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The Fractional Derivative Approach for Diffraction Problems: Plane
Wave Diffraction by Two Strips with Fractional Boundary Conditions

Vasil Tabatadze1, 2, *, Kamil Karaçuha1, and Eldar I. Veliyev1, 3

Abstract—In this article, a solution of the plane wave diffraction problem by two axisymmetric strips
with different dimensions is considered. Fractional boundary conditions are required on the surface of
each strip. Several cases of strip’s dimension, configurations, and fractional orders are considered, and
numerical results are obtained. The near electric field distribution, Total Radar Cross Section frequency
characteristics, and the Poynting vector distribution in the vicinity of these strips are calculated and
illustrated. For the fractional order 0.5, the solution is found analytically.

1. INTRODUCTION

In the last decades, the tools of the fractional calculus which use fractional operators have an increasing
number of applications in physics and electrodynamics. The interest in fractional operators is related
to the fact that fractional operators broaden the notion of the initial operator. If the initial operator
is related to the description of some canonical cases, the fractional operators with non-integer order
can describe a new problem with new properties. Therefore, fractional operators generalize the class of
problems studied in different areas of the science [1–3].

Applications of fractional operators in electrodynamics were developed by Engheta and then, Veliev
and Ivakhnychenko [1–5]. Engheta proposed a fractional paradigm which states that if the function and
its first derivative describe two canonical states of the electromagnetic field, then the fractional derivative
describes an intermediate state of the field between the canonical states [1]. Veliev and Ivakhnychenko
developed this idea further and considered the generalization of boundary conditions. In this article,
there are introduced fractional boundary conditions (FBC) which correspond to intermediate boundary
conditions between the perfect electric conductor and perfect magnetic conductor [6]. These boundary
conditions describe a new material which was studied in the previous works [7–11]. In these works,
electromagnetic scattering problems were considered such as the diffraction by one strip, two strips
with the same length and a half-plane with fractional boundary condition where the theoretical part
is formulated, and for one strip case, some numerical results are also obtained. Some other authors
also have publications in this direction and made contributions in fractional calculus development in
electrodynamics [12–15].

This study more deeply investigates the properties of such a new material which satisfies the
fractional boundary condition. The theoretical description of electromagnetic plane wave scattering
by the two strips with different dimensions is given in the theoretical section. After that, the total
electric field distribution and Total Radar Cross Section (TRCS) are investigated and obtain numerical
results. In the general case, the solution of the problem is reduced to a solution of a system of linear
algebraic equations (SLAE) which can be obtained with a given accuracy. However, for the values of
the fractional order (FO) α = 0.5, the solution is obtained in an analytical form which is the advantage
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of the fractional derivative method (FDM) [7–9]. In results of the numerical simulation part, TRCS
shows the presence of resonances which are associated with the excitation of quasi-self-oscillations of a
double strip resonator.

The method represented in the paper is an efficient and new fundamental approach for diffraction
problems because the method requires one integral equation and one current density for each strip,
whereas by using impedance boundary condition, two current densities namely, electric and magnetic
current densities, and two integral equations for each strip are needed [7].

2. THEORETICAL PART

In this problem, there are two axisymmetric strips with different widths and infinite length in z-axis
located at y = ±l planes. The widths of the strips are 2a1 and 2a2, respectively. In Figure 1, the
geometry of the problem is given.

Figure 1. The geometry of the problem.

As an incident field, there is an E-polarized electromagnetic plane wave. The electric field has only
a z component and can be written as Ei

z = e−ik(x cos θ+y sin θ) where k is the wavenumber, and θ is the
angle of incidence. A total electric field is given as Ez = Ei

z +Es
z where Es

z stands for the total scattered
electric field by both strips. The total electric field Ez should satisfy the fractional boundary condition
(FBC) on each strip. The fractional boundary condition is given in Eq. (1).

Dα
kyEz (x, y) = 0, y → ±l, x ∈ (−ai, ai) , i = 1, 2 (1)

where α is a fractional order (FO); the fractional derivative is given in Eq. (1); Dα
ky is determined by

the Riemann-Liouville equation [4, 5, 16] which has the form as Eq. (2).

Dα
y f (y) =

1
Γ (1 − α)

d

dy

y∫
−∞

f (t)
(y − t)α

dt, (2)

where, Γ(1 − α) is Gamma Function, and α ∈ (0, 1).
When α = 0, the boundary condition corresponds to the perfect electric conductor (PEC). When

α = 1, it stands for the perfect magnetic conductor (PMC). For FO between 0 < α < 1, FBC corresponds
to the intermediate case between PEC and PMC. Previous studies show that when fractional order is in
this range, the strip boundary corresponds to the material with a pure imaginary impedance which is
called fractional impedance. The relation between the fractional order and fractional impedance is given
with the following formula, ηα = − i

sin θ tan
(

π
2 α

)
for any incidence angle [7, 8]. From this expression, it

is easy to get the next formula α = 1
iπ ln

(
1−ηα sin θ
1+ηα sin θ

)
[4, 7, 9].

The use of fractional boundary condition is advantageous because it needs only one integral equation
to be solved, while in the case of ordinary impedance boundary condition, two integral equations must
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be solved [8, 9]. In order to formulate the problem, first, time dependency and field expressions need to
be defined. Here, throughout formulation, the time dependency is e−iωt, and it is omitted everywhere.

The scattered electric field Es
z(xy) is the sum of two parts which are the scattered fields by the

first and second strips, respectively. Total scattered electric field is Es
z(x, y) = Es1

z (x, y) + Es2
z (xy), and

each part can be found by Eq. (3) [9].

Esj
z (x, y) =

∞∫
−∞

f1−α
j

(
x′) Gα

(
x − x′, yj

)
dx′, j = 1, 2, y1 = y − l, y2 = y + l, (3)

where,

Gα
(
x − x′, y

)
= i

1
4π

Dα
ky

∞∫
−∞

e
ik

[
q(x−x′)+|y|

√
1−q2

]
(1 − q2)

α−1
2 dα.

Here, f1−α(x′) is the fractional density of surface current on the strip. In Eq. (3), j = 1, 2 corresponds to
the upper or lower strip, respectively, and Gα(x−x′, y) is the fractional Green’s function which is, in the
two-dimensional case, Gα(x−x′, y) = − i

4Dα
kyH

(1)
0 (k

√
(x − x′)2 + y2) [5, 7, 8]. In the expression, H

(1)
0 (z)

is the Hankel function of the first kind and zero order. Note that in Eq. (3), the plane wave expansion
of Hankel function is used. Then, Eq. (4) is achieved by representing f1−α

j (x′) with its corresponding
Fourier transform F 1−α

j (q) [9, 10].

Esj
z (x, yj) = −i

e±i π
2
α

4π

∫ ∞

−∞
F 1−α

j (q) e
ik

(
xq+|yj |

√
1−q2

) (
1 − q2

)α−1
2 dq (4)

where y1 = y − l, y2 = y + l, j = 1, 2, and

F 1−α
j (q) =

1∫
−1

f̃j
1−α

(ξ) e−iεqξdξ,

f̃j
1−α

(ξ) =
εj

2π

∞∫
−∞

F 1−α
j (q) eiεjqξdq,

f̃j
1−α

(ξ) = af1−α
j (ξ) , εj = kaj , ξ =

x

aj
.

Equations (3) and (4) are chosen so that the total electric field Ez satisfies Helmholtz equation,
and also, the scattered electric field Es

z satisfies Sommerfeld radiation condition at the infinity [7, 9].
After applying the FBC on the surface of each strip and multiplying both sides of the integral

equation (4) by
∫ ai

−ai
e−ikxτdx, the integral equation system is as Eq. (5) where the upper sign stands

for i = 1, and, for the lower sign, i = 2 needs to be taken into account. Different signs in the exponent
(e∓ikl sin θ) correspond to the upper and lower strips, respectively. Keep in mind that (±i), which comes
from the fractional boundary condition, is given in Eq. (1). Here, (+) sign corresponds to the upper
part of each strip, and (−) sign stands for the lower part of each strip.∫ ∞

−∞
F 1−α

i (q)
sin (kai (q − τ))

(q − τ)
(
1 − q2

)α− 1
2 dq = −i4π (±i)α e∓ikl sin θ sinα θ

sin(kai(τ + cos θ))
(τ + cos θ)

−
∫ ∞

−∞
F 1−α

j (q)
sin (kaı (q − τ))

(q − τ)
eik2l

√
1−q2 (

1 − q2
)α− 1

2 dq, i, j = 1, 2, i �= j (5)

In order to solve the set of integral equations (IE) in Eq. (5), the IE is reduced to the system of
linear algebraic equation by presenting the unknown ζα

ni
as series of the Gegenbauer polynomials given

in Eq. (6) [9–11]. Here, the Gegenbauer polynomials series for the normalized current density are used
with the weighting function (1 − ξi)α−

1
2 in order to satisfy well-known Meixner’s edge condition [17].

f̃1−α
i (ξi) = (1 − ξi)

α− 1
2

∞∑
n=0

ζα
ni

Cα
n (ξi)
α

(6)
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The corresponding Fourier transform is shown in Eq. (7) [9–11].

F 1−α
i (q) =

2π
Γ (α + 1)

∞∑
n=0

(−i)n ζα
ni

βα
n

Jn+α (εiq)
(2εiq)

α , (7)

where,

εi = kai, βα
n =

Γ (n + 2α)
Γ (n + 1)

, i = 1, 2.

The weighting function (1 − ξi)α−
1
2 in Eq. (6) is chosen so that it satisfies edge conditions [17].

After Eq. (7) is put in Eq. (5), then multiplied by Jk+α(ε1τ)
τα and Jk+α(ε2τ)

τα for corresponding integral
equations i = 1 and i = 2, respectively, the overall result for the upper and lower strips is as Eq. (8).
Note that IE in Eq. (5) is integrated with parameter τ between (−∞,∞) in order to get Eq. (8).

∞∑
n=0

(−i)nζα
ni

βα
nC

α(i,i)
kn +

(
εi

εj

)α ∞∑
n=0

(−i)n ζα
nj

βα
nC

α(i,j)
kn = γi,α

k , i, j = 1, 2, i �= j (8)

Here,

C
α(i,i)
kn =

∞∫
−∞

Jn+α (εiq) Jk+α (εiq)

(
1 − q2

)α− 1
2

q2α
dq,

C
α(i,j)
kn =

∞∫
−∞

Jn+α (εjq)Jk+α (εiq) eik2l
√

1−q2

(
1 − q2

)α− 1
2

q2α
dq, i �= j,

γi,α
k = −i2(±i)α (2εi)

α Γ (α + 1) e∓ikl sin θ tanα θ (−1)k Jk+α (εi cos θ) .

It can be shown that the system of linear algebraic equation (SLAE) (8) can be reduced to SLAE
of the Fredholm type of the second kind [9]. Then, the coefficients ζα

nj
can be found with any desired

accuracy (within the machine precision) by using the truncation of SLAE (8). Note that, for the
fractional order α = 0.5, the solution can be found analytically [8, 9]. After applying the boundary
condition for FO α = 0.5, analytically, Fourier transform of the current density in the upper and lower
strips can be found by using Eq. (5), and the result is given in Eq. (9).

F 0.5
i (τ) =

−i4e
iπ
4

√
sin θ

(
sin(kai(τ + cos θ))

(τ + cos θ)
e∓ikl sin θ − sin(kaj(τ + cos θ))

(τ + cos θ)
e±ikl sin θ eik2l

√
1−τ2

)
[
1 − eik4l

√
1−τ2

] (9)

where i, j = 1, 2, i �= j.
Having expression for F 1−α

i in Eq. (7) and F 0.5
i in Eq. (9), the radiation pattern of the scattered

field in the far zone can be found by using Eq. (10). Using the stationary phase method for ka → ∞,
the scattered electric field gets the next form:

Es
z (x, y) = A (kr)Φα (φ) . (10)

Here,

A (kr) =

√
2

πkr
eikr− iπ

4 , and Φα = Φα
1 (φ) + Φα

2 (φ) ,

where,

Φα
1 (φ) = − i

4
e±

iπα
2 F 1−α

1 (cos φ) (sinαφ) e−ikl sinφ,

Φα
2 (φ) = − i

4
e±

iπα
2 F 1−α

2 (cos φ) (sinαφ) e+ikl sinφ.

The upper sign is chosen for φ ∈ [0, π], and the lower sign is for φ ∈ [π, 2π] in Eq. (10) where φ is
the observation angle. A(kr) is the radial part, and Φα(φ) is the angular part of the scattered electric
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field in the far zone. The radiation pattern (RP) Φα(φ) expression in Eq. (10) is used for Total Radar
Cross Section calculation [18]. The definition of the Total Radar Cross Section is given in (11).

σt =

2π∫
0

|Φα|2 dφ (11)

As it has already been mentioned, the total electric field Ez has only a z-component, and the magnetic
field has x and y components Hx and Hy, respectively. The Poynting vector S has x and y components
and is calculated by using the formula in Eq. (12) [19].

S =
1
2
Re [E × H∗] , Sx = −1

2
Re

[
EzH

∗
y

]
, Sy =

1
2
Re [EzH

∗
x] (12)

Here, (∗) denotes the complex conjugate.

3. RESULTS OF NUMERICAL SIMULATIONS

Based on the described mathematical algorithm, the program package was created in MatLab, and
several cases of strips dimension and fractional orders were considered. The near field distribution was
calculated, and the Total Radar Cross Section dependence on the wavenumber was constructed. The
results are given below.

First, the case in which the strips have the same length is considered. Figure 2 shows the family
of graphs depending on different fractional orders. Total Radar Cross Section (σT ) has dependency
on ε = ka for different Fractional orders (α = 0.5, 0.75, 1) (normal incidence). As seen, 2 strips have
resonance frequencies for all values of the fractional orders which is investigated in this article. There
exists an analytical expression to find the resonant frequency for such a quasi-resonator when the
strips have the same dimensions. For the resonant frequency, the analytical expression gives kl ≈ πn

2
(n = 1, 2, 3, ...) [19]. For the first resonance (n = 1), the value of kl is equal to kl ≈ π

2 . For n = 2,
kl ≈ π. Our results in Total Radar Cross Section by using fractional derivative approach correspond
to the similar outcome with analytical results. In Figures 2, 3, and 5, the wavenumber (k) is changed
while the widths of the strips (a1 = a2 = a = 1) are fixed, and they coincide to the half of the distance
between the strips (l = a1 = a2 = a). The resonant values of ka, which in these cases, are equal to kl,
are close to the analytical values. The first resonance is at ka ≈ 1.9, and the second one is at ka ≈ 3.4.
The deviation from analytical values is because the analytical formulation is derived for the case of the
strip which has much larger width than the wavelength (a 	 λ = 2π

k ) [19].
Figure 3 shows a family of graphs corresponding to different angles of incidence (θ = π

6 , π
4 , π

3 , π
2 )

at α = 1. For θ = π
6 , π

4 , π
2 , the resonances at ka ≈ 1.9 and ka ≈ 3.4 are preserved, but for θ = π

3 , it
disappears.

Figure 2. Total Radar Cross Section σT when
a = a1 = a2 = 1, l = 1, θ = π

2 for α = 0.5, 0.75, 1.
Figure 3. Total Radar Cross Section σT when
a = a1 = a2 = 1, l = 1, α = 1 and θ = π

6 , π
4 , π

3 , π
2 .
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If the distance between the strips is decreased (l = 0.5), the first resonance at ka ≈ 1.9 practically
disappears for all angles of incidence because in this case, the widths of the strips are twice of the
distance between the strips (2l) (a = a1 = a2 = 2l). The analytical value of the first resonance is no
longer at π

2 , but it is at π. Therefore, a resonance appears at ka ≈ 3.4 which is close to π. This result
is shown in Figure 4. It is also considered the case when the fractional order is α = 0.5, and then,
the corresponding family of graphs is constructed. This is shown in Figure 5. As seen for this case,
resonance values are higher. In the previous case (Figure 3 and α = 1), first resonance values are up to
5, and the second resonance values are reaching 3. On the other hand, for α = 0.5 (Figure 5), the first
resonance values are reaching 6, and the second ones are up to 18. Figure 6 represents the total electric
field Ez distribution. This field corresponds to the resonant value (ka1 = 3.4). As seen between the
strips, there exist high field values, and these high field values correspond to standing wave. Figure 7
gives the total field Ez distribution at the first resonance, (ka1 = 1.9). The field maximum in Figure 7
is higher than the field maximum in Figure 6 (approximately 6 versus 4) as expected from Figure 3.
The amplitudes of the total electric fields are given for different configurations in Figures 6–12.

Figure 8 shows the total electric field Ez distribution at a non-resonant frequency (ka1 = 1.5). For
this case, high field values are not observed between the strips. After that, the total electric field Ez

distribution for intermediate fractional orders is considered. Figure 9 shows the total electric field Ez

distribution at the resonance frequency when α = 0.5. The field maximum is 9 which is higher than
that in the case of Figure 6. Figure 10 shows the total electric field Ez distribution for α = 0.75. In
this case, the field maximum reaches 10.

Figure 4. Total Radar Cross Section σT when
a = a1 = a2 = 1, l = 0.5, α = 1 and θ =
π
6 , π

4 , π
3 , π

2 .

Figure 5. Total Radar Cross Section σT when
a = a1 = a2 = 1, l = 1, α = 0.5 and θ =
π
6 , π

4 , π
3 , π

2 .

Figure 6. Total electric field Ez, a1 = a2 = 1, l = 1, α = 1, ka1 = 3.4, θ = π
2 .
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Figure 7. Total electric field Ez, a1 = a2 = 1, l = 1, α = 1, ka1 = 1.9, θ = π
2 .

Figure 8. Total field Ez, a1 = a2 = 1, l = 1, α = 1, ka1 = 1.5, θ = π
2 .

Figure 9. Total electric field Ez, a1 = a2 = 1, l = 1, α = 0.5, ka1 = 3.4, θ = π
2 .
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Figure 10. Total electric field Ez, a1 = a2 = 1, l = 1, α = 0.75, ka1 = 3.4, θ = π
2 .

Figure 11. Total electric field Ez, a1 = a2 = 1, l = 1, α = 0.75, ka1 = 3.4, θ = π
3 .

Figure 11 shows the result for the incidence angle θ = π
3 instead of θ = π

2 . As seen, in this case,
there exists a resonant field between the strips, but it has a smaller amplitude with respect to the normal
incidence case as given in Figure 10 (the maximum amplitude is 4 versus 10). When the incident angle
is changed and taken as θ = π

4 , the results are as given in Figure 12.
For this case, the resonance disappears. The high field values and standing waves between the

strips do not exist.
Now, the investigation is done when the strip’s dimensions are different: a1 = 3 and a2 = 4.
Figure 13 shows the Total Radar Cross Section dependence on ε = ka. As seen, high resonances

are observed at ka1 ≈ 4.8 and 9.6. The corresponding wavenumber values (k) are k ≈ 1.6 and k ≈ 3.2,
respectively. Because the half of the distance between the strips (l) is equal to 1, the corresponding
values of kl are kl = 1.6 and kl = 3.2, respectively. This means that by increasing the dimensions of the
strips, the resonance frequencies approach analytical values given in the formula kl ≈ πn

2 (n = 1, 2, ...)
compared to Figure 2 [19]. The Maximum value of Total Radar Cross Section value reaches 60 at the
second resonance ka1 = 9.6 and the fractional order α = 0.25. If the incidence angle is taken as θ = π

4 ,
the resonance maximum is shifted, broadened, and decreased. This is seen in Figure 14.

After the investigation of TRCS, the total electric field Ez distributions at the resonance frequencies
are shown. Figure 15 shows the total electric field Ez distribution at the second resonance. The field
maximum is now more than 70. In Figures 15–18, the amplitudes of the total electric fields are given
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Figure 12. Total field Ez, a1 = a2 = 1, l = 1, α = 0.75, ka1 = 3.4, θ = π
4 .

Figure 13. Total Radar Cross Section σT when
a = a1 = 3, a2 = 4, l = 1, θ = π

2 .
Figure 14. Total Radar Cross Section σT when
a = a1 = 3, a2 = 4, l = 1, θ = π

4 .

Figure 15. Total field Ez, a1 = 3, a2 = 4, l = 1, α = 0.25, ka1 = 9.5, θ = π
2 .
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Figure 16. Total electric field Ez, a1 = 3, a2 = 4, l = 1, α = 0.75, ka1 = 9.5, θ = π
2 .

Figure 17. Total electric field Ez, a1 = 3, a2 = 4, l = 1, α = 0.75, ka1 = 9, θ = π
3 .

Figure 18. Total electric field Ez, a1 = 3, a2 = 4, l = 1, α = 0.01, ka1 = 9.5, θ = π
2 .
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for different configurations.
Now, the total electric field Ez distribution is calculated at α = 0.75 and compared to Figure 10.

The corresponding total field Ez distribution is given in Figure 16.
The total electric field Ez distribution on this figure is similar to Figure 10. The only difference

is the higher field amplitudes in this case. In Figure 10, the maximum amplitude is approximately 10.
On the other hand, in Figure 16, the maximum amplitude is approximately 90.

If the incidence angle is changed and taken as θ = π
3 , the total electric field Ez distribution will get

the next form which is shown in Figure 17.
As seen, there is still a resonance, but the amplitude of the field between the strips is much smaller,

and it is approximately 4. By decreasing the incidence angle, the resonance becomes weaker.
Figure 18 represents the total electric field Ez distribution for the fractional order α = 0.01. This

is very close to the perfect electric conductor. The maximum field value is 3.5 which is smaller than
α = 0.25 and α = 0.75 cases considered above.

Figure 19. Poynting vector distribution a1 = 1,
a2 = 1, l = 0.5, α = 1, ka1 = 1, θ = π

2 .
Figure 20. Poynting vector distribution a1 = 1,
a2 = 1, l = 0.5, α = 0.01, ka1 = 1, θ = π

2 .

Figure 21. Poynting vector distribution a1 = 1,
a2 = 1, l = 0.5, α = 0.5, ka1 = 1, θ = π

2 .
Figure 22. Poynting vector distribution a1 = 1,
a2 = 1, l = 0.5, α = 0.75, ka1 = 1, θ = π

2 .
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Distribution of the Poynting vector given in Eq. (13) is also calculated for different cases. Figure 19
and Figure 20 show the Poynting vector distribution for α = 1 and α = 0.01, respectively. In the case
of Figure 19, diffraction problem corresponds to the PMC case, and the energy penetrates through the
strips. On the other hand, Figure 20 stands for PEC case at a non-resonant case (ka1 = 1), so energy
flows around the strips and could not penetrate between the strips which creates a shadow region. In
other words, in the region between the strips, the Poynting vectors have smaller length.

Figure 21 and Figure 22 show the Poynting vector distribution for α = 0.5 and α = 0.75,
respectively. In Figure 21, the energy goes around the first strip but penetrates through the second strip
from both sides. In the case of Figure 22, it is close to PMC due to having fractional order α = 0.75,
so the flow of the energy is similar to Figure 19.

The Poynting vector distribution is also calculated when strip dimensions and the distance between
them are different. Figure 23 and Figure 24 show the Poynting vector distribution when a1 = 3, a2 = 4
for α = 1 and α = 0.01, respectively. In Figures 23 and 24, it is seen that the energy cannot penetrate
between the strips.

Figure 23. Poynting vector distribution a1 = 3,
a2 = 4, l = 1, α = 1, ka1 = 3, θ = π

2 .
Figure 24. Poynting vector distribution a1 = 3,
a2 = 4, l = 1, α = 0.01, ka1 = 3, θ = π

2 .

Figure 25. Poynting vector distribution a1 = 3, a2 = 4, l = 1, α = 0.5, ka1 = 3, θ = π
2 .



Progress In Electromagnetics Research C, Vol. 95, 2019 263

Finally, Figure 25 shows the Poynting vector distribution when a1 = 3, a2 = 4 for α = 0.5. Here,
vortexes are seen on the upper part.

4. CONCLUSION

In this article, a new mathematical method for the solution of the diffraction problem by the two
axisymmetric strips with different widths and fractional boundary conditions is considered. The
formulation for plane wave diffraction by the double strips with different sizes is done, and for the
FO α = 0.5 case, an analytical expression is found. Numerical experiments are conducted for different
dimensions of the strips, and Total Radar Cross Section frequency characteristics show that for fractional
order between 0 and 1, the resonance peaks are increased, and we get a resonator with higher values of
Total Radar Cross Section. The total electric field Ez distribution confirms the existence of high field
values between the plates.
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