

=

√
2
π
· 1√

2πHe

∫ +∞

−∞
y · exp

[
−(y − En)2

2He2

]
dy =

√
2
π
· En

When the number of sample cloud droplets is n, the first-order absolute center moment E|X −Ex|
can be estimated as 1

n

n∑
i=1

∣∣xi − X̄
∣∣. Thus there is

En =
√

π

2
· 1
n

n∑
i=1

∣∣xi − X̄
∣∣

that is, (3) in the algorithm step is proved.
Because the variance of X is

DX =
∫ +∞

−∞
(x − Ex)2f(x)dx

=
∫ +∞

−∞
(x − Ex)2 · 1

2πHe

∫ +∞

−∞

1
y

exp

[
−(x − Ex)2

2y2
− (y − En)2

2He2

]
dydx

=
1√

2πHe

∫ +∞

−∞
y exp

[
−(y − En)2

2He2

]
dy ·

{
1√
2π

∫ +∞

−∞
(x − Ex)2

y2
exp

[
−(x − Ex)2

2y2

]
dx

}

=
1√

2πHe

∫ +∞

−∞
y2 exp

[
−(y − En)2

2He2

]
dy · 1√

2π

∫ +∞

−∞
t2 exp

[
−1

2
t2

]
dt

=
1√

2πHe

∫ +∞

−∞
y2 exp

[
−(y − En)2

2He2

]
dy = En2 + He2

by substituting the sample variance S2 = 1
n−1

n∑
i=1

(
xi − X̄

)2 for DX, (4) in the algorithm step can be

solved.

3. CHARACTERISTIC ANALYSIS OF AIRCRAFT ECHOES BASED ON BCM

This section takes the echo data of several different types of aircraft targets recorded on a VHF band
air-defense surveillance radar as an example, and uses the backward normal cloud model (BNCM) to
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analyze the characteristics of aircraft echoes. Before analyzing the characteristics of the raw echo data,
the attitude partitioning (flying towards the radar station, flying in side direction, and flying off the
radar station) and energy normalization are firstly performed to reduce the adverse effects of factors
such as flying attitude and target distance on the characteristic analysis of the target echoes [19]. When
an aircraft target flies in side direction, echo modulation induced by its nonrigid vibration is not easy
to observe, and for most jet planes, the JEM phenomenon which is important for target classification is
also difficult to observe. Therefore, we will analyze the echo characteristics of different types of aircraft
targets when they fly towards or off the radar station in the following.

Figures 3(a) and (b) respectively show the cloud images obtained by using BNCM to model and
invert the smooth waveforms of several sets of echo data of a certain civil aircraft in two flying attitudes.
It can be seen from the figure that the radar echoes from aircraft targets can be modeled effectively by
the normal cloud model, whether in the toward-station or off-station flying attitude, but it can be seen
from the figure that in the two flying attitudes, the thickness of the echo clouds of the civil aircraft is
larger, indicating that its hyper-entropy is larger, that is, the degree of dispersion of the cloud is larger,
and the randomness of the membership degree is also larger. Fig. 4 shows the three-dimensional feature
distributions of Ex, En and He of echoes from a civil aircraft and a fighter aircraft in the two flying
attitudes. It can be seen from the figure that although there are some overlaps in the three-dimensional
feature distribution maps of Ex, En, and He of the two kinds of target echoes, the features of the two
types of targets still show good separability in general. Therefore, if the three features are combined to
identify different types of aircraft targets, it is possible to obtain better classification and recognition
performance. In addition, it can be seen from Fig. 4 that the expected value Ex of the echo cloud of the
civil aircraft is wider than that of the echo cloud of the fighter aircraft in both toward and off-station
flying attitude, and the entropy En and hyper-entropy He of the echo cloud of the civil aircraft are
also greater than those of the echo cloud of the fighter aircraft, which shows that the amplitude of the
civil aircraft echoes changes more dramatically than that of the fighter aircraft echoes, and the high
frequency components account for a large proportion. This also shows from another aspect that the
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Figure 3. Inversion cloud maps of aircraft echoes based on BNCM.
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non-rigid vibration of the civil aircraft, the change of flight attitude, and the rotation of the rotating
parts on the civil aircraft cause more severe modulation effects on radar-irradiated electromagnetic
waves. Therefore, the digital features of the echo clouds, such as Ex, En, and He, can reveal the
differences of nonlinear modulation characteristics of radar echoes induced by different types of aircraft
targets.

4. AIRCRAFT TARGET CLASSIFICATION BASED ON BCM DIGITAL FEATURES

Below we will discuss the application of the aforementioned BCM digital features in the classification
of aircraft targets by using the real recorded echo data. The echo data used in the experiment are from
two different types of aircraft targets with one civil aircraft and one fighter aircraft. The radar operates
in the VHF band with its PRF 100 Hz and pulse width 25 µs, and the flying attitude of both types of
aircraft targets has two kinds: towards the radar station and off the radar station. In the working band
of the experimental radar, the RCS values of the two kinds of aircraft targets fluctuate slowly.

On basis of analyzing the performance of methods using some typical classification features for
aircraft targets with low-resolution radars, [12] points out that the classification method based on
dispersion situations of eigenvalue spectra (CMDSES) outdoes other methods markedly. In [14],
multifractal modeling is carried out on the irregular amplitude fluctuation of target radar echoes.
Based on the modeling, a target classification method using multifractal spectrum features (CMMSF) is
proposed, and CMMSF is used to classify the real-recorded echoes of three different aircraft targets, and
good classification results are obtained. Under the same conditions, the classification and recognition
performance of CMMSF is better than that of CMDSES. Therefore, we will take CMMSF as the contrast
to analyze the performance of the classification method based on BCM digital features (CMBCMDF)
in the following text.

In the experiment, we have selected 3072 groups of echo data from the two different types of aircraft
targets, and the group number for each type of aircraft targets is 1536 (with the group number of each
of the two flying attitudes equal to 768). For each type of aircraft targets, the feature data extracted
from 1024 groups of echo data are chosen as training samples (the group number for each of the two
flying attitudes useful for classification is 512), with the rest feature data as testing samples. Moreover,
compared to other classifiers, support vector machine (SVM) has stronger generalization abilities and
a faster convergence rate [20], so in the experiment SVM using the Gaussian kernel function is taken
as the classifier, and the kernel function parameters are selected rationally without going beyond the
calculation burden.

Table 1 shows the classification results for the two types of aircraft targets. As can be seen from
Table 1, for training data, the correct classification rate (CCR) and the average CCR of the two kinds
of targets are 100%. For testing data, the CCR of the civil aircraft is over 98%; the CCR of the fighter
aircraft is 100%; and the average CCR exceeds 99%. In addition, it can be seen from the table that
the average CCR of CMBCMDF is even higher than that of CMMSF by 1.27 percentage points, so the
classification effect is relatively ideal. Moreover, the feature extraction operation amount of CMBCMDF
is also lower than that of CMMSF. Table 2 gives the classification confusion matrix for the testing data.
From Table 2, it can be seen that 100% of the echo data samples of the civil aircraft have been correctly
classified, and the CCR of the echo data samples of the fighter aircraft has reached 502/512 = 98.05%,
which is 1.95 percentage points lower than that of the civil aircraft. This shows that some echo data
samples of the fighter aircraft are incorrectly classified as the civil aircraft echoes by the classifier. The

Table 1. Classification results.

CMBCMDF
CMMSF

Training data Testing data
Civil aircraft 100% 98.08% 95.70%

Fighter aircraft 100% 100% 100%
Average CCR 100% 99.02% 97.75%
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Table 2. Confusion matrix.

Civil aircraft Fighter aircraft
Civil aircraft 512 10

Fighter aircraft 0 502

reason for this result is that although the civil aircraft in this experiment has a larger body size than
the fighter aircraft, its nonlinear modulation on radar echoes is more intense, but the echo data of the
civil aircraft are recorded in the range of 100 ∼ 130 km, while the echo data of the fighter aircraft are
recorded in the range of 60 ∼ 90 km, so that their echo signal-to-noise ratios may be equivalent, which
causes the classification of echo data samples to be confused to some extent.

Moreover, what should be pointed out is that the feature data we used in the experiments are
extracted from aircraft echoes within a single pulse repetition interval (PRI), and the number of training
samples is lesser. If we combine pulse echo data recorded in multiple PRIs and extract their BCM digital
features and increase the number of training samples properly, then the average CCR of CMFSF could
still have a larger increase.

5. CONCLUSIONS

Aircraft are a kind of complex targets. The nonrigid vibration of the aircraft body, their attitude
change, and the rotation of the rotating parts will exert nonlinear modulation on the radar-irradiated
electromagnetic waves. These kinds of modulation play an important role in target classification. Due
to the influence of clutter and noise, these kinds of modulation are characterized by both fuzziness
and randomness. This paper introduces BCM, which is a quantitative-to-qualified conversion model
developed on the basis of traditional probability and statistics theory and fuzzy theory, to model and
analyze the conventional low-resolution radar echoes from aircraft targets. By considering the sample
values of the echo data as individual cloud droplets, it extracts the cloud digital features such as the
expectation, entropy, and hyper-entropy of each group of echo data, and carries out the classification
experiments for two types of targets (one is civil aircraft, and the other is fighter aircraft) based on
these features and SVM classifiers. The research results show that BCM can describe the aircraft echoes
well, and the echo BCM digital features can be effectively used for the classification and identification
of aircraft targets.
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