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Estimation of the Number of Signal Sources in Presence
of Mutual Coupling

Ching S. Yu, Helio A. Muzamane, and Hsin-Chin Liu*

Abstract—The estimation of the direction of arrival (DOA) and the estimation of the number of
signal sources are very important techniques in modern communications. The effect of mutual coupling
can degrade the performance of the estimation algorithms. Mutual coupling compensation is used to
mitigate this effect. However, errors remain when the compensation is carried out with such methods
as minimum description length (MDL) to estimate the number of signal sources. This work presents a
new method based on threshold decision to estimate the number of signal sources in presence of mutual
coupling. The results of computer simulations demonstrate that the proposed method outperforms the
MDL method.

1. INTRODUCTION

Smart antenna techniques have been studied for many decades. They are some of the most important
techniques in support of the coming fifth-generation (5G) of mobile communication. Selected control
algorithms with predefined criteria give adaptive antenna arrays the unique ability to alter the
characteristics of their radiation patterns (nulls, side-lobe level, main beam direction and beam
width) [1].

Direction of arrival (DOA) and number of signal sources estimations have many applications in
wireless communication, radar, etc. This estimate can be performed using antenna arrays.

The performance of an adaptive antenna array is strongly influenced by the electromagnetic
characteristics of antennas [2]. Therefore, to accurately evaluate the performance of practical antenna
arrays, the electromagnetic influence of their elements must be considered. When two antennas are
close to each other, some of the energy in one antenna is coupled to the other, causing an effect that
is referred to as mutual coupling [1]. A mutual coupling matrix describes the effect of mutual coupling
between antennas [2] and is constructed using the impedance matrix associated to the antenna elements
of an array.

MUltiple SIgnal Classification (MUSIC) is the most well-known subspace-based method for
estimating the DOA [1, 3, 4]. Eigenvalue Decomposition (EVD) is applied to the correlation matrix
of an array output signal. The MUSIC algorithm exploits the orthogonality of the noise and signal
subspaces to estimate the DOA.

The mutual coupling effect degrades the performance of array signal processing algorithms such as
the DOA and algorithms used to estimate the number of signal sources. It is necessary to compensate
for the effect of mutual coupling, as its presence can lead to a wrong estimate. To mitigate mutual
coupling effect, mutual coupling compensation is used [5–8]. The calibration algorithm and maximum
likelihood approach, have been used to calibrate the mutual coupling effect, but these methods require
calibration sources of known location [9, 10]. The cost function has been used to mitigate the mutual
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coupling effect [10, 11]. This method does not require a source of known location, but it uses an iterative
process. The mutual coupling matrix has been used to modify the MUSIC pseudo-spectrum function
to estimate the DOA [12, 13]. The inverse of mutual coupling matrix is used to compensate for mutual
coupling [14].

To estimate the number of signal sources, the Akaike information criteria (AIC) and the minimum
description length (MDL) have been proposed [15, 16]. These methods usually assume the noise to
be Additive White Gaussian Noise (AWGN) and that the signals are uncorrelated. However, when
an array receives a line-of-sight (LOS) signal and its multi-path components, their correlation leads
to detection errors. To obtain the spatially smoothed correlation matrix, forward backward spatial
smoothing techniques (FBSS) were developed [17]. Different methods to determine the number of
signal sources were studied [18, 19].

In this paper we propose a new method based on a threshold decision rule. The threshold value is
related to the noise power (after mutual coupling compensation) and the mutual coupling compensation
term, which is then, used for the estimation of the number of signal sources. Among the aforementioned
algorithms, the MDL is one of the well-known algorithms. We hence compare our proposed method
with the MDL algorithm in this work.

Throughout this paper, we use the following notations: C to denote the set of complex numbers,
R to denote the set of real numbers, E[.] to define the expectation operator, tr(.) to define the trace
operator, 1y to denote an M dimensional vector containing ones, (.)m to represent a signal with mutual
coupling, (.)mc to represent a signal after mutual coupling compensation and (.)c to represent the mutual
coupling compensation component.

This paper is organized as follows: Section 2 gives the background; Section 3 describes the proposed
method; Section 4 presents simulation results; and Section 5 draws conclusions.

2. BACKGROUND

2.1. System Model with Mutual Coupling

Balanis and Ioannides [1] and Gross [4] mathematically described the model of an ideal array output
signal. Let’s consider an ideal array with M sensors (antennas) receiving N uncorrelated signals. Each
received signal is a narrowband plane wave from far-field emitters. The ideal array output vector
x(t) ∈ CM×1 is given as

x(t) =
N∑

i=1

a(ϕi)βisi(t) + n(t)

x(t) = Aβs(t) + n(t)

(1)

where a(ϕi) ∈ CM×1 is the steering vector corresponding to the angle ϕi of the ith incoming signal;
diag{βi} = β ∈ CN×N is the diagonal matrix that contains the channel gain of the ith signal path;
[s1(t), . . . , sN (t)]T = s(t) ∈ CN×1 is the incoming signal vector; and n(t) ∈ CM×1 is the Gaussian noise
vector containing elements with zero mean and variance σ2. We combine β and s(t) as α(t) = βs(t).
The steering matrix A ∈ CM×N is given by

A = [a(ϕ1),a(ϕ2), . . . ,a(ϕN )] (2)

The correlation matrix of the ideal array output signal Rx ∈ CM×M is given by

Rx = E
[
x(t)xH(t)

]
= ARαAH + σ2I
= Rs + Rn

(3)

where I is an M ×M identity matrix, and Rα ∈ CN×N is the correlation matrix of the incoming signals

Rα = E
[
α(t)αH(t)

]
(4)

We make Rs = ARαAH and the noise covariance matrix Rn = σ2I.
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The output signal vector with mutual coupling xm(t) ∈ CM×1 includes the matrix that contains
the mutual coupling elements and is given by

xm(t) = CAα(t) + n(t) (5)

where C ∈ CM×M is the mutual coupling matrix that is constructed using the impedance matrix
associated to the antenna elements of an array and is defined as [2]

C =
(

Z
ZL

+ I
)−1

(6)

in which Z and ZL are the mutual impedance matrix and the load impedance in each antenna element,
respectively. The correlation matrix of the array output signal with mutual coupling Rm

x ∈ CM×M

becomes

Rm
x = E

[
xm(t) (xm(t))H

]

= CARαAHCH + σ2I
(7)

2.2. Estimation of the Number of Signal Sources

One of the most known subspace methods for DOA estimation is MUSIC. To perform MUSIC algorithm,
we need to estimate the number of the received signals in an antenna array first, so that the dimensions
of the signal and noise subspaces can be determined accordingly.

The MUSIC algorithm is based on the orthogonality of the noise and signal subspaces. Considering
that Rα is non-singular and that the columns of A are independent, from Eq. (3) it follows that the
rank of ARαAH is N . After the EVD is carried out, the matrix ARαAH has N positive eigenvalues
and M -N zero eigenvalues. We denote the eigenvalue by λj and the corresponding eigenvector by ej

for j ∈ {1, . . . , N,N + 1, . . . ,M}. Ignoring the presence of noise we have

Rx = Rs =
N∑

m=1

λmemeH
m+

M∑
m=N+1

0emeH
m (8)

Since the noise is present, i.e., σ2 > 0, Rx is a full rank matrix and has M positive and real eigenvalues.
The N largest eigenvalues correspond to the signal and the M -N smallest eigenvalues correspond to
the noise variance. The correlation matrix of the ideal output signal, after EVD is given by

Rx =
N∑

m=1

λmemeH
m +

M∑
m=N+1

σ2emeH
m (9)

For a better understanding on the concept, we build vectors with all eigenvalues as λs + σ21M = λx ∈
�M×1, in which λs ∈ �M×1 is the vector containing the eigenvalues of Rs and σ21M composes the noise
variance vector. The eigenvalues are sorted in descending order as follows

λ1 > . . . > λN � λN+1 = . . . = λM = σ2 (10)
Figure 1(a) graphically shows the structure of the eigenvalues in the case where no coupling is

considered. From the subspace methods, the number of signal sources is estimated as the number of
the eigenvalues that are greater than the noise variance.

The MUSIC pseudo-spectrum has been defined in [1, 3]. Although it has high resolution, this
subspace method is applicable when the signals are uncorrelated.

The application of information theoretic criteria for model selection by Rissanen (the MDL method)
has been described in [15] and [16]. The number of signal sources is determined as the value for which
the MDL criterion is minimized.

Given a set of data x(tl), l ∈ {1, . . . , P} and considering the covariance matrix of the output signal
in Eq. (3), with the source signal covariance matrix of rank k, the problem is formulated as how to
select the best model (the one that best fits with the signal model) from the following models

R(k)
x =

k∑
j=1

(
λj − σ2

)
ejeH

j + σ2I, k = 0, . . . ,M − 1 (11)
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(a) (b)

Figure 1. (a) Graphical representation of eigenvalues without mutual coupling effect. (b) Graphical
representation of eigenvalues after mutual coupling compensation.

in which λj and ej are the eigenvalue and the eigenvector of R(k)
x , respectively. The parameter vector

to be estimated is denoted as Θ(k) and is given as

Θ(k) =
[
λi, . . . , λk, σ

2, eH
1 , . . . , eH

k

]
(12)

Considering that the observations are statistically independent complex Gaussian vectors with zero
mean, it follows that their joint probability density function (PDF) is given by

f
(
x(t1), . . . ,x(tP )|Θ(k)

)
=

P∏
j=1

1
πM detR(k)

x

exp
{
−x(tj)H

[
R

(k)

x

]−1
x(tj)

}
(13)

Note that the distribution of the signal x(tj) is conditioned to the noise distribution. Therefore, if the
noise is no longer white Gaussian, the above expression no longer holds.

The log-likelihood function, omitting terms that do not depend on Θ(k), becomes

L
(
Θ(k)

)
= −P log det

(
R(k)

x

)
− tr

([
R(k)

x

]−1
R̂

)
(14)

where R̂ is the sample covariance matrix and is given as

R̂ =
1
P

P∑
j=1

x(tj)xH(tj) (15)

Maximizing the expression in Eq. (14), we get the maximum likelihood estimates of the vector Θ(k).
The estimates are as in [19] and given as

λ̂j = l̂j, j = 1, . . . , k (16a)

σ̂ =
1

M − k

M∑
j=k+1

l̂j (16b)

êj = ûj, j = 1, . . . , k (16c)
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where l̂1 ≥ . . . ≥ l̂M and û1, . . . , ûM are the sample eigenvalues and eigenvectors of R̂, respectively.
Substituting Eq. (16) in Eq. (14) we obtain

L
(
Θ̂(k)

)
= log

⎛
⎜⎜⎜⎜⎜⎝

M∏
j=k+1

l̂
1

M−k

j

1
M − k

M∑
j=k+1

l̂j

⎞
⎟⎟⎟⎟⎟⎠

P (M−k)

(17)

Based on the MDL principle, the selection model is the one that minimizes the following expression

MDL(k) = −L
(
Θ̂(k)

)
+

1
2
η log(P ) (18)

in which η is the number of free adjusted parameters in Θ. Substituting Eq. (17) in Eq. (18) and
plugging η as in [19], we have

MDL(k) = − log

⎛
⎜⎜⎜⎜⎜⎝

M∏
j=k+1

l̂
1

M−k

j

1
M − k

M∑
j=k+1

l̂j

⎞
⎟⎟⎟⎟⎟⎠

P (M−k)

+
k

2
(2M − k) log(P ) (19)

The number of signal sources N is determined as the argument k that minimizes Eq. (19).
The MDL method is more feasible to detect the number of signal sources as it is not limited to

uncorrelated signals. However, MDL depends on the number of snapshots P (the good performance
is reached as the number of snapshots increases) and when a more realistic model that includes the
mutual coupling effect is considered, the MDL and the other subspace methods fail. This is because
after mutual coupling compensation, the noise is no longer white Gaussian (AWGN), violating an
essential assumption on which these methods depend. The MDL is a well-known algorithm for the
estimation of the number of received signals. Consequently, we compare our proposed method with the
MDL algorithm in the simulations. The following section presents a novel solution to this problem.

3. THE PROPOSED METHOD

The effect of mutual coupling can be mitigated by mutual coupling compensation. Multiplying the
received signal by the inverse of the mutual coupling matrix in Eq. (7) [14] yields

Rmc
x = C−1Rm

x

(
C−1

)H

= ARαAH + σ2C−1
(
C−1

)H

= Rmc
s + Rmc

n

(20)

Note that, after mutual coupling compensation, Rmc
s = Rs and Rmc

n = σ2C−1(C−1)H are the covariance
matrices. The noise term is multiplied by the mutual coupling compensation matrix C−1(C−1)H
invalidating the white noise assumption, as can be seen from the second term on the right-hand side in
Eq. (20). Applying the EVD to Eq. (20) we get

Rmc
x =

N∑
m=1

λmc
m emc

m (emc
m )H +

M∑
m=N+1

λmc
m emc

m (emc
m )H (21)

We build vectors with all eigenvalues as λmc
s + λmc

n = λmc
x ∈ �M×1, in which λmc

s = λs is the vector
containing the eigenvalues of Rs (after mutual coupling compensation), and λmc

n ∈ �M×1 is the vector
containing the noise eigenvalues multiplied by the mutual coupling compensation matrix, respectively.
The eigenvalues are arranged as in the following descending order

λmc
1 > . . . > λmc

M (22)
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Because of the contamination of the noise term, the eigenvalues in Eq. (22) cannot be separated in
the same way as in Eq. (10). From subspace methods, the number of signal sources would then be
determined based on the white noise assumption, which is not valid to Eq. (22).

From the eigenvalues in Eq. (22) and graphically represented in Fig. 1(b), our goal is to find a
threshold value so that we can still separate those eigenvalues that belong to the signal.

Mutual coupling can be measured from the elements of an array. The mutual coupling matrix has
full rank and by applying the EVD to the mutual coupling compensation term we get

C−1
(
C−1

)H =
M∑

m=1

λc
mec

m (ec
m)H (23)

We define λT as the threshold value, which is given by

λT = σ2λc
max (24)

where λc
max represents the maximum eigenvalue of the matrix C−1(C−1)H . At high signal-to-noise ratio

(SNR), no eigenvalue that belongs to the contaminated noise term might be estimated to be higher than
the product of the noise variance and the maximum eigenvalue of the mutual coupling compensation
matrix. Therefore λT can be used as the threshold value to separate the eigenvalues related to the signal
from the eigenvalues related to the noise. The number of signal sources is estimated as the number of
eigenvalues λmc

i , i ∈ {1, . . . ,M} that will be greater than the threshold.
Let’s consider a case as in Fig. 2(a), where the number of signal sources is N = 4. Because

the largest gap (the reference for these methods) among the eigenvalues comes after λ6, according
to the subspace methods as in Eq. (10), the number of signal sources is estimated to be N = 6,
which is not true. Although the MDL method does not determine the number of signals merely by
observing the eigenvalues, it is still based on the signal and noise subspaces. Considering mutual
coupling compensation, these subspaces are no longer separable, making the estimation with MDL
method to be a challenge and leading to error as well. However, the proposed method estimates the
correct number as it takes the maximum eigenvalue λc

max together with the noise variance to make the
threshold.

The problem that is identified in this paper is solved, and the simulation results in the following

(a) (b)

Figure 2. (a) Graphical representation of eigenvalues with mutual coupling compensation and the
threshold value. (b) Graphical representation of eigenvalues with mutual coupling compensation at low
signal-to-noise ratio (SNR).
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section show the reduction in estimation errors. The proposed method can be implemented in the
following steps:

Step 1: Calculate the correlation matrix of the array output signal with mutual coupling effect as
in Equation (7);
Step 2: Perform mutual coupling compensation as in Equation (20) to mitigate the effect of mutual
coupling;
Step 3: Perform EVD as in Equations (21) and (23);
Step 4: Estimate the number of incoming signals by using the proposed method, which is based
on the threshold detection rule and built as in Equation (24).

Although our method performs well compared with those presented in this paper, as proven
graphically and through simulations, it can present errors to detect the number of signal sources in a
low SNR regime. Considering the case in Fig. 2(b), defining the threshold value, the proposed algorithm
would also give a wrong estimate because in this case, the threshold lies on the component λ4.

4. SIMULATION RESULTS

We consider 16 dipole antennas that form a uniform linear array (ULA). The array impedance value
quantifies the interaction between the antenna elements and has been simulated using Ansys R©, the
High Frequency Structure Simulator (HFSS) from www.ansys.com. Fig. 3(a) shows the results. The
horizontal and vertical axes of the figure contain the values that indicate the antenna element ports and
from them, the impedance magnitude can be read. The impedance matrix that was used to construct
the mutual coupling matrix in Eq. (6) is used in the simulations. In order to approach a more realistic
model, we extended our simulations to the case where the incoming signals are highly correlated. Spatial
smoothing guarantees that the signal correlation matrix is of full rank. The FBSS correlation matrix
of an array output signal is as defined in [17] and is applied in our simulations.

The parameters for the simulations are set as in Table 1. From the table, U is for the angle that
is uniformly distributed at a specified range. The performances of the proposed method with mutual
coupling compensation (calibration), MDL with mutual coupling compensation (calibration) and MDL

(a) (b)

Figure 3. (a) Impedance magnitude of a uniform linear array (ULA) with 16 antenna elements
simulated using High Frequency Structure Simulator (HFSS). (b) Performance of the proposed method
evaluated from root mean square error (RMSE) for M = 8, 12 and 16 antennas.
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Table 1. Parameter values.

Parameter (unit) Value
Pulse width, TPW 50

Pulse repetition interval 1
Number of samples 3780

Number of signals, N 4

Channel gain, β1, β2, β3, β4
|β1| = 1, |βi| ∼ U(0.5, 1)|, i = 2, 3, 4

∠βi ∼ U(0, 2π), i = 1, 2, 3, 4
Channel delay, δ12, δ13, δ14 δ12 = 6, δ13 = 9, δ14 = 13

DOA (degrees)
θi = 90◦, i = 1, 2, 3, 4;

ϕi ∼ U(0◦, 180◦), i = 1, 2, 3, 4
Sensor type Dipole
Array type Uniform Linear Array

Carrier frequency, fc (GHz) 3
Interspacing of sensors (cm) 5.0

Monte Carlo trials, Q 5000

without mutual coupling compensation (no calibration) are presented. The latter two methods are
denoted as MDL (CAL), and MDL (NCA), respectively.

Furthermore, we compare the performance of the proposed method in three cases as shown in
Fig. 3(b). From the figure, we can see that the estimation accuracy slightly, degrades as the number of
antennas decrement. However, the estimation accuracy still outperforms the MDL in high SNR regime
when the mutual coupling effect is taken into account.

With mutual coupling, the proposed method is more accurate to determine the number of signal
sources than the MDL method. Fig. 4(a) plots the root mean square error (RMSE) as function of
SNR for all methods. It reveals that the proposed method performs almost as well as MDL (NCA)
but outperforms it for SNR greater than 14 dB. This result demonstrates the feasibility of using the

(a) (b)
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(c) (d)

(e) (f)

Figure 4. Performance of the proposed method versus the MDL method evaluated from root mean
square error (RMSE) and Bias for (a) and (b) M = 16 antenna elements, (c) and (d) M = 12 and (e)
and (f) M = 8.

proposed method.
Figures 4(a), (b), (c), (d), (e), and (f) clearly show how the MDL (CAL) detection errors are more

significant than those of the other methods, because after the mutual coupling compensation the noise
in each element is no longer white Gaussian. The MDL (NCA) yields an excessive number of signal
sources at certain values of SNR but the proposed method yields the true number. Fig. 4(b) plots the
estimation bias against the SNR in which a clear biased estimate of the MDL (CAL) and of the MDL
(NCA) for the SNR values greater than 14 dB is shown.

The performance of the proposed method is evaluated under other different scenarios in which we
vary the number of antennas of the array. In Figs. 4(c) and (d) the number of antennas was reduced to
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M = 12 and the performance of the proposed method is still more accurate than MDL method. When
M = 8, Figs. 4(e) and (f), the RMSE of the proposed method is not good as of the MDL, but it still
outperforms the MDL one from the values of SNR greater than 19 dB, see Fig. 4(e). Form Fig. 4(f),
can be seen that the bias of the proposed method is consistently improved than the one of the MDL
method.

5. CONCLUSION

This work presents a new method to estimate the number of signal sources in the presence of mutual
coupling effect. The subspace methods such as MUSIC algorithm lead to detection errors when the
incoming signals are highly correlated but methods such as Rissanen MDL applicable to both cases
where the signals are uncorrelated or highly correlated. When an array is built with a more realistic
approach (considering the effect of mutual coupling), the mutual coupling compensation causes such
methods to fail. The proposed method is based on the threshold decision, in which the threshold value
is built from the components of mutual coupling compensation matrix and the noise variance. Our
method improves upon MDL (CAL) and MDL (NCA). In our simulations the model is extended to the
case where the signals are even correlated. The proposed method outperforms the MDL method (in a
more realistic environment) and so enables the number of signal sources to be estimated.
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