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Electrically Small ACS-Fed Flipped MIMO Antenna for USB
Portable Applications
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Abstract—An electrically small Asymmetric Co-planar Strip (ACS)-fed MIMO antenna for USB
wireless applications is proposed. MIMO antenna consists of two electrically small antennas inserted
inside a 3D-printed USB prototype. Electrically small ACS-fed antenna consists of an F-shaped
monopole radiator with a U-shaped slot inserted into it. The proposed antenna is compact with
dimensions 11×20×0.508 mm3. The proposed MIMO antenna has dual bands which caters to WiMAX-
3.5/5.5 GHz, WLAN-5.8 GHz, and C-band-6.3 GHz. The proposed architecture attains reasonable gain
for the available aperture. Also, ACS-fed antenna achieves fractional bandwidth of 22% and 20% in the
lower and upper bands respectively complying with the theoretical bandwidth as defined by Chu’s limit.
Isolation between the radiators is greater than 15 dB in both the operating bands. Radiation patterns
have high integrity, and actual USB deployment is presented. Simulation and measurement results are
presented.

1. INTRODUCTION

Due to explosion in consumer electronics with multiple architecture protocols, there is a need
for radiating elements with minimal physical footprint catering to operational bands [1]. Various
commercial wireless standards exist across the spectrum in sub 6GHz bands [2], for instance, Worldwide
Interoperability for Microwave Access (WiMAX), Wireless Local Area Network (WLAN), and C-band
applications. Multi-carrier hardware ecosystems have been designed and developed for portable devices
targeting consumer applications [3] such as wireless dongles, Internet of Things (IOT) sensors, and
nodes in wireless sensor networks.

The design constraints for the afore-mentioned applications are critical. These low power devices
require compact radiators which snugly fit in the devices. The real-estate available in the portable device
is minimal. In order to integrate the RF transceiver chain, digital processors, and other operational
circuitry, the antennas must be highly miniaturized [4]. The antennas must be compliant with substrates
of the RF boards used in the primary module, and it must also offer pattern diversity for enhancing
throughput of the device. Antennas with specific resonances are preferred to non-resonant ultra-
wideband (UWB) antennas [5]. The UWB antennas suffer from spurious radiation from closely spaced
adjacent channels.

Multiple-Input Multiple-Output (MIMO) aids in enhancement of data throughput due to multipath
effects [6]. Integration of the antenna module corresponding to a MIMO design in handheld portable
devices is much more challenging than single element integration with motherboard. It must also be
observed that patterns must be significantly distinct with low isolation which becomes challenging for
design at low frequency with spatially and electrically closed environment [7].
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Many techniques for antenna miniaturization have been demonstrated in the past few decades. For
instance, incorporation of shorting pin [8] which requires intricate fabrication technique compromising
the planar nature of antenna, alteration of feeding lines which double up as matching circuit also aids
with a compromise in impedance bandwidth and gain [9], and 3D-printing techniques with high dielectric
constant substrate integrated antenna also yield compact radiators at the cost of lossy substrate which
decreases the gain [10].

With Co-Planar Waveguide (CPW) feeding, achieving high impedance bandwidth with reasonable
gain and electrically compact is challenging [11]. Asymmetric Co-planar Strip (ACS) feeding technique is
one of the popular choices for miniaturization with planar topology. Several designs have been reported
such as [12, 13], but they are electrically large with the compromise in gain. Also, a few designs have
been demonstrated for ACS-fed antennas with a MIMO module [14–16]. However, post integration
study with actual dongle prototype is missing. Hence, an electrically small ACS-fed antenna operating
in three commercial bands, WLAN, WiMAX, and C-band compliant with bandwidth specifications is
proposed in this paper. Furthermore, a pattern diversity module with a low loss 3D-printed housing is
investigated in this paper.

2. ACS-FED FLIPPED MIMO ANTENNA DESIGN

2.1. Single Element F-Shaped ACS-Fed Monopole Antenna

For the miniaturization of antenna, several techniques have been investigated in [17–19], but they tend to
decrease the antenna efficiency. ACS feeding technique is one of the optimal methods for miniaturization.
Achieving multiband in this type of feeding is relatively less challenging as tuning of the antenna has
less effect on impedance matching.

Antenna simulations are carried out using computer simulation software (CST) microwave studio
(MWS). All the full-wave simulations are done by modeling SMA connector of proper size. The antenna
is designed on a 20 mil thick GML 1000 substrate with dielectric constant εr) of 3.2 and loss tangent
of 0.004. Schematics of the proposed F-shaped ACS-fed antenna is depicted in Fig. 1. In order to
minimize various surface wave modes, a low dielectric constant substrate is chosen. In addition to
this, low radiation efficiency is also the consequence of using substrate of high dielectric constant [20].
An electrically thin substrate is chosen in order to decrease cross-polarization. The proposed antenna
is fed by 50 Ω characteristic impedance ACS feedline having trace width of 3 mm and gap of 0.4 mm
between signal trace and coplanar ground plane. The antenna is electrically small having dimensions
of 0.12λ0 × 0.21λ0 × 0.005λ0.

Figure 1. Schematics of the proposed ACS-fed monopole antenna (All dimensions are in mm).
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Figure 2. Geometry of the antennas involved in design evolution process.

The design evolution of the proposed antenna is illustrated in Fig. 2. High impedance bandwidth
is obtained in UWB antennas due to deployment of tapered changing structures. Thus, first antenna
A as depicted in Fig. 2 is designed which involves stepped structures for better impedance matching
and broadband impedance bandwidth. A beveled ground plane is used which also improves impedance
matching with larger bandwidth. Input reflection coefficient of the antenna produces strong resonance
around 4 GHz.

A U-shaped open-ended slot is introduced in order to achieve band rejection. Length of the open-
ended slot determines the notching frequency. Rejected resonance occurs at 4.5 GHz, and the length of
U-shaped slot is L = L1 + L2 + L3 = 4.5 + 5 + 4 = 13.5 mm which is about quarter wavelength (λe)
at the notched frequency. Radiator is beveled at the upper end which also enhances the impedance
bandwidth. By introducing an open-ended slot, two frequency passbands are generated which cover the
3.5/5.5 GHz-WiMAX band, 5.8 GHz WLAN band, and 6.3 GHz C-band.

Further understanding and analyzing the working of proposed antenna is done by characterizing
surface current distributions which is illustrated in Fig. 3. At notched frequency band centered at
4.5 GHz, surface currents are mainly concentrated at the U-shaped open-ended slot. The currents run
opposite in direction over the U-shaped slot causing destructive interference and thus result in band
notch. At passband frequencies 3.5 and 5.8 GHz, there is uniform distribution of surface currents as
seen from Fig. 3.

The proposed prototype is fabricated, and a photograph is illustrated in Fig. 4(a). Measured
results are obtained using Agilent PNA E8364C. Simulated and measured input reflection coefficients

Figure 3. Surface current distribution of proposed ACS-fed monopole antenna at 3.5, 4.5 and 5.8 GHz.
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(a) (b)

Figure 4. (a) Photograph and (b) input reflection co-efficient of the proposed fabricated prototype.

of the proposed ACS-fed monopole antenna are depicted in Fig. 4(b). The proposed antenna has dual-
band covering frequency bands, 2.9–3.6 GHz and 5.4–6.6 GHz. Measured fractional bandwidths of the
proposed antenna are 22% and 20% in lower and upper bands, respectively. The proposed antenna
covers 3.5/5.5-GHz WiMAX band, 5.8-GHz WLAN band, and 6.3-GHz C-band. Discrepancies between
the simulated and measured data may be due to fabrication tolerances. Frequency shift can be observed
between simulated and measured results which may be due to inhomogeneous dielectric constant of the
substrate [21].

For electrically small antennas, it is better to compare measured fractional bandwidth with the
theoretical limit. Relation between minimum radiation quality factor, Qmin, and size of the antenna as
first examined by Chu [22] and later formulated by McLean [23] for linear polarized antennas is:

Qmin =
1
ka

+
1

(ka)3
(1)

where k = 2π/λ is the free space wave number, and a is the minimum radius enclosing maximum
dimension of antenna. Yaghjian and Best [24] derived the relationship between bandwidth, B, and
Qmin:

B = 1/Qmin

(
s − 1√

s

)
(2)

where s is the maximum allowable Voltage Standing Wave Ratio (VSWR) of antenna.
For antennas having small ground plane, sphere should enclose the entire ground plane as well as

the main radiator [25]. Thus, for the proposed antenna, a is 11.41 mm, and k is 73.32 rad/m at the
center frequency of the lowest operating band. Hence, ka = 0.83 < 1, and thus the proposed antenna
is electrically small by definition. As maximum allowable VSWR = 2 and using Equations (1) and
(2), the maximum allowable theoretical bandwidth is 24.3% which is 1.1 times greater than practical
impedance bandwidth of 22%. Thus, the proposed antenna is compliant to constraints of electrically
small antennas.

The simulated and measured radiation patterns in both the principal planes of the proposed antenna
are depicted in Fig. 5 at frequencies 3.5 and 5.8 GHz. The proposed antenna achieves omnidirectional
radiation patterns in XY -plane (H-plane) at both the frequencies. Simulated and measured cross-
polarizations for the proposed antenna in both the planes are less than −20 dB indicating strong linearly
polarized antenna. Disparity between simulated and measured results is due to poor absorptivity of
oblique incidence inside an anechoic chamber. Also, deviation between the simulated and measured
Y Z-plane patterns shown in Figs. 5(b) and (d) might be due to the unexpected radiation produced by
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(a) (b)

(c) (d)

Figure 5. Simulated and measured radiation patterns of the proposed antenna at: 3.5 GHz, (a) XY -
plane, (b) Y Z-plane and 5.8 GHz, (c) XY -plane, (d) Y Z-plane.

the strayed current flowing along the exterior of the connector and cable as well as the common mode
current induced along the ACS line.

3D-radiation patterns of the proposed antenna are shown in Figs. 6(a) and (b) at frequencies 3.5
and 5.8 GHz, respectively. It provides an insight about the monopole behavior of proposed antenna.
Also, gain and radiation efficiency of the proposed antenna are depicted in Fig. 6(c). The proposed
antenna attains reasonable gain between 1.95 and 2.45 dBi for the available aperture in the operating
range of frequencies. It is evident from Table 1 that the proposed architecture is compact and yields
high gain with the available aperture.

2.2. F-Shaped ACS-Fed Flipped MIMO Antenna

The single element ACS-fed antenna proposed in Subsection 2.1 is used for ACS-fed MIMO antenna
configuration. The proposed single element antenna is transformed from horizontal to vertical
orientation, and the other element is flipped and kept at a proper distance so that the proposed MIMO
antenna configuration is compliant to USB dongle dimensions [35]. The proposed MIMO antenna has
the dimensions of 20× 20× 11 mm3 meeting the practical dimensions of USB module. Two elements of
the proposed MIMO antenna are kept at the ends of USB Dongle as illustrated in Fig. 7.

The proposed MIMO antenna prototype is placed easily inside the actual USB module as shown in
Fig. 8(a) in which space between the two antenna elements is kept for additional circuitry of USB dongle.
Measurement results are taken by exciting one port while the other port is terminated with 50 Ω load as
depicted in Fig. 8(b). From Fig. 9(a), the proposed MIMO antenna has dual bands covering 3.5/5.5-GHz
WiMAX band, 5.8-GHz WLAN band, and 6.3-GHz C-band. Antenna elements are electrically close
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(a)

(b) (c)

Figure 6. 3D-radiation plots at (a) 3.5 GHz, (b) 5.8 GHz, and (c) gain and radiation efficiency plot of
the proposed antenna.

Figure 7. Schematics of the proposed ACS-fed MIMO antenna inserted inside USB dongle.

to each other separated by a distance of 0.2λ0 at the lowest operating frequency of 3 GHz. Separation
is optimized in such a way that isolation between antenna elements is greater than 15 dB as shown in
Fig. 9(b).

The proposed MIMO antenna exhibits stable radiation patterns achieving pattern diversity in XZ-
plane as illustrated in Fig. 10. Beam tilt is observed due to the electrical offset of antennas with respect
to the phase center. Discrepancies between simulated and measured radiation patterns are due to poor
absorptivity of oblique incidence inside the anechoic chamber. Deviation between the simulated and
measured results might also be due to the unwanted radiation produced by cable connecting SMA
connector and coaxial cable. The proposed antenna achieves gain of 3.3/3.5/3.9/3 dBi at frequencies
3.5/5.5/5.8/6.3 GHz respectively as depicted in Fig. 11(a). Increase in gain is due to electrically close
(0.2λ0) antenna element which acts as a reflector thus reducing the beamwidth.

For single element antenna, power radiated in every direction is almost same as that depicted in
Fig. 12 which is opposite for MIMO topology in which power is radiated mainly in a specific direction
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Table 1. Comparison between the proposed antenna design with other recently reported designs.

REFERENCES
SIZE OF

ANTENNA
(mm2)

FREQUENCY
OF

OPERATION
(GHz)

FEEDING
TYPE

PEAK
GAIN
(dBi)

RADIATION
EFFICIENCY

(%)

[12] 15 × 35 1.54/2.45/5.1 ACS 0.8/1.6/2.9 70/90/87

[13] 14 × 20.5 2.4/3.5/5 ACS 0.8/0.9/3
NOT

AVAILABLE

[15] 13.5 × 26 5/5.8/6.3 ACS
NOT

AVAILABLE
NOT

AVAILABLE

[26] 18 × 20 3.55 CPW 2.06
NOT

AVAILABLE
[27] 30 × 40 2.4/5.2/5.8 Microstrip 1/1.98/1.8 83/87/89

[28] 22 × 24 2.48/3.49
Asymmetric

CPW
2.4/3.5

NOT
AVAILABLE

[29] 12 × 23
2.4/3.5/5.2/

5.5/5.8
ACS

0.77/1.98/NA/
1.56/NA

75/78/80/
82/81

[30] 32 × 37.2 2.4/3.5/5.5 Microstrip 2.25/3.72/2.71
NOT

AVAILABLE
[31] 10.8 × 23 3.6 CPW 2.26 95

[32] 28 × 30 1.74/2.34/5.58 ACS 2.2/2.4/2
NOT

AVAILABLE

[33] 13 × 27.5
2.4/3.5/5.2/

5.5/5.8
ACS

0.71/1.95/NA/
2.36/NA

NOT
AVAILABLE

[34] 12 × 50 0.92/2.89 ACS −0.92/2.59 41/97

Proposed Work 11× 20 3.5/5.5/5.8/6.3 ACS
1.98/2.35/
2.45/2.2

85/90/93/88

(a) (b)

Figure 8. (a) Actual USB prototype and (b) measurement set-up of proposed MIMO antenna.
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(a) (b)

Figure 9. (a) Input reflection co-efficient and (b) isolation of proposed antenna.

(a) (b)

(c) (d)

Figure 10. Patterns in XZ-plane at: (a) and (b) 3.5 GHz, (c) and (d) 5.8 GHz.
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(a) (b)

Figure 11. (a) Gain and Radiation efficiency. (b) ECC and diversity gain of the proposed ACS-fed
MIMO antenna.

(a) (b)

Figure 12. 2D Power patterns at (a) 3.5 GHz and (b) 5.8 GHz.

thus reducing the beamwidth. Envelope correlation coefficient (ECC) is an important performance
metric in MIMO antenna systems. For better performance of the MIMO antenna module, ECC should
be minimal. ECC calculated from S-parameters is inadequate as can be validated from [36], thus ECC
is rather evaluated from far-field radiation patterns, which is illustrated below:

ρ =

∣∣∣∣
∫

4π
dΩE1(θ, φ) · E2 ∗ (θ, φ)

∣∣∣∣√∫
4π

dΩ|E1(θ, φ)|2
√∫

4π
|E2(θ, φ)|2

, (3)

where E1(θ, φ) and E1(θ, φ) are radiation patterns of antenna elements 1 and 2, respectively, and
full solid angle Ω is taken into consideration while integration and ‘*’ denotes the complex conjugate
operator. ECC of the proposed antenna module is less than 0.02 in the operating bands as shown in
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Fig. 11(b). Diversity gain is another important parameter for performance characterization of MIMO
antennas which can be calculated by:

DG = 10 ∗
√

1 − |ρ| (4)

Diversity gain of the proposed MIMO antenna is almost 10 dB as depicted in Fig. 11(b). Furthermore,
Table 2 illustrates the comparison between proposed flipped ACS-fed MIMO antenna design with other
reported designs.

Table 2. Comparison between the proposed MIMO antenna design with other recently reported designs.

REFERENCES

SIZE

OF MIMO

ANTENNA

(mm2)

FREQUENCY

OF

OPERATION

(GHz)

FEEDING

TYPE

MINIMUM

ISOLATION

(dB)

PEAK

GAIN

(dBi)

ECC

[14] 43.5 × 43.5 3.1–11 ACS −15 3.5 < 0.005

[15] 26 × 46.5 5/5.8/6.3 ACS −18
NOT

AVAILABLE
< 0.21

[16] 26 × 26 3.1–10.6 ACS −15 3.5
NOT

AVAILABLE

[37] 26 × 46.5 4.6/4.9/5.4 ACS −25
NOT

AVAILABLE
< 0.02

[38] 24 × 25 2.5/5.6 Microstrip −20 0.28/3.88 < 0.004

[39] 52 × 77.5 2.4/5 Microstrip −15
NOT

AVAILABLE
< 0.2

Proposed Work 20 × 20 3.5/5.5/5.8/6.3 ACS -15 3.3/3.5/3.9/3 < 0.02

3. CONCLUSION

A compact ACS-fed flipped MIMO antenna integrated in an actual USB module is proposed. The
proposed F-shaped ACS-fed antenna has dual bands, which cover WiMAX-3.5/5.5 GHz, WLAN-
5.8 GHz, and C-band-6.3 GHz. The proposed antenna is electrically small satisfying the constraints
defined by Ch’s limit. The proposed ACS-fed MIMO antenna achieves fractional bandwidths of 22% and
20% in the lower and upper bands, respectively. The proposed antenna achieves gain of 3.3/3.5/3.9/3 dBi
at frequencies 3.5/5.5/5.8/6.3 GHz, respectively thus yielding high gain for the available aperture. Stable
radiation patterns in both the principal planes are obtained. Pattern diversity is achieved in the MIMO
configuration. All the results validate that the proposed antenna is a suitable candidate for USB dongle
applications.
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