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Reconstruction of Two-Dimensional Objects Buried into Three-Part
Space with Locally Rough Interfaces via Distorted

Born Iterative Method

Yasemin Altuncu*, Tulun Durukan, and Riza Erhan Akdogan

Abstract—In this paper, the reconstruction problem of inaccessible objects buried into a three-part
space with locally rough interfaces is solved by Distorted Born Iterative Method (DBIM). DBIM
requires the calculation of the background electric field and Green’s function in every iteration step
via the solution of the direct scattering problem. Here, they are calculated numerically by using
the buried object approach (BOA) which is very useful in the solutions of the problems including
stratified media with locally rough interfaces. Various numerical applications have been performed to
demonstrate the applicability and efficiency of the method. The method was found to be very successful
in reconstructing moderate contrast objects when they were buried in the middle space. In this case, the
method works effectively even if the buried objects and interface roughnesses have complex geometric
structures. Moreover, the multiplicity of buried objects has no negative effect on the reconstruction
results. Nevertheless, the results of reconstruction deteriorate when objects are buried in the bottom
space. However, the accuracies of them are still on an acceptable level in this situation.

1. INTRODUCTION

The reconstruction of the geometric and material properties of an inaccessible object is extremely
important in terms of many real-life problems such as biomedical imaging, underground exploration,
and remote sensing applications.

The general procedure to solve an inverse electromagnetic scattering problem is to measure the
scattered field in an observation domain outside the object to be reconstructed, then using it in an
inversion algorithm to determine the unknown properties of this object. Therefore, if there is a chance
of going around the object to collect the scattered field data, the chance of success of the reconstruction
will be high [1–9]. However, if the object is embedded in a layered media, there is no possibility to
approach the object and measure the scattered field at any point around it. In this case, the scattered
field can only be measured in the top space, so the available data will be insufficient [10–23]. It is clear
that the situation will worsen as the number of layers increases. Furthermore, if the interfaces of the
layers are not planar, the problem will become more complicated as it is necessary to consider the effects
of this disturbance. For that reason, there is not much work on this issue, and in most of the work
done the roughness level is assumed to be in low level [18–20]. In this study, we focus on the solution of
an inverse scattering problem related to the dielectric objects with arbitrary shape and number, buried
into three-part space with locally rough interfaces having arbitrary shape and amplitude.

The inverse scattering problems are called as ill-posed in the sense of Hadamard [24] because
their solutions are not unique and the scattered field data not linearly related to the scatterer. The
nonlinear relationship makes it difficult to find closed-form solutions for inverse scattering problems.
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However, the problem can be linearized under certain conditions such as the conditions of Born and
Rytov approximations [4]. Both of them require that the contrast between the buried bodies and
the background is small. The iterative methods with regularizations are frequently preferred in cases
where Born and Rytov conditions are not met [1–10, 25–33]. Among them, Born iterative method
(BIM) [25], distorted Born iterative method (DBIM) [1–10, 25, 26], contrast source inversion method
(CSIM) [22, 23, 27–31], and subspace optimization method (SOM) [32, 33] are the most widely used
ones.

The main difference of this study from the existing ones in the literature is that it deals with
a much more complicated problem geometrically. In most of the studies in the literature, objects to
be identified reside in a homogeneous media [1–9, 25–33], layered media with planar interfaces [10–17]
or under slightly rough surfaces [18–20]. In contrast, the present study deals with a rather complex
problem of reconstructing 2D objects embedded in a three-part space with rough interfaces. While
the objects can be buried in the middle or bottom space, the electric field measurements can only
be made in the top-space in the discussed scenario. Because the interfaces are rough, the problem is
substantially complex both mathematically and computationally. To solve this problem, distorted Born
iterative method which requires to direct solution of background electric field and background Green’s
function in every iteration step is used in this work. Since the background is a layered space with
rough interfaces, it is not possible to find analytical solutions for the background electric field and the
background Green’s function. In this work, they are computed numerically by using the buried object
approach (BOA) [34]. In this approach, the ridges and pits of the interfaces are regarded as fictitious
buried dielectric objects. Then, the background field and Green’s function are obtained by solving the
direct scattering problem related to these objects.

Although the assumption that the roughness is known previously and local is perceived as restricting
the practical use of the proposed method, there are many real-life applications in which the proposed
method can be applied directly, such as the detection of breast cancer tumors or historical remains in
a mound or through-wall imaging. It is also possible to come across many studies in the literature
where the roughness is small in amplitude and randomly varying [18–20]. The results of the proposed
method can be compared with those of the studies if local roughnesses are chosen as too large in the x1
direction, too small in amplitude, and have randomly varying geometry.

The rest of the paper is organized as follows. In Section 2, the general formulation for the direct
and inverse solution of the problem is given. Here, the calculation method of the background electric
field and the Green’s function based on the BOA method in a three-part space with locally rough
interfaces and DBIM based inverse problem solution procedure are given in detail. Various numerical
examples are presented to demonstrate the applicability of the method in Section 3. In the numerical
examples, the objects with moderate contrast are selected. Because of the constraints of being a Born
approximation-based method, DBIM is not very effective in reconstructing high contrast objects. With
the use of multiple-frequency approaches [2], hybrid-DBIM, or modified-DBIM methods [3, 33], the
presented work can also be extended for higher-contrast objects. However, this is not within the scope
of this study, and the focus of this study is to prove that the DBIM method can be used to reconstruct
the objects embedded in a complex environment such as three-part space with rough interfaces. Some
conclusions are given in Section 4. Also, the expressions of the Green function and the electric field
in the case of plane wave illumination for the background composed of three-part space with a planar
interface are given in the Appendices.

2. GENERAL FORMULATION

The geometry of the problem is illustrated in Fig. 1. Here, three mediums with different dielectric
properties, stratified along x2-axis are separated by locally rough interfaces denoted by Γ1 and Γ2. The
relative permittivity and conductivity of the mediums from top to bottom are εr1 , σ1, εr2 , σ2, and εr3 , σ3,
respectively. The permeability of the whole space is μ0, i.e., all media are filled by simple non-magnetic
dielectric materials. As seen from Fig. 1, the interfaces are roughened around the x2 = d and x2 = −d
planes and defined by the functions f1(x1) and f2(x1). A dielectric object with cross-section B in x1−x2
plane (in general, the object does not need to be single) is embedded in the middle or bottom space. The
geometry is illuminated by an electromagnetic wave source excited in the top medium. The problem
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Figure 1. Geometry of the problem.

discussed in this work is to identify dielectric properties as well as the geometrical properties of the
object located inside the domain of interest D by using the scattered field data measured in a domain
S in the top medium. Here, D is called the reconstruction domain, and S is called the measurement
domain. In this work, we deal with a two-dimensional case by assuming that the whole geometry is
invariant along x3-direction and illuminated by TM -polarized plane wave whose electric field is parallel
to x3-direction. It should be noted that even if line sources parallel to the x3-direction are used instead
of plane waves, the problem can also be reduced to a two-dimensional scalar problem.

It is important to know the nature and solution procedures of direct scattering problems to better
understand the solutions of inverse scattering problems, Furthermore, most of the inverse scattering
algorithm also requires the solution of the direct scattering problem in each iteration step, For that
reason, in the following section, the solution method of the direct scattering problem is explained first.

2.1. Solution of the Direct Scattering Problem

The region of interest is illuminated by a TM -polarized plane wave whose electric field is supposed as
parallel to the x3-direction, i.e., Ei = (0, 0, ui). The total electric field E at any point comprises the sum
of the background field Eb and the scattered field Es. Since the geometry is invariant in x3-direction
and the incident field parallel to this direction, the background electric field and scattered electric field
as well as the total electric field are also parallel to x3-direction. That is Eb = (0, 0, ub), Es = (0, 0, us),
and E = (0, 0, u). This allows us to reduce the problem to a scalar one and write the following scalar
equation,

u = ub + us (1)

Here, the presence of the scattered field is due to the buried object, and this field satisfies the following
integral equation including the background Green’s function Gb,

u(x) = ub(x) +

∫
D

k2b (y2)Gb(x,y)χ(y)u(y)dy (2)
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where x = (x1, x2) is the position vector of a point in the measurement domain S, and y = (y1, y2) is
the position vector of a point in reconstruction domain D. kb(y2) is the wave number of the medium in
which the domain D is located, and its explicit expression is as follows,

kb(y2) =

⎧⎨
⎩
k1, y2 ≥ f1(y1)

k2, f1(y1) < y2 < f2(y1)

k3, y2 ≤ f1(y1)

(3)

In Eq. (2), χ(y) is the object function that determines the contrast between the buried object and the
background,

χ(y) = k2(y)/k2b (y2)− 1 (4)

in which k(y) is the value of the wave number at the point y in the reconstruction domain. It should
be noted that χ(y) is zero if y /∈ D, because outside the D domain, k(y) = kb(y2).

The background field is equal to the total field in the absence of the scatterer. Since the background
consists of a three-part space with locally rough interfaces, it is imperative to take into account the
irregularities of the interfaces to calculate the background field and Green’s function. The next section
describes how the background field and background Green’s function are calculated by the buried object
approach (BOA) method.

Assume now that Gb and ub are known. Then, one can solve the total field u(y) at inner points of
the domain of interest D by first dividing it into N rectangular cells, which are so small that u and χ
are constant over a given cell. This allows us to write Eq. (2) in a matrix form as follows,

u(ym) = ub(ym) +

N∑
n=1

k2b (y2)Gb(ym,yn)χ(yn)u(yn)Δsn (5)

where Δsn is the cross-sectional area of nth cell while m = 1, 2, . . . , N . Thus, the internal electric field
in the domain D can be determined from the solution of the following system of linear equations,

[I−A]U = Ub (6)

Here, I is the identity matrix with size N ×N , and A is a square matrix of the same size with entries
defined by,

Amn = k2b (y2)Gb(ym,yn)χ(yn)Δsn (7)

In Eq. (6), U and Ub are N×1 vectors whose entries are determined by Um = u(ym) and Ubm = ub(ym),
m = 1, 2, . . . , N . Once the internal electric fields are obtained in the domain of interest, the scattered
field at any observation point x can be calculated as follows,

us(x) =

N∑
n=1

k2b (y2)Gb(x,yn)χ(yn)u(yn)Δsn (8)

2.2. Calculations of the Background Electric Field and Green’s Function by BOA

According to the buried object approach (BOA), the roughnesses of the interfaces are considered as
fictitious 2D buried bodies contouring by the x2 = f1(x1) function with x2 = d plane and x2 = f2(x1)
function with x2 = −d plane as shown in Fig. 2. It is assumed that Nt objects whose electromagnetic
parameters are the same as those of the middle space are buried in the top space, Nmt objects whose
parameters are the same as those of the top space are buried in the middle space, Nmb objects whose
parameters are the same as those of the bottom space are buried in middle space, and Nb objects whose
parameters are the same as those of the middle space are buried in the bottom space. These objects
are referred to as BOA objects. Thus, the problems of determining the background electric field and
Green’s function are reduced to the scattering problems of these fictitious objects in the case of plane
wave illumination and point source illumination, respectively.
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Figure 2. Buried object model of rough interfaces.

2.2.1. Background Field ub

Let’s suppose that the incident field is defined as follows,

ui = e−ik1(x1 cos φ1+x2 sinφ1) (9)

where k1 is the wave number of the top medium, and φ1 is the incidence angle of the plane wave. Then,
the background field can be expressed as,

ub = ub0 + usr (10)

where ub0 is the total field in three-part space separated by x2 = d and x2 = −d planes. This field can be
easily calculated by using the reflection and transmission laws of plane waves from planar interfaces. Its
explicit expression is given in Appendix A. usr is the field scattered by dielectric objects corresponding
to the rough interfaces and satisfies the following integral equation,

ub(x) = ub0(x) + k21

∫
Rt

Gb0(x, z)χRt(z)ub(z)dz

+k22

∫
Rmt

Gb0(x, z)χRmt(z)ub(z)dz

+k22

∫
Rmb

Gb0(x, z)χRmb
(z)ub(z)dz

+k23

∫
Rb

Gb0(x, z)χRb
(z)ub(z)dz (11)

where z = (z1, z2) is the position vector of a point in the BOA objects, and Rt = R1t+R2t + . . .+RNt,
Rmt = R1mt+R2mt+ . . .+RNmt, Rmb = R1mb+R2mb+ . . .+RNmb, Rb = R1b+R2b+ . . .+RNb are the
cross-sectional areas of these objects. In Eq. (11), Gb0 is the Green’s function of the three-part space
with planar interfaces whose explicit expression is given in Appendix B. χR(z) is the object function
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related to the BOA objects,

χR(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χRt(z) =
k2
k1

− 1, z ∈ Rt

χRmt(z) =
k1
k2

− 1, z ∈ Rmt

χRmb
(z) =

k3
k2

− 1, z ∈ Rmb

χRb
(z) =

k2
k3

− 1, z ∈ Rb

(12)

Denoting R = Rt +Rmt +Rmb +Rb, we can write Eq. (11) in a compact form as follows,

ub(x) = ub0(x) +

∫
R

k2b0(z2)Gb0(x, z)χR(z)ub(z)dz (13)

where

k2b0(z2) =

⎧⎪⎨
⎪⎩
k21, z2 >= d

k22, −d <= z2 < d

k23, z2 < −d

(14)

Here, usr and ub are calculated numerically, similar to us and u in Section 2.1.

2.2.2. Background Green’s Function Gb

Unlike the calculation of the background electric field, the point source is used for the calculation of the
background Green’s function. So, the Green’s function requires the solution of the following integral
equation,

Gb(x,y) = Gb0(x,y) +

∫
Ru

k2b0(z2)Gb0(x, z)χR(z)Gb(z,y)dz (15)

Here again, the solution of this integral equation is obtained numerically.

2.3. Solution of the Inverse Scattering Problem

The geometry of interest is successively illuminated by plane waves defined in Eq. (9) with incremental
incidence angles indicated by φp

1, p = 1, 2, . . . , P . Then, the scattered fields are measured on a domain
composed of M points along a straight line in the top layer. This measurement domain is denoted by
S in Fig. 1. The object function given in Eq. (4) is to be reconstructed by solving inverse scattering
problem. It should be noted that Eq. (2) forms a nonlinear integral equation because u(y) depends on
χ(y). In this work, Distorted Born Iterative Method (DBIM) is used to reconstruct the unknown object
function distribution throughout the reconstruction domain D.

The first step of DBIM is to use the Born approximation to obtain an initial guess for object
function. According to Born approximation, the total field in the reconstruction domain can be
approximated as background field, i.e., u(y) = ub(y) in the integral given in Eq. (2) to linearize the
equation. In the next description, superscript i indicates the iteration step. So, for any incidence angle
φp
1, we need to solve the following integral equation to obtain the zeroth-order object function χi=0,p,

i.e., initial guess,

ups(x) =

∫
D

k2b (y2)Gb(x,y)χ
0,p(y)upb(y)dy (16)

This integral can be represented in matrix form by discretizing the domain,

Up
s = QpX0,p (17)
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Here, Qp is an M ×N size inverse scattering matrix with entries,

Qp
mn = k2b (y2)Gb(xm,yn)u

p
b(yn)Δsn (18)

Up
s is an M × 1 vector with entries Up

sm = ups(xm), m = 1, 2, . . . ,M . It is composed of measured
scattered field data for incidence angle φp

1. X0,p is an N × 1 vector with entries unknown zeroth-order
object function at points of reconstruction domain for incidence angle φp

1. The entries of this vector

are defined by X0,p
n = χ0,p(yn), n = 1, 2, . . . , N . Due to the ill-posed nature of Eq. (16), it is not

possible to find X directly from the product of the inverse of the matrix Q and the scattered field data
vector Us. In this work, Tikhonov regularization [35, 36] is applied to overcome this handicap, and the
object function distribution at any iteration step and incidence angle is obtained by following matrix
calculation,

X = [Q∗Q+ γI]−1[Q∗Us] (19)

where I is an N ×N identity matrix; γ is the regularization parameter; and asterisk refers to complex
conjugate. Since Tikhonov regularization is applied in each iteration step, superscripts denoting iteration
number and incidence angle are not shown in this expression for the sake of generalization. After the
object function is calculated for all incidence angles, the zeroth-order object function is derived from
their mean value as follows

X0 =
1

P

P∑
p=1

X0,p (20)

Distorted Born iteration starts from this point. The updated quantities are indicated with a bar. The
zeroth-order object function calculated before is used in the integral equation of the direct problem in
Eq. (5) to calculate the inner fields in the reconstruction domain. Accordingly, ūi,p(y) is updated as
follows,

Ū
i,p

= [I−Ai]−1Up
b (21)

where Ū
i,p

is an N × 1 vector whose entries are composed of the total field at discretized points of
reconstruction domain for the pth incidence angle at the ith iteration step. Ai is a square matrix whose
entries are defined by,

Ai
mn = k2b (y2)Gb(xm,yn)χ

i−1(yn)Δsn (22)

The next step of the DBIM algorithm is to update the background Green’s function. Since the
background Green’s function is the point source response of the background medium, it can be calculated
in the same way as the background electric field, except that the point source excitation is used instead
of plane wave excitation. So, the response of point sources on the measurement domain at the points
in the reconstruction domain is

Ḡi
b(y,x) = (I−Ai)−1GT

b (x,y) (23)

where superscript T indicates the transpose. Then, the desired background Green’s function at the ith
step is Ḡi

b(x,y) = ḠiT
b (y,x).

In the subsequent step, the scattered field on the measurement domain is computed using the last
reconstructed object function, background Green’s function, and the background electric field in Eq. (2),

ūi,ps (x) =

∫
D

k2b (y2)Ḡ
i
b(x,y)χ

i(y)ūi,p(y)dy. (24)

A deviation of the measured scattered field us from the ones calculated in the ith iteration step is
denoted by Δus(x) that is equal to the difference between measured and calculated scattered fields,

Δui,ps (x) = ups(x)− ūi,ps (x)

=

∫
D

k2b (y2)Ḡ
i
b(x,y)Δχi,p(y)ūi,p(y)dy. (25)

This equation can be written in matrix form,

ΔUi,p
s = Up

s − Ū
i,p
s = Qi,pΔXi,p. (26)



30 Altuncu, Durukan, and Akdogan

Here, Up
s and Ū

i,p
s are M × 1 vectors denoting the measured and the calculated scattered field vectors,

respectively, and ΔUi,p
s is difference scattered field vector. Qi,p is an M ×N matrix, and the difference

from Eq. (21) is that it uses Ḡi
b instead of Gb and ūi,p instead of upb in the entries, i.e.,

Qi,p
mn = k2b (y2)Ḡb(xm,yn)ū

i,p(y)Δsn (27)

It should be noted that the updated Green’s function Ḡi
b is used only in the calculated scattered field

expressions from Eqs. (24) to (26). The Green’s function Gb shown in Eqs. (22) and (23) is the initially
known Green’s function of the background. Tikhonov regularization procedure is employed here to
obtain ΔXi,p. ΔXi is the difference object function vector measured between two consecutive iteration
steps, and it is calculated by,

ΔXi =
1

P

P∑
p=1

ΔXi,p. (28)

for p = 1, 2, . . . , P . Then, the object function is updated as,

Xi+1 = Xi +ΔXi (29)

Iteration is continued until the relative residual error (RRE) reaches a predetermined criterion. RRE
is defined as,

RRE =

M∑
m=1

P∑
p=1

|Up
sm − Ū i,p

sm|2

M∑
m=1

P∑
p=1

|Up
sm|2

(30)

It should be reminded that here m indicates the mth measurement point, and p indicates the pth
incidence angle.

3. NUMERICAL RESULTS

In this section, some reconstruction results of dielectric objects buried into the middle or bottom medium
of three-part space are presented. In all examples, the top space is considered as free-space, i.e.,
ε1 = ε0, μ1 = μ0. Furthermore, the frequency is considered as 300MHz, and all dimensions are given
in the wavelength of free-space, λ. In all the examples, Tikhonov regularization parameter is selected
between 10−14 and 10−10. As the noise level, the conductivity of the middle and bottom spaces, the
roughness size, and the dimensions of the region of interest increase, it is appropriate to select the
regularization parameter larger. If this parameter is selected too small, it does not regularize the
solution, and if it is selected too large, it smoothes the solution too much. The measured scattered field
data are generated synthetically by solving forward problem using moments method, and 5% Gaussian
white noise ns = η|us|W is added to data. Here, η is the noise level, and W is a complex vector whose
real and imaginary parts are composed of normally distributed random numbers with zero mean. Then,

the corresponding signal to noise ratio in decibel is obtained by SNRdB = 10 log10

∑M
m=0 |us(m)|

∑M
m=0 |ns(m)| .

The first example is devoted to revealing the effect of the medium in which the objects are buried
in the success of the reconstruction. To see this effect, the reconstruction results of the same objects
when they are buried in the middle and bottom spaces are compared. Here, the constitutive parameters
of the middle-space are εr2 = 1.3, σ2 = 10−6, while those of bottom space are εr3 = 1.5, σ3 = 10−4. The
thickness of the middle space is 2d = 2.2λ. Thus, with reference to Fig. 1 the top and middle spaces are
separated from each other by a rough interface fluctuating around the center line x2 = d = 1.1λ with
the middle and bottom spaces by a rough interface fluctuating around the center line x2 = −d = −1.1λ.
The roughness of the interface dividing top and middle spaces is considered as a randomly rough surface
specified by correlation length 0.4λ, rms height 0.2λ, and roughness length 20λ. Similarly, the roughness
of the interface dividing the middle and bottom space is also considered as a random surface specified by
the same correlation length and rms height with upper interface roughness, but this time the roughness
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Reconstruction results of two square-shaped objects with parameters εobj = 1.7, σobj = 0.001
buried in middle and bottom spaces. (a) Original permittivity-middle space. (b) Reconstructed
permittivity-middle space. (c) Original conductivity-middle space. (d) Reconstructed conductivity-
middle space. (e) Original permittivity-bottom space. (f) Reconstructed permittivity-middle space. (g)
Original conductivity-bottom space. (h) Reconstructed conductivity-bottom space.

length is 10λ. In the first scenario, two identical rectangular-shaped objects with dimensions 0.6λ×0.6λ
are embedded in the middle space such that their center points are (−0.4λ,−0.4λ) and (0.4λ, 0.4λ). In
the second scenario, the same objects are embedded in the bottom space. The center points of the objects
are (−0.4λ,−2.4λ) and (0.4λ,−1.6λ) at this time. The relative permittivity and the conductivity of
both objects are εobj = 1.7, σobj = 0.001. The measurement domain S is selected as 50λ straight line
above the top rough interface at x2 = 1.3λ in the top space. The electric fields are observed at 100
points along the measurement domain as the geometry of interest is illuminated by plane waves with
30 different incidence angles in φ1 ∈ (−π/2, π/2), successively. A 2λ× 1.8λ rectangular reconstruction
domain is considered and meshed to 28×26 pixels. The original and reconstructed relative permittivity
distributions are given in Figs. 3(a) and 3(b) when the objects are buried in the middle space. Besides,
in Figs. 3(c) and 3(d), the original and reconstructed conductivities are given for the same scenario.
On the other hand, the original and reconstructed relative permittivities are given in Figs. 3(e) and
3(f) when these two square-shaped objects are buried in the bottom space. Finally, the original and
reconstructed conductivity distributions are given in Figs. 3(g) and 3(h) for the second scenario.

The comparison of relative residual error (RRE) graphics obtained for the cases where the objects
are in the middle and bottom spaces is given in Fig. 4. As expected, the results obtained for the first
scenario are better than those for the second scenario. Nevertheless, the reconstruction results are also
satisfactory for the last case.

In the last phase of the first example, a larger reconstruction domain is selected to observe its
effects on the reconstruction result. While in the previous configuration the region of interest, i.e., the
reconstruction domain is 2λ×1.8λ, this time it is 2.5λ×2.5λ. Figs. 5(a) and 5(b) show the reconstructed
relative permittivity and conductivity along the region of interest which resides in middle space. Besides,
Figs. 5(c) and 5(d) show the results of reconstruction when the region of interest is in the bottom space.
The comparison of Fig. 3 and Fig. 5 shows that when the domain is small, the reconstruction results
are more successful in both value and geometry than in the case where it is larger. However, when
the domain is small, unexpected strong values appear where objects approach the boundaries of the
domain.

The second example aims to show that objects with extraordinary geometrical shapes and in-
homogeneous constitutive parameters can be reconstructed with the presented method. For that
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Figure 4. Relative residual error for reconstruction of buried two square-shaped objects.

(a) (b) (c) (d)

Figure 5. Reconstruction results of two square-shaped objects with an enlarged domain of interest
in middle and bottom spaces. (a) Reconstructed permittivity-middle space. (b) Reconstructed
conductivity-middle space. (c) Reconstructed permittivity-bottom space. (d) Reconstructed
conductivity-bottom space.

purpose, first, an inhomogeneous object shown in Fig. 6(a), which is placed into middle space, is
considered. Here, the first part of the object is a hollow disc with radius 0.5λ and center (0, 0). The
radius of the hole is 0.2λ, and center is (0.1λ, 0.2λ). Another part of the object is a solid disc with a
radius of 0.2λ at the center (0.3λ, 0.5λ). The dimensions of the reconstruction domain are considered
as 1.8λ × 1.8λ. The constitutive parameters of the hollow disc are εobj = 1.7, σobj = 0.001 while those
of the solid disc are εobj = 1.8, σobj = 0.01. The constitutive parameters of the three-part space and
the roughness of the interfaces are considered the same as the first example. From the reconstructed
relative permittivity distribution throughout the reconstruction domain in Fig. 6(b), the geometries and
relative permittivity values of the objects can be distinguished. Also, the original and reconstructed
conductivities of the object are shown in Figs. 6(c) and 6(d), respectively. Secondly, a sawtooth-shaped
homogeneous object with dielectric permittivity εobj = 1.7, σobj = 0.001 buried into the same medium is
reconstructed. Here again, the reconstruction results are extremely successful although the subject has
sharp edges, as shown from Figs. 7(a) to 7(d). In the last step of this example, an object similar to a
square-wave shape that has the same electromagnetic parameters as the previous object is considered.
The method is very successful again in reconstructing the objects with these different geometries as
shown in Figs. 8(a) to 8(d).

In the third example, the effect of the roughness size on reconstruction performance is investigated.
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(a) (b) (c) (d)

Figure 6. Reconstruction results of an inhomogeneous annular disc-shaped objects. (a) Original
permittivity. (b) Reconstructed permittivity. (c) Original conductivity. (d) Reconstructed conductivity.

(a) (b) (c) (d)

Figure 7. Reconstruction results sawtooth-shaped object with parameters εobj = 1.7, σobj = 0.001.
(a) Original permittivity. (b) Reconstructed permittivity. (c) Original conductivity. (d) Reconstructed
conductivity.

(a) (b) (c) (d)

Figure 8. Reconstruction results square-wave shaped object with parameters εobj = 1.7, σobj = 0.001.
(a) Original permittivity. (b) Reconstructed permittivity. (c) Original conductivity. (d) Reconstructed
conductivity.

In order to observe this effect more explicitly, both roughnesses are chosen as sinusoidal defined by the
function f(x) = α sin 2πx

4 . Here α determines the amplitude of the roughness. An “Austria profile”
object is placed in the middle space with the center of the ring (0,−0.15λ). The relative permittivity
and conductivity of the objects are equal to εobj = 1.8 and σobj = 0.01. The thickness of the middle
space is 2d = 2.4λ, and the length of local roughness for both interfaces is 16λ. In each case in this
example, the scattered fields are measured at 100 points along a 50λ length line 0.1λ above the top
roughness. Here, the amplitude of sinusoidal roughness α is changed from 0 (planar interface) to 0.4λ
(peak to peak 0.8λ) gradually for both interfaces, and their effects on reconstruction are observed.
In Figs. 9(a) and 9(b), the reconstructed permittivity and conductivity distributions are given when
the interfaces dividing the three-part space are planar. Figs. 9(c) and 9(d) show the reconstructed
permittivity and conductivity distributions when amplitudes of the roughnesses for both interfaces are
equal to 0.1λ while in Figs. 9(e) and 9(f), α = 0.3λ. Finally, in the last two figures, Figs. 9(g) and 9(h),
the reconstructed permittivity and conductivity distributions are given for α = 0.4λ. It can be noted



34 Altuncu, Durukan, and Akdogan

that the roughness sizes are in the same order with the reconstructed object dimensions when α = 0.2λ
while they are bigger than object dimensions when α = 0.4λ. As expected, as the amplitude of the
roughness increases, the reconstruction results are deteriorated because the impact of the roughness on
the total field becomes dominant. This creates a noise-like effect on the data to be used in the solution
of the inverse scattering problem and negatively affects the results of the reconstruction. In Fig. 10,
RRE is plotted versus iteration number for different values of the roughness amplitude.

In the last example, firstly, 10 circular objects with a radius of 0.15λ are reconstructed by the
proposed method. The roughness shapes of the interfaces of three-part space are the same as the
first example. However, the thickness of the middle space is 2.6λ at this time. To better model real

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Reconstruction results of Austria profile object with parameters εobj = 1.8 and σobj = 0.01.
(a) Reconstructed permittivity for planar interfaces. (b) Reconstructed conductivity for planar
interfaces. (c) Reconstructed permittivity for α = 0.1λ. (d) Reconstructed conductivity for α = 0.1λ.
(e) Reconstructed permittivity for α = 0.3λ. (f) Reconstructed conductivity for α = 0.3λ. (g)
Reconstructed permittivity for α = 0.4λ. (h) Reconstructed conductivity for α = 0.4λ.

Figure 10. Relative residual error for reconstruction of Austria profile object buried between rough
interfaces of various amplitudes.



Progress In Electromagnetics Research, Vol. 166, 2019 35

(a) (b)

(c) (d)

Figure 11. Reconstruction results of 10 identical circular objects with parameters εobj = 4.5 and
σobj = 0.001. (a) Original permittivity. (b) Reconstructed permittivity. (c) Original conductivity. (d)
Reconstructed conductivity.

(a) (b)

(c) (d)

Figure 12. Reconstruction results of 10 square objects with different size and permittivity. (a) Original
permittivity. (b) Reconstructed permittivity. (c) Original conductivity. (d) Reconstructed conductivity.
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problems, the relative permittivities of the media are chosen higher as εr2 = 4 and σ2 = 10−5 and
εr3 = 4.2 and σ3 = 10−4. Then, the relative permittivity and conductivity of all objects are chosen as
εobj = 4.5 and σobj = 10−3. The reconstruction domain size is selected to be 4.5λ × 2.1λ. The original
relative permittivity and conductivity distributions can be seen in Fig. 11(a) and Fig. 11(c) while the
reconstructed relative permittivity and conductivity distributions are given in Fig. 11(b) and Fig. 11(d),
respectively. Secondly, the reconstruction of 10 square objects with different dimensions and relative
permittivities are addressed. The relative permittivities and conductivities of the middle and bottom
spaces are εr2 = 3.6 and σ2 = 10−5 and εr3 = 4 and σ3 = 10−4. The relative permittivities of the
objects are of three different values, and they can be distinguished from different colors in Fig. 12(a).
These values are 4, 4.2, and 4.5, respectively. The conductivities of all objects are equal to 10−3 again.
Fig. 12(a) and Fig. 12(b) show the original and reconstructed permittivity distributions, while the
original and reconstructed conductivity distributions are given in Figs. 12(c) and 12(d).

As can be seen from all figures, the reconstructed object locations, dimensions, and shapes are very
satisfactory. However, the relative permittivity values are slightly lower than they should be while the
conductivity values are very close to the correct values.

4. CONCLUSION

In this study, the reconstruction of dielectric objects buried in the middle or bottom region of three-part
space with locally rough interfaces is discussed. The considered inverse scattering problem is solved by
distorted Born iterative method. DBIM is an iterative method for the solution of nonlinear inverse
problems and requires the calculation of the background electric field and background Green’s function
in every iteration step. Since the background space has a complex structure both geometrically and
electromagnetically, there are no analytical solutions of the background electric field and the Green’s
function. Here, they are calculated numerically by using the buried object approach (BOA). Several
numerical analyses have been conducted to demonstrate the effectiveness of the method in the solution
of the introduced problem. In numerical implementations, the effects of the medium in which the
objects are buried, the geometry of the objects, and the amplitudes of the interfacial roughness on the
reconstruction results are analyzed. It has been observed that the method gives very good results even
if the objects are multiple or have very different geometric structures. Furthermore, the results of the
reconstruction are found to be more successful if the objects are buried in the middle space than if
they are buried in the bottom space. Besides, as the amplitudes of the interfacial roughnesses increase,
the reconstruction results deteriorate. It should also be noted that DBIM is not very successful in
the reconstruction of high-contrast objects due to the limitations of being a born approximation-based
method. With the use of multiple-frequency approaches, hybrid-DBIM or modified-DBIM methods, the
success of the presented work can be increased for objects with higher contrast.

APPENDIX A. CALCULATION OF THE ELECTRIC FIELD IN THREE-PART
SPACE WITH PLANAR

Field ub0 is the field at any point of the three-part space with planar interfaces at x2 = d and x2 = −d
in the case of plane wave illumination excited in top space. In other words, it is equal to the total field
in three-part space illuminated by a plane wave from the top space. The corresponding geometry is
shown in Fig. A1. Accordingly, this field can be expressed as follows,

ub0(x) =

⎧⎨
⎩
ui(x) + u1r(x), x2 >= d

u1t(x) + u2r(x), −d <= x2 < d

u2t(x), x2 < −d

(A1)

Here, ui is the incident field whose definition is given in (9). u1r is the field reflected from x2 = d plane,
and u1t is the field transmitted to the second medium. This field is also the field incident to the x2 = −d
interface dividing the second and third mediums. u2r is the field reflected from x2 = −d plane, and u2t
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Figure A1. Three-part space with planar interface.

is the field transmitted to the third medium. Their explicit expressions are given below,

u1r(x) = R12e
−ik1(x1sinφ1−x2cosφ1) (A2a)

u1t(x) = T12e
−ik2(x1sinφ2+x2cosφ2) (A2b)

u2r(x) = T12R23e
−ik2(x1sinφ2−x2cosφ2) (A2c)

u2t(x) = T12T23e
−ik3(x1sinφ3+x2cosφ3) (A2d)

In Eq. (A2), R12, T12, R23, and T23 are reflection and transmission coefficients between top-mid and
mid-bottom media. They can be calculated by employing the boundary conditions to be provided on
the interfaces,

R12 =
T12e

id(k1cosφ1−k2 cosφ2)(1 +R23)− 1

eik1d cosφ1
(A3a)

T12 =
2η2 sinφ1

K1 −K2
(A3b)

where

K1 = eid(k1 cosφ1−k2 cosφ2)

[
1−R23

η1 sinφ2

η2 sinφ1

]
and

K2 = eid(k1 cos φ1+k2 cosφ2)R23

[
1 +

η1 sinφ2

η2 sinφ1

]

R23 =
T23e

id(k3cosφ3−k2 cos φ2) − 1

e−i2dk2 cosφ2
(A3c)

T23 =
2(

1 +
η2 sinφ3

η3 sinφ2

)
eid(k3 cosφ3−k2 cosφ2)

(A3d)

φ2 and φ3 shown in Eq. (A3) are obtained via Snell’s law as,

φ2 = cos−1

(
k1
k2

cosφ1

)
(A4)

and

φ3 = cos−1

(
k1
k3

cosφ1

)
(A5)
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APPENDIX B. CALCULATION OF THE GREEN’S FUNCTION OF THREE-PART
SPACE WITH PLANAR INTERFACES

The Green’s function of three-part space provides the following wave equation under certain boundary
conditions and radiation condition,

ΔGb0(x,y) + k2b0Gb0(x,y) = −δ(x− y) (B1)

Here kb0 is the wave number of three-part media indicated in Fig. A1, and its definition is given in
Eq. (14). δ is the Dirac delta function. By solving this equation under given conditions, Green’s
function can be found as follows,

Gb0(x,y) =
1

2π

∫
L
Ĝb0(ν, x2,y)e

iνx1dν (B2)

where L is the horizontal integration path in regularity strip of spectral Green’s function Ĝb0 in complex
ν plane. The spectral Green’s function is

Ĝb0 = e−iνy1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝb01, x2 ≥ d, y2 ≥ d

Ĝb02, d ≥ x2 ≥ −d, y2 ≥ d

Ĝb03, x2 ≤ −d, y2 ≥ d

Ĝb04, x2 ≥ d,−d ≤ y2 ≤ d

Ĝb05, d ≥ x2 ≥ −d,−d ≤ y2 ≤ d

Ĝb06, x2 ≤ −d,−d ≤ y2 ≤ d

Ĝb07, x2 ≥ d, y2 ≤ d

Ĝb08, d ≥ x2 ≥ −d, y2 ≤ −d

Ĝb09, x2 ≤ −d, y2 ≤ −d

(B3)

Ĝb01 =
1

2γ1

⎡
⎢⎢⎣

1 +

(
γ3 + γ2
γ3 − γ2

)
e3γ2d(

γ1 − γ2
γ1 + γ2

)
+

(
γ2 + γ3
γ2 − γ3

)
e4γ2d

⎤
⎥⎥⎦ e2γ1d−γ1(x2+y2) + e−γ1|x2−y2| (B4a)

Ĝb02 =

[
(γ2 − γ3) + (γ2 + γ3)e

2γ2(d−x2)

(γ1 − γ2)(γ2 − γ3) + (γ1 + γ2)(γ2 + γ3)e4γ2d

]
e−γ1y2−γ2x2+d(γ1+γ2) (B4b)

Ĝb03 =

[
2γ2e

(2γ2+γ3+γ1)

(γ1 − γ2)(γ2 − γ3) + (γ1 + γ2)(γ2 + γ3)e4γ2d

]
e−γ1y2+γ3x2 (B4c)

Ĝb04 =

(
K

γ1 − γ2

)
e−γ2y2+(γ1+γ2)d

[
1 +

γ2 + γ3
γ2 − γ3

e2γ2(d+y2)

]
e−γ1x2 (B4d)

Ĝb05 =
K

2γ2

[(
γ1 + γ2
γ1 − γ2

e2γ2d − 1

)
e−γ2(x2+y2) +

γ3 + γ2
γ3 − γ2

e2γ2deγ2(x2+y2)

+

(
γ1 + γ2
γ1 − γ2

)(
γ2 + γ3
γ2 − γ3

)
e4γ2de−γ2|x2−y2|

]
(B4e)

Ĝb06 =

(
K

γ3 − γ2

)
e−γ2y2+(γ2+γ3)d

[
1 +

γ2 + γ1
γ2 − γ1

e2γ2(d−y2)

]
eγ3x2 (B4f)

Ĝb07 =
1

2γ3

⎡
⎢⎢⎣

1 +

(
γ1 + γ2
γ1 − γ2

)
e3γ2d(

γ3 − γ2
γ3 + γ2

)
+

(
γ2 + γ1
γ2 − γ1

)
e4γ2d

⎤
⎥⎥⎦ e2γ3d+γ3(x2+y2)e−γ3|x2−y2| (B4g)
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Ĝb08 =

[
(γ2 − γ1) + (γ2 + γ1)e

2γ2(d+x2)

(γ3 − γ2)(γ2 − γ1) + (γ3 + γ2)(γ2 + γ1)e4γ2d

]
eγ3y2+γ2x2+d(γ3+γ2) (B4h)

Ĝb09 =

[
2γ2e

(2γ2+γ1+γ3)

(γ3 − γ2)(γ2 − γ1) + (γ3 + γ2)(γ2 + γ1)e4γ2d

]
eγ3y2−γ1x2 (B4i)

where γ1, γ2, and γ3 are square root functions which have following definition,

γn =
√
ν2 − k2n, n = 1, 2, 3. (B5)

The expression of K in the above statements is as follows,

K =
1

1 +

(
γ1 + γ2
γ1 − γ2

)(
γ2 + γ3
γ2 − γ3

)
e4γ2d

(B6)
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