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On the Covariant Representation of Integral Equations
of the Electromagnetic Field

Sergey G. Fedosin*

Abstract—Gauss integral theorems for electric and magnetic fields, Faraday’s law of electromagnetic
induction, magnetic field circulation theorem, theorems on the flux and circulation of vector potential,
which are valid in curved spacetime, are presented in a covariant form. Covariant formulas for magnetic
and electric fluxes, for electromotive force and circulation of the vector potential are provided. In
particular, the electromotive force is expressed by a line integral over a closed curve, while in the
integral, in addition to the vortex electric field strength, a determinant of the metric tensor also
appears. Similarly, the magnetic flux is expressed by a surface integral from the product of magnetic
field induction by the determinant of the metric tensor. A new physical quantity is introduced — the
integral scalar potential, the rate of change of which over time determines the flux of vector potential
through a closed surface. It is shown that the commonly used four-dimensional Kelvin-Stokes theorem
does not allow one to fully deduce the integral laws of the electromagnetic field and in the covariant
notation requires the addition of determinant of the metric tensor, besides the fact that the validity of
the Kelvin-Stokes theorem is limited to the cases when determinant of metric tensor and the contour area
are independent from time. This disadvantage is not present in the approach that uses the divergence
theorem and equation for the dual electromagnetic field tensor. The problem of interpreting the law
of electromagnetic induction and magnetic field circulation theorem cannot be solved on the basis of
the Lorentz force in the absence of charges, and therefore requires a more general approach, when
transformation of the field components from the reference frame at rest into the moving reference frame
is taken into account. A new effect is predicted, according to which the circulation of magnetic field can
appear even in the absence of electric current and with a constant electric field through the contour,
if the area of this contour would change. By analogy with electromagnetic induction, for the magnetic
field circulation to appear it is important that electric field flux passing through the area of the contour
would change over time.

1. INTRODUCTION

In classical electrodynamics, the electromagnetic field equations are written in the form of Maxwell
equations:

∇ ·E =
ρ

ε0
, (1)

∇ · B = 0, (2)

∇× E = −∂B
∂t

, (3)

∇× B = μ0j +
1
c2

∂E
∂t

, (4)
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where E and B represent three-dimensional vectors of electric field strength and magnetic field induction,
respectively; ρ is the charge density of a moving matter element from the viewpoint of a fixed observer;
j denotes the density of the electric current; ε0 is the electric constant; μ0 is the magnetic constant; c
is the speed of light, while μ0ε0c

2 = 1.
The divergence theorem relates the integral of the divergence of a vector over the arbitrary three-

dimensional volume V to the flux of the given vector through the total surface S of the given volume.
In particular, for the electric field we can write the following:∫

V

∇ ·EdV =
∮
S

E · n dS =
∮
S

(Exdydz + Eydzdx + Ezdxdy), (5)

where n is an outward-directed unit normal vector to the surface S, and in Cartesian coordinates the
expression E = (Ex, Ey, Ez) defines the components of the electric field strength vector.

If we integrate Eq. (1) over a certain volume, inside which the charge q is placed, and apply Eq. (5),
we will obtain an integral equation in the form of the Gauss theorem:∮

S

E · ndS =
1
ε0

∫
V

ρdV =
q

ε0
. (6)

In a general case, the charges are moving, and therefore dV in the integral in Eq. (6) is a volume element
of a moving matter element. Due to the Lorentz contraction, both the charge density ρ and dV change,
however, the combination ρdV after integration leads to the invariant charge value q, and therefore to
conservation of the flux E through the surface surrounding the given volume.

If in Eq. (5) we replace E by B and take into account Eq. (2), we obtain the Gauss theorem for
the magnetic field: ∮

S

B · n dS = 0. (7)

Integral equation (7) indicates the general absence of magnetic charges in any volume, which, if they
existed, could create a non-zero magnetic induction flux through a closed surface S.

When integrating Equation (3), the Kelvin-Stokes theorem is used, which relates the flux of the
curl of the vector field through a certain two-dimensional surface S to the circulation of this field around
the one-dimensional contour � bounding the given surface. For the electric field we obtain the following:∫

S

(∇× E) · ndS =
∫
S

[(∇× E)xdydz + (∇× E)ydzdx + (∇×E)zdxdy] =
∮
�

E · dr (8)

The Faraday’s law of electromagnetic induction follows from Eqs. (3) and (8):∮
�

E · dr = εF = −
∫
S

∂B
∂t

· ndS. (9)

As a rule, the surface S and contour � in the Kelvin-Stokes theorem are considered to be stationary,
so that, according to (9), the vortex electric field E appears in the contour due to changing over time
of the magnetic field B passing through the surface. When there are charges that can move under the
action of this field E, this suggests the existence of the electromotive force εF in the selected contour.

If we substitute B instead of E into Eq. (8) and use the result in order to integrate Eq. (4) over the
surface, we will obtain the expression of the integral theorem on the circulation of the magnetic field
around the contour �:∮

�

B · dr = μ0

∫
S

j · ndS +
1
c2

∫
S

∂E
∂t

· ndS = μ0I⊥ +
1
c2

∫
S

∂E
∂t

· ndS. (10)

In Eq. (10) I⊥ =
∫
S

j · ndS =
∫
S

j⊥dS denotes the total perpendicular component of the strength of

current passing through the surface S, and ∂E
∂t defines the rate of change over time of the electric field
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crossing the surface. Both I⊥ and the flux of ∂E
∂t generate the vortex magnetic field B in the contour �

bounding the surface S.
The above standard formulas (1)–(10) are written for three-dimensional vectors. We mention them

here so that we can then compare them with the formulas for four-dimensional vectors and tensors,
which are valid not only in the flat Minkowski spacetime, but also in the curved spacetime. As will
be shown later, obtaining the four-dimensional integral equations of the electromagnetic field allows
us not only to generalize the three-dimensional integral equations, but also to obtain a more accurate
description of the phenomena.

In particular, we will show how the problem of interpreting the law of electromagnetic induction
can be solved [1]. Indeed, according to Eq. (9), the electromotive force εF in the fixed contour arises
due to changing over time of the magnetic field through the area inside the contour. However, it is well
known and proved by experiments that change in the contour’s area with a constant magnetic field also
creates the electromotive force in the contour. Thus, in Eq. (9), the time derivative should be not inside,
but before the integral over the area of the contour. Since this is not taken into account in Eq. (9), a
different explanation is usually used, involving the Lorentz force [2]. At the same time, the advantage
of the four-dimensional description is the possibility to take into account in one formula both sides of
the electromagnetic induction, including changes in the magnetic field and in the contour’s area.

The peculiar feature of the presented approach is that the main consequences arise after
applying the divergence theorem to the four-dimensional electromagnetic field equations containing
the electromagnetic field tensor Fμν and its dual tensor F̃αβ. In this case, it becomes clear that the
four-dimensional Kelvin-Stokes theorem can be obtained by simplifying the divergence theorem, and
therefore it is not required to derive the four-dimensional integral equations of the electromagnetic field.

In the last section, we will analyze the integral theorem on the magnetic field circulation, and a
conclusion will be made that with an increase in the contour’s area in the constant electric field, the
magnetic field and its circulation must arise in this contour.

Differential and integral equations of the electromagnetic field in the four-dimensional curved
spacetime have been repeatedly considered before. If we take recent works, then, for example, in [3–5]
all the variables and equations for them have been presented by splitting the components in the form
3 + 1 from the viewpoint of the local observer’s reference frame, next to which the considered volume
element with the matter and field is moving. In [6], quantum equations of the electromagnetic field are
considered.

In contrast, our task is to present all the electromagnetic quantities and their integrals in a covariant
vector-tensor form in an arbitrary reference frame for macroscopic systems, without first splitting vectors
and tensors into separate components.

2. THE COVARIANT ELECTROMAGNETIC FIELD EQUATIONS

The four-dimensional formulation takes into account the fact that the components of the electromagnetic
tensor Fμν depend only on the components of the vectors E and B. As for the charge density ρ and
the electric current density j, they are included in the four-current jα = (cρ, j) = ρ0u

α, where ρ0 is the
charge density in the comoving reference frame of the matter element, and uα is the four-velocity of the
matter element. As a result, Equations (1) and (4) are replaced by one equation:

∇βFαβ = −μ0j
α. (11)

In turn, Equations (2) and (3) can be derived from the equation:

∇αFβγ + ∇βFγα + ∇γFαβ = ∂αFβγ + ∂βFγα + ∂γFαβ = 0. (12)

For this in Eq. (12) we should use not coinciding with each other values of the indices α, β, γ. Another
method involves the use for the pseudo-Euclidean spacetime of the completely antisymmetric Levi-Civita
symbol εαβχδ, which implies by definition ε0123 =

√−g where g is the determinant of the metric tensor
gαβ . If the dual electromagnetic field tensor is given by the expression

F̃αβ =
1
2
εαβγδFγδ (13)
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and if we multiply all the terms in Eq. (12) by 1
2εαδβγ and sum them up, we will obtain −3∇αF̃ δα = 0.

Thus, we can assume that Equations (2) and (3) follow from the equation:

∇βF̃αβ = 0, (14)

where the dual tensor, according to Eq. (13), has the following components:

F̃αβ =
√−g

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −Bx −By −Bz

Bx 0
Ez

c
−Ey

c

By −Ez

c
0

Ex

c

Bz
Ey

c
−Ex

c
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(15)

Two four-dimensional Equations (11) and (14) replace the four three-dimensional Maxwell equations
and represent the standard way to write the electromagnetic field equations in the curved spacetime.

Since the electromagnetic field tensor is an antisymmetric tensor, its covariant derivative can be
represented in terms of the partial derivative:

∇βFαβ =
1√−g

∂β

(√−gFαβ
)

(16)

Let us multiply both sides of Eq, (16) by the covariant element of the four-volume dΣ =√−gdx0dx1dx2dx3, take the volume integral, and use the divergence theorem in the four-dimensional
form: ∫

Σ

∇βFαβdΣ =
∫
Σ

∂β

(√−gFαβ
)

dx0dx1dx2dx3 =
∫
Sβ

Fαβ√−gdSβ , (17)

where dSβ = nβdS is the orthonormal differential dS of the three-dimensional hypersurface, surrounding
the physical system in the four-dimensional space, and nβ is the four-dimensional normal vector,
perpendicular to the hypersurface and outward-directed.

Now we will multiply the right-hand side of Eq. (11) by dΣ and take the integral over the four-
volume:

−μ0

∫
Σ

jαdΣ = −μ0

∫ ⎡
⎣∫

V

jα√−gdx1dx2dx3

⎤
⎦ dx0. (18)

Comparison of Eqs. (11), (17), and (18) gives the following:∫
Sβ

Fαβ√−gdSβ =
∫
V

Fα0√−gdx1dx2dx3 +
∫ [∫

Fα1√−gdx2dx3

]
dx0

+
∫ [∫

Fα2√−gdx3dx1

]
dx0 +

∫ [∫
Fα3√−gdx1dx2

]
dx0

= −μ0

∫ ⎡
⎣∫

V

jα√−gdx1dx2dx3

⎤
⎦ dx0.

Let us differentiate this equality with respect to the variable x0 = ct, where t is the coordinate time:

1
c

d

dt

∫
V

Fα0√−gdx1dx2dx3 +
∫

Fα1√−gdx2dx3 +
∫

Fα2√−gdx3dx1 +
∫

Fα3√−gdx1dx2

= −μ0

∫
V

jα√−gdx1dx2dx3. (19)
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At α = 0 the first term in Eq. (19) vanishes, since F 00 = 0. For the remaining terms, in view of
the equality j0 = ρ0u

0, we can write the following:∮
Sk

F 0k√−gdSk = −ΦE

c
= −μ0

∫
V

ρ0u
0√−gdx1dx2dx3 = −cμ0

∫
V0

ρ0dV0 = −cμ0q (20)

Here dSk = dSij = dxidxj is an orthonormal element of the two-dimensional surface, surrounding the
charge q; ΦE = c

∮
Sk

F k0√−gdSk represents the electromagnetic field flux through the closed surface;

the three-dimensional indices i, j, k = 1, 2, 3 and they do not coincide with each other.
The relation from [7] is also used for the volume element dV0 in the comoving reference frame of

this element:
dt

dτ

√−gdx1dx2dx3 =
u0

c

√−gdx1dx2dx3 = dV0. (21)

Integral equation (20) is the Gauss theorem in the covariant notation and generalizes Equation (6).
Let us now assume that in Eq. (19) α = k = 1, 2, 3:

1
c

d

dt

∫
V

F k0√−gdx1dx2dx3 +
∫

F k1√−gdx2dx3 +
∫

F k2√−gdx3dx1 +
∫

F k3√−gdx1dx2

= −μ0

∫
V

jk√−gdx1dx2dx3. (22)

Let us consider Eq. (22) at k = 1. Since Fαβ = gαγgβδFγδ by definition, then at α = 1, β = 1
it will be F 11 = g1γg1δFγδ. Then, due to symmetry of the metric tensor gαγ and antisymmetry of the
electromagnetic field tensor Fγδ , it turns out that in Eq. (22) F 11 = 0.

Suppose now that the volume under consideration is such that its size in the direction of the axis
OX equals a and is small in value, so that a ≈ 0. Then the result of integration over the differential
dx1 = dx in Eq. (22) can be considered as the product of the integrands by a. Since F 11 = 0, then in
Eq. (22) it will be possible to reduce all the terms by a. First we will replace the area element dx1dx2

by −dx2dx1, which will change the sign in the corresponding surface integral of the second kind. The
following remains:

1
c

d

dt

∫
S

F 10√−gdx2dx3 +
∫

F 12√−gdx3 −
∫

F 13√−gdx2 = −μ0

∫
S

j1√−gdx2dx3

The quantity ΦEx = c
∫
S

F 10√−gdx2dx3 here can be considered as the electric field flux through the

surface in the direction of the axis OX, since the main contribution to F 10 is made by the component
F01 which is associated with the electric field component Ex. In the general case, each of the components
F 10, F 12, and F 13 depends on all the components of the tensor Fγδ at the same time. The situation
can be simplified within the framework of the special theory of relativity, where gαγ = ηαγ , in which
case the components of the metric tensor ηαγ in the Minkowski spacetime are equal to 0 or 1 and do
not depend on the time and coordinates. In this case, we will obtain

√−g = 1, F 10 = Ex
c , F 12 = −Bz,

F 13 = By, j1 = jx, and the integral equation becomes as follows:
1
c2

d

dt

∫
S

Exdydz −
∫

Bzdz −
∫

Bydy = −μ0

∫
S

jxdydz = −μ0Ix

This can be rewritten similarly to Eq. (10):∫
Bzdz +

∫
Bydy =

∮
�

B · dr = μ0Ix +
1
c2

d

dt

∫
S

Exdydz (23)

In Eq. (23), the contour � and surface S are located in the plane Y OZ, and the magnetic field circulation
around this contour arises due to the current Ix through the area S inside the contour, as well as in
case when there is change over time in the electric field flux with the strength Ex crossing the area S.
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Integral equation (10) is derived using the Kelvin-Stokes theorem, and Equations (22) and (23)
follow from the divergence theorem. This implies close relation between these theorems, since it can be
seen that for the Kelvin-Stokes theorem to hold true, it is necessary that the thickness of the volume
under consideration should tend to zero everywhere, regardless of the orientation of the parts of this
volume in space. However, there is a difference between Eqs. (23) and (10), which consists in the fact
that in Eq. (23) the time derivative of the total electric field flux over the surface is taken, and in
Eq. (10), instead, there is only the partial time derivative of the electric field with the constant surface
area. As a result, the integral theorem on the magnetic field circulation in the form of Eq. (22) is
more informative than Eq. (10), since Eq. (22) includes integrals over the volume and the total time
derivative, and Eq. (10) includes only integrals over the surface.

3. THE KELVIN-STOKES THEOREM IN THE FOUR-DIMENSIONAL FORM

The Kelvin-Stokes theorem in Eq. (8) relates the integral of the flux of the curl of the three-dimensional
vector over a certain area to the circulation of this vector around the contour bounding the specified
area. The four-dimensional generalization of theorem in Eq. (8) can be found, for example, in [8]:

1
2

∫
S

(∇α × Aβ) dSαβ =
∮
�

Aβdxβ. (24)

The area integral in Eq. (24) contains the four-curl of the four-vector Aβ:

∇α × Aβ = ∇αAβ −∇βAα = ∂αAβ − ∂βAα

However, as we will show below, Eq. (24) is valid only within the framework of the special theory of
relativity, and in the curved spacetime it is necessary to introduce in Eq. (24) the determinant g of the
metric tensor:

1
2

∫
S

g (∇α × Aβ) dSαβ =
∮
�

gAβdxβ. (25)

It is assumed that the area element in Eq. (25) is antisymmetrically oriented, so that the following
relations hold true:

dS01 =dtdx, dS02 = dtdy, dS03 = dtdz, dS12 = dxdy,

dS13 = −dxdz, dS23 = dydz, dSαβ = −dSβα.
(26)

We will consider the case when in Eq. (25) the indices α, β = 1, 2, 3, and the four-vector Aβ is the
four-potential of the electromagnetic field, considered at a certain time point. Then Aβ = (ϕ

c , −A),
where ϕ is the scalar potential, and A is the vector potential. In this case ∇α × Aβ = Fαβ , and from
Eqs. (25) and (26) it follows:∫

S

g (Bz dxdy + By dzdx + Bx dydz) =
∫
S

gB · ndS = −Φ =
∫
S

g(∇× A) · ndS

=
∮
�

g (Axdx + Aydy + Azdz) =
∮
�

gA · dr. (27)

In Eq. (27) it is taken into account that B = ∇ × A. According to Eq. (27), the magnetic field flux
Φ = − ∫

S

gB · ndS through a certain fixed surface S leads to circulation of the vector potential A around

a fixed contour, surrounding this surface.
Let us take the partial derivative with respect to time in Eq. (27) and rearrange the terms:∮

�

∂(gA)
∂t

· dr =
∮
�

EA · dr = εA =
∫
S

∂(gB)
∂t

· ndS. (28)

The index A in Eq. (28) shows that the circular electric field EA and the electromotive force εA in the
contour � arise due to changing over time of the magnetic field, passing through the contour, which
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generates a change in the circulation of the vector potential A. Since, by definition, the electric field
appears in the presence of the gradient of the scalar potential and change over time of the vector
potential, E = −∇ϕ− ∂A

∂t , then the vortex field EA = ∂(gA)
∂t , and the electromotive force εA in Eq. (28)

appears in the absence of the scalar potential ϕ. From comparison of Eqs. (28) and (9), now we can see
that the electromagnetic induction law can be represented as a special case of Eq. (25).

Let us write Eq. (27) for a practically closed surface, when the contour � becomes so small that its
length can be considered equal to zero:∮

S

g (Bz dxdy + By dxdz + Bx dydz) =
∮
S

gB · n dS = −Φ =
∮
�

gA · dr = 0. (29)

According to Eq. (29), the magnetic field flux Φ through a closed surface is equal to zero. In the
limit of the special theory of relativity g = −1 and integral equation (29) turns into the Gauss theorem
for the magnetic field in Eq. (7).

Let us now consider the case when in Eq. (25), in view of the relation ∇α × Aβ = Fαβ and
Eqs. (26)–(27), the indices range over all the values α, β = 0, 1, 2, 3:∫

g (Exdtdx + Eydtdy + Ezdtdz − Bzdxdy − Bydzdx − Bxdydz)

=
∫ ⎛

⎝∮
�

gE · dr
⎞
⎠ ·dt −

∫
S

g(∇× A) · (n dS)

= −
∫

εdt −
∮
�

g (Axdx + Aydy + Azdz) =
∫

gϕdt −
∮
�

gA · dr. (30)

In Eq. (30) the electromotive force ε = − ∮
�

gE · dr is introduced. For integral equation (30) to

hold, it is necessary that
∫

εdt = − ∫
gϕdt, that is, the electromotive force behaves as a potential with

accuracy up to the multiplier −g: ε = −gϕ. It should be noted that in order for the electromotive forces
ε and εA from Eq. (28) to coincide, it is necessary that the relation EA = ∂(gA)

∂t = −gE should hold,
which is possible if the determinant g does not depend on the time, and the vortex field E in Eq. (30)
is generated only by change over time of the vector potential A.

4. INTEGRAL EQUATIONS FOR THE DUAL ELECTROMAGNETIC TENSOR

Let us apply the divergence theorem to the dual tensor F̃αβ in Eq. (14), and acting similarly to Eqs. (16)
and (17), we find:∫

Σ

∇βF̃αβ dΣ =
∫
Σ

∂β

(√−gF̃αβ
)

dx0dx1dx2dx3 =
∫
Sβ

F̃αβ√−gdSβ = 0 (31)

We will write this integral equation by the components:∫
V

F̃α0√−gdx1dx2dx3 +
∫ [∫

F̃α1√−gdx2dx3

]
dx0

+
∫ [∫

F̃α2√−gdx3dx1

]
dx0 +

∫ [∫
F̃α3√−gdx1dx2

]
dx0 = 0,

and then will take the derivative with respect to the variable x0 = ct:

1
c

d

dt

∫
V

F̃α0√−gdx1dx2dx3 +
∫

F̃α1√−gdx2dx3 +
∫

F̃α2√−gdx3dx1 +
∫

F̃α3√−gdx1dx2 = 0 (32)
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Equation (32) with the index α = 0, in view of the dual tensor components in Eq. (15), can be
written as follows:

−
∮
S

g (Bxdydz + Bydzdx + Bzdxdy) = −
∮
S

gB · n dS = Φ = 0, (33)

where g is the determinant of the metric tensor gαβ .
Integral equation (33), just as Eq. (29), represents the Gauss theorem for the magnetic field, and,

in the limit of the special theory of relativity, it turns into Eq. (7).
Let us now assume that in Eq. (32) the index α = 1 and use Eq. (15):

d

dt

∫
V

Bxgdxdydz +
∫

Ezgdzdx −
∫

Eygdxdy = 0 (34)

Suppose that the size a of the volume under consideration in the direction of the axis OX is so small
that the integrals in Eq. (34) can be represented as the products of the integrands by a. Then, taking
into account the equality

∫
Eygdxdy = − ∫

Eygdydx, all the terms in Eq. (34) can be reduced by a, and
the following remains:

d

dt

∫
S

Bxgdydz +
∫

Ezgdz +
∫

Eygdy = 0

This can be rewritten in a vector form, given that dr = (dx, dy, dz):

−
∮
�

gE · dr = ε =
d

dt

∫
S

gB · ndS = −dΦ
dt

(35)

For the above case, when in Eq. (32) the index α = 1 and the contour � is located in the plane Y OZ, if
the contour is circuited in a counterclockwise manner, then dr = (0, dy, dz) and the vector n is directed
along the axis OX. In this case, direction of the field E would coincide with the counterclockwise
direction of circulation around the contour, if the field B would increase with time and would be
directed against the axis OX.

Integral equation (35) represents the Faraday’s law of electromagnetic induction in a covariant
form, where the quantity Φ = − ∫

S

gB · ndS is the magnetic flux through the surface S bounded by the

conducting contour �.
It should be noted that the magnetic flux in Eq. (35) can change not only when the magnetic field B

changes with time, but also when the area of the surface S changes. Thus, changes of both B and S can
contribute to the circulation of the electric field around the contour and to creation of the electromotive
force ε. By contrast, in integral equations (9) and (28), obtained from the three-dimensional and four-
dimensional Kelvin-Stokes theorems, respectively, the electromotive force arises only due to changing
over time of the vector potential of the magnetic field in the fixed contour of constant area.

5. ANALYSIS OF THE INTEGRAL THEOREM ON THE ELECTRIC FIELD
CIRCULATION

In the previous section, we pointed out the limited use of the Kelvin-Stokes theorem to describe the
effect of electromagnetic induction. Complete description of this effect can be achieved by applying
the divergence theorem to the dual electromagnetic field tensor, which leads to integral equation (35).
We will apply Eq. (35) to describe the standard experiment with a frame, in which there is a moving
crossbar, allowing us to change the area of the frame. The frame configuration is shown in Figure 1.

Let the height of the crossbar be b and the current distance from the origin of coordinates to
the crossbar be L = Vyt, where Vy is the velocity of the crossbar’s motion along the axis OY . The
constant magnetic field Bx is directed along the axis OX. Within the framework of the special theory
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x 

z 

y

L

Vy
b B

xB
x

Figure 1. A frame with a moving crossbar, the size of which is equal to b.

of relativity, the determinant of the metric tensor g = −1 and magnetic flux is calculated as the integral
of the magnetic field over the frame’s area:

Φ = −
∫
S

gB · ndS = −BxbL = −VyBxbt (36)

Here we assume that the direction of circulation around the frame in Figure 1 is clockwise, so that,
according to the right-hand screw rule, the normal n to the frame is directed opposite to the axis OX
and opposite to the vector B. In this case, the direction of circulation should coincide with the direction
of the induction current in the crossbar.

According to Eq. (35), we now find the electromotive force as the electric field circulation around
the entire length of the moving crossbar:

−
∮
�

gE · dr =
∫
b

Eb · dr = εb = −dΦ
dt

= VyBxb. (37)

In the fixed part of the frame, the magnetic field is constant, and the electric field circulation there
must be equal to zero. If we take into account Eq. (30), then we obtain the relation εb = −gϕb = ϕb,
that is, the electromotive force changes in the same way as the electric potential along the crossbar. In
this case, the crossbar becomes the current generator for the entire frame, and the energy source for
which is the force moving the crossbar in the magnetic field. Indeed, if there is a conductive circuit and
a current generator (for example, an electric battery), then inside the generator, as it moves from the
cathode to the anode, the potential increases and then drops down along the circuit. We can assume
that in Figure 1 the cathode of the induction current generator is at the top, and the anode is at the
bottom of the crossbar.

In order to confirm this, it is necessary to imagine what happens in the crossbar as it moves. The
standard interpretation of electromagnetic induction, when the area changes in the magnetic flux, is
reduced to the Lorentz force acting in the magnetic field on the positive charge q inside the crossbar:

F = q[V × B], Fz = −qVyBx. (38)

Next we find the electric field strength inside the crossbar directed against the axis OZ, while the field
circulation coincides with Eq. (37):

Eb = (0, 0, Ez), Ez =
Fz

q
= −VyBx,

∫
b

Eb · dr = εb = VyBxb (39)

The electromotive force εb is positive, as the vector dr in Eq. (39) is directed inside the crossbar against
the axis OZ, passing around the frame in a clockwise manner after the vector Eb. In this case, the
direction of circulation around the frame coincides with the direction, which was chosen in Eq. (36) to
determine the direction of the normal n to the frame.
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The situation under consideration corresponds to the Lenz rule, according to which the
electromotive force arising due to induction generates in the conductive circuit such a current that
its action is opposite to the action that caused the induction current. The induction effect in this case
arises due to the force moving the crossbar at a constant velocity in the magnetic field, increasing the
frame’s area. If in Eq. (38) instead of velocity V we substitute the velocity v of the positive charge
as it moves in the crossbar under the action of the strength Eb, then we will obtain the Lorentz force
Fy = −qvzBx directed against the axis OY and opposite to the force moving the crossbar.

If the crossbar moved by inertia in the absence of external forces, then the force Fy in the conductive
frame would lead to deceleration of the crossbar’s motion and to decrease of its kinetic energy. This is
because the kinetic energy would be transformed into the energy of the induction current, released in
the form of heating the conductive circuit. If the electric circuit is broken, there will be no current in
the frame, and the electric field Eb will create in the crossbar a difference of potentials, equal to the
electromotive force εb, and the crossbar will be able to move at a certain constant velocity even in the
absence of external forces.

In the general case, the contour or frame under consideration may be non-conductive, and there
may be no both free charges and bound charges in them. Then the explanation of the induction effect
based on the Lorentz force according to Eqs. (38)–(39) becomes inapplicable, although the electric
field circulation and the corresponding electromotive force always take place in the moving crossbar.
Consequently, a different, more general explanation is required, for example, based on transformation
of the components of the electric and magnetic fields from the reference frame K associated with the
fixed frame, into the reference frame K ′ associated with the moving crossbar.

The electric field E and magnetic field B are part of the components of the electromagnetic field
tensor, and therefore they are transformed according to the tensor law. When an arbitrary point on the
crossbar moves along the axis OY in Figure 1, the fields’ components at this point within the framework
of the special theory of relativity are transformed as follows:

E′
y = Ey, E′

x = γEx + γVyBz, E′
z = γEz − γVyBx

B′
y = By, B′

x = γBx − γVyEz

c2
, B′

z = γBz +
γVyEx

c2

(40)

The quantity γ = 1√
1−V 2/c2

is the Lorentz factor for the velocity V = (0, Vy , 0) of the crossbar’s motion.

Since in K the field E = 0, the field B = (Bx, 0, 0), then in K ′ we will have only the following
non-zero field components: E′

z = −γVyBx, B′
x = γBx. Therefore, an observer moving in K ′ with the

crossbar should see the electric field circulation in the form∫
b

E′
b · dr′ = ε′b = γVyBxb. (41)

From comparison of Eqs. (37) and (41) it follows that ε′b = γεb. Contribution to the electromotive
forces εb and ε′b is made only by the electric fields Eb and E′

b, respectively. This distinguishes the
electromotive force from the electric potential ϕ, since, according to the definition E = −∇ϕ− ∂A

∂t , the
field E is associated not only with ϕ, but also with the vector potential A. However, in the case under
consideration, the magnetic field B does not depend on the time, and since B = ∇ × A, A does not
depend on the time either, not contributing to the electric field. That is why according to Eq. (30), the
electromotive force εb behaves similarly to ϕb.

Let us now consider how the electric potential should be transformed from K into the reference
frame K ′. If in K there is the four-potential of the electric field Aα = (ϕ

c ,−A), and K ′ moves in K
along the axis OY , then according to the Lorentz transformations for the four-vectors we obtain the
following:

ϕ′ = γϕ − γVyAy, A′
x = Ax, A′

y = γAy − γϕVy

c2
, A′

z = Az

Using the freedom to choose the vector potential associated with gauging of the four-potential in the
form ∂αAα = ∂αAα = 1

c2
∂ϕ
∂t + ∇ · A = 0 in the flat Minkowski spacetime, in K we can assume that

Ax = 0, Ay = 0, Az = yBx, where Bx = const. For the components of the four-potential in K ′ it gives:

ϕ′ = γϕ, A′
x = 0, A′

y = −γϕVy

c2
, A′

z = yBx
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The relation for the potential ϕ′ = γϕ is obtained in the same way as the relation ε′b = γεb for
the electromotive force obtained above. Thus, drawing an analogy between the electromotive force and
electric scalar potential, we can explain the law of electromagnetic induction for the case of increasing the
frame’s area, without using the Lorentz force, but relying on the transformation of the field components
between the two reference frames.

6. ANALYSIS OF THE INTEGRAL THEOREM ON THE MAGNETIC FIELD
CIRCULATION

Since the integral theorem on the magnetic field circulation around the fixed contour � in Eq. (10)
is proved using the Kelvin-Stokes theorem, it is possible that, as the case with the electromagnetic
induction effect, the proof may not give a complete description of the phenomenon. Equation (10)
states that the magnetic field circulation occurs when there is a perpendicular component of the electric
current through the fixed contour, as well as in case of change over time of the electric field crossing
the contour.

However, from divergence theorem in Eq. (22) we obtain integral equation (23), which more fully
describes the theorem on the magnetic field circulation. This equation within the framework of the
special theory of relativity can be rewritten as follows:∮

�

B · dr = μ0I⊥ +
1
c2

dΦE

dt
, (42)

where ΦE =
∫
S

E · ndS is the flux of the electric field strength through the surface S bounded by the

contour �.
According to Eq. (42), the magnetic field circulation can appear in the absence of the electric

current I⊥ as well as with the constant electric field, if the area of the contour crossed by the electric
field would change. The latter changes the flux ΦE in Eq. (42). This conclusion cannot be predicted
using the Kelvin-Stokes theorem, due to the limitations of its action.

To analyze the situation, we will refer again to Figure 1, where we will replace the magnetic field
Bx with the electric field Ex. Let us choose the counterclockwise direction of circulation around the
frame, then for the left-hand side of Eq. (42) we can write:∮

�

B · dr =
∫
b

Bb · dr = Bbb

Assuming that the electric current I⊥ through the frame is equal to zero, we find the right-hand side of
Eq. (42):

ΦE =
∫
S

E · ndS = ExbL = VyExbt,
1
c2

dΦE

dt
=

VyExb

c2

As a consequence of the equality of the left-hand and right-hand sides of Eq. (42), we arrive at the
relation Bb = VyEx

c2
. We cannot explain this relation by reasoning based on the Lorentz force, as the

case for the electromagnetic induction in Eq. (38). This is especially true when there are no electric
charges in the selected contour. The only way to explain this is to transform the field components from
K into K ′. Assuming that B = 0, E = (Ex, 0, 0) in K, from Eq. (40) we find in K ′ the following non-zero
field components: E′

x = γEx, B′
z = γVyEx

c2
. Comparison with the expression for Bb gives the following:

B′
z = γBb. Note that a similar equality E′

z = γEb for the case of the electromagnetic induction follows
from Eq. (37) and (41).

We arrive at a certain contradiction, which consists in the fact that initially we assumed B = 0
everywhere in K; however, when calculating the magnetic field circulation in Eq. (42), a certain magnetic
field Bb appeared inside the moving crossbar. In order to avoid this contradiction, it would be more
correct to assume that in fact inside the crossbar in its reference frame K ′ there is a magnetic field B′

z,
which creates circulation in the crossbar, while in the reference frame K, this circulation is manifested
already as the circulation of the effective magnetic field Bb.
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7. WHAT DOES GAUGE FIXING OF THE FOUR-POTENTIAL GIVE US?

In the previous sections, we considered the fluxes and circulations of the electric and magnetic fields,
which are the components of the electromagnetic field tensor. There is one more quantity characterizing
the electromagnetic field — it is the four-potential Aα = (ϕ

c ,−A), where the components of the four-
potential contain the scalar potential ϕ and vector potential A. In Eq. (27) we determined for A the
circulation

∮
�

gA · dr around the fixed contour, but it turns out that it is also possible to determine the

flux A using the closed surface.
We will start with the fact that in the covariant Lorentz gauge the four-potential must satisfy the

relation:
∇αAα = ∇αAα =

1√−g
∂α

(√−gAα
)

= 0

We will multiply this equality by the covariant element of the four-volume dΣ =
√−gdx0dx1dx2dx3,

take the integral over the four-volume, and use the divergence theorem in the four-dimensional form:∫
Σ

∇αAαdΣ =
∫
Σ

∂α

(√−gAα
)

dx0dx1dx2dx3 =
∫
Sα

Aα√−gdSα = 0,

where dSα = nαdS is the orthonormal differential dS of the three-dimensional hypersurface, surrounding
the physical system in the four-dimensional space, and nα is the four-dimensional normal vector,
perpendicular to the hypersurface and outward-directed.

The last equality can be written in more detail:∫
Sα

Aα√−gdSα =
∫
V

A0√−gdx1dx2dx3 +
∫ [∫

A1√−gdx2dx3

]
dx0

+
∫ [∫

A2√−gdx3dx1

]
dx0 +

∫ [∫
A3√−gdx1dx2

]
dx0 = 0.

Let us differentiate this equality with respect to the variable x0 = ct, where t is the coordinate time:

1
c

d

dt

∫
V

A0√−gdx1dx2dx3 +
∫

A1√−gdx2dx3 +
∫

A2√−gdx3dx1 +
∫

A3√−gdx1dx2 = 0.

Here three area integrals in sum are equal to the integral over the closed two-dimensional surface
surrounding the three-dimensional volume under consideration:∮

Sk

Ak√−gdSk = ΦA = −1
c

d

dt

∫
V

A0√−gdx1dx2dx3 = −1
c

d

dt
I0, (43)

where dSk = dSij is an orthonormal element of the two-dimensional surface; ΦA represents the flux
of the electromagnetic field potentials through the closed surface; the indices i, j, k = 1, 2, 3, and they
do not coincide with each other; a quantity I0 =

∫
V

A0√−gdx1dx2dx3 is the volume integral of scalar

component of the four-potential and can be called the integral scalar potential.
Since Aα = gαβAβ, Ak = gkβAβ, the components Ak of the four-potential are functions of the

scalar and vector potentials of the electromagnetic field.
In the limit of the special theory of relativity

√−g = 1, for the Cartesian coordinates we have
A0 = ϕ

c , Ak = A = (A1, A2, A3) = (Ax, Ay, Az), and (43) is simplified:∮
S

A · ndS = ΦA = −1
c

d

dt
I0 = − 1

c2

d

dt

∫
V

ϕdx1dx2dx3 (44)

In this case, we can see that ΦA becomes the flux of the vector potential A over the closed surface.
The flux ΦA can appear for two reasons — either if the distribution of the scalar potential ϕ inside the
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volume under consideration changes over time, or if the size of the volume itself changes. According to
Eq. (44), the change of ϕ over time can lead to appearance of the vector potential A in space, and if
A would depend on time, then an additional electric field would appear due to this, according to the
definition E = −∇ϕ − ∂A

∂t .

8. CONCLUSION

Using the divergence theorem, we obtained four-dimensional equation (19), from which we obtained the
integral Gauss theorem in Eq. (20) in a covariant form. The flux of the electromagnetic field through the
closed surface in Eq. (20) is defined as follows: ΦE = c

∮
Sk

F k0√−gdSij , where the indices i, j, k = 1, 2, 3,

and they do not coincide with each other. In the limit of the special theory of relativity, the flux ΦE

turns into the flux of the electric field without additions from the magnetic field components.
From Eq. (19) we also obtain the integral theorem on the magnetic field circulation in the form of

Eq. (22). In this case it is shown that if the thickness of the volume under consideration tends to zero,
then Eq. (22) turns into integral equation (23), which generalizes the three-dimensional Kelvin-Stokes
theorem.

Similarly, from four-dimensional covariant equation (32) we obtain the integral Gauss theorem for
the magnetic field in Eq. (33) and the integral Faraday’s law of electromagnetic induction in Eq. (35).
In contrast to the three-dimensional approach, the covariant expression for the magnetic flux through
the surface S includes the determinant g of the metric tensor: Φ = − ∫

S

gB · ndS. The expression for

the electromotive force also changes: ε = − ∮
�

gE · dr. According to Eq. (30), the electromotive force

behaves as a potential with accuracy up to the multiplier −g: ε = −gϕ.
Comparison of Eqs. (29) and (33), (28), and (35) shows that the four-dimensional Kelvin-Stokes

theorem in Eq. (24) is presented within the framework of the special theory of relativity, and it should
be replaced with the expression in the covariant notation in Eq. (25). However, to ensure consistency
of Equations (28) and (35), it is necessary to assume that in Eq. (25) the determinant g of the metric
tensor does not depend on the time. In addition, Equation (28) represents the law of electromagnetic
induction only for a fixed contour with a constant area. It turns out that the four-dimensional Kelvin-
Stokes theorem, even in the form of Eq. (25), does not allow us to fully describe the law of electromagnetic
induction — this requires application of the divergence theorem to the dual electromagnetic field tensor,
which leads to Eq. (35). Thus, the Kelvin-Stokes theorem turns out to be unnecessary in derivation of
the integral equations of the electromagnetic field.

However, the advantage of the Kelvin-Stokes theorem is that Equation (27) is obtained directly
from it, in which the magnetic field flux Φ = − ∫

S

gB · ndS through a certain fixed surface S leads

to circulation
∮
�

gA · dr of the vector potential A around a fixed contour surrounding this surface. In

addition, it becomes clear that changing the magnetic field flux through the contour with the constant
area leads to the vortex electric field in the contour due to change over time of the vector potential.

In addition to circulation, the vector potential A also has a flux according to integral equations (43)–
(44). In this case, the flux of the potential A through a closed surface appears only when a change in
time of a new physical quantity — the integral scalar potential I0 =

∫
V

A0√−gdx1dx2dx3 — occurs.

The obtained integral equations have been applied to describe the standard experiment with a
frame, in which there is a moving crossbar, allowing us to change the area of the frame and the flux of
the magnetic or electric field through the frame. As a rule, in such experiments, the signs of the fields’
fluxes over the contour’s area and of the fields’ circulation around the contour are determined by the
right-hand screw rule and the Lenz rule, respectively. If we proceed from the four-dimensional approach
and Equations (19) and (32), then the signs of the fluxes and circulation are determined automatically.

The analysis of the experiment on the electromagnetic induction with changing of the area in the
magnetic flux shows incompleteness of the approach based on the Lorentz force in order to explain the
appearance of the electromotive force. This approach turns out to be totally inapplicable in the case
when the electric field flux changes as the area changes in the frame, which leads to the magnetic field
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circulation in the contour. The only approach, which allows us to explain the experiments with changing
of the fluxes of both the magnetic and electric fields as the contour’s area is changed, is recalculation of
the electromagnetic field tensor components from the fixed reference frame K into the reference frame
K ′ associated with the moving part of the contour (with the moving crossbar in the frame in Figure 1).
At the same time, the circulation of the magnetic or electric field arising in K ′ in K manifests itself as
the circulation of a certain effectively acting field, as manifestation of the corresponding effect in K ′.

Thus, in the situation shown in Figure 1 initially there is no electric field, and there is only a
constant magnetic field. But as soon as the crossbar begins to move, the vortex electric field Eb appears
in it from the viewpoint of K, which leads to the circulation of this field. In fact, in the crossbar, in its
reference frame K ′ the field E′

b emerges, as well as the corresponding circulation and the electromotive
force ε′b = γεb, which in K looks as εb. Hence, we can make the conclusion that the effects from the
vortex electric and magnetic fields in the moving part of the contour from the viewpoint of K are caused
by the analogous effects in this part of the contour, when they occur from the viewpoint of the comoving
reference frame K ′.

If we proceed from Eq. (10), the magnetic field circulation in the contour can occur when the
electric field flux changes over time due to changing of the value of the electric field itself. This is the
consequence of application of the Kelvin-Stokes theorem to the fixed contour. However, the use of the
four-dimensional approach, with the help of the divergence theorem, in view of Eqs. (22)–(23) leads to
a new effect in Eq. (42), according to which the magnetic field circulation in the contour can also occur
when the electric field flux changes over time due to changing of the area bounded by the contour.
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