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Abstract—In a MIMO system, scattering is always an important problem since it is closely related
to the channel capacity of system. In most of previous works, scattering was usually neglected so as
to simplify the process of analysis. Therefore, it is really necessary to investigate and understand the
scattering effect on capacity. To this end, scattering is taken into consideration in terms of channel
capacity in this paper. From the antenna point of view, antenna element layout can be viewed as an
optimization problem. To resolve this problem, a binary whale optimization algorithm (BWOA) is
proposed. We investigate the effect of scattering environment on the capacity of a MIMO system and
make comparison with an existing method in performance. The simulated results demonstrate that
the nonuniform sampling method is able to efficiently improve the capacity of system even for poor
scattering environment.

1. INTRODUCTION

MIMO system can improve the performance of a system with spatial diversity or multiplexing [1, 2].
The fulfillment of multiplexing is very closely related to the low correlation characteristic of transmitting
signals. The low correlation characteristic can be obtained with sampling strategy [3, 4].

Generally, a rich scattering environment widely adopts uniform distribution sampling by λ/2
spacing, while in a poor scattering environment, uniform distribution sampling will cause the problem of
over-sampling. A poor scattering environment thus requires more sampling than λ/2. Presently, there
are some methods available in literature for overcoming such a problem. These methods may be divided
into two classes. One is adaptive sampling implemented by the technique of antenna selection [5] or
controlled parasitic elements [6, 7], and the other is nonuniform sparse array arrangements [8]. Because
the channel capacity of a MIMO system is closely associated with the scattering environment, antenna
array system and position of elements, over the past few years, some evolutionary algorithms have
also been applied to the optimization of capacity of MIMO systems, such as hybrid Genetic-Taguchi
algorithm [9], Galaxy-based search algorithm [10], and spiral optimization technique [11]. Herein we
optimize the antenna layout with binary whale optimization (BIWO) algorithm, based on an efficient
algorithm, the whale optimization algorithm.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a narrow-band MIMO system, which consists of Nt transmitter and Nr receiver antennas.
Assume that X ∈ C

Nt×1 represents the vector of transmit signals and that N ∈ C
Nr×1 denotes the
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vector of additive noise at the receiver. Consequently, the received signals Y can be expressed in the
form of a complex base-band notation as

Y = HX + N (1)

where N is assumed to be an independent and uncorrelated noise vector, and uniformly distributed by
zero mean and variance σ2 such that N(0, σ2INr), INr is a unitary vector. H ∈ C

Nr×Nt denotes the
channel matrix of a MIMO system, which is represented as

H(k) = {hrt|r = 1, · · · , Nr; t = 1, · · · , Nt} (2)

where k represents the kth channel realization, k = 1, · · · ,K. In the free space, the transfer function
hrt from transmitter to receiver is derived by

hrt(d) = β
λ

4πd
exp

(
−j2π

d

λ

)
(3)

where d is the distance between a pair of transmitter and receiver antennas. The loss in free space is
given by λ/(4πd). β denotes the wavenumber, β = 2π/λ, where λ denotes the wavelength of the using
carrier frequency. Provided that we take I random scattering points into consideration, the transfer
function hrt will be rewritten as

hrt(drt, drti) � 1
2drt

exp (jβdrt) +
I∑

i=1

1
2drti

exp (jβdrti) (4)

where the phase rotation caused by the propagation distance is introduced by complex exponential
terms. drt is the distance between a pair of antenna elements, derived by

drt � |Ri − Tj | (5)

where Ri and Tj respectively stand for the position of the ith receiver antenna and the jth transmitter
antenna. In Eq. (4), drti is the distance via the ith scattering point between a pair of antennas and can
be defined as

drti � |Ri − Sl| + |Sl − Tj | (6)

where Sl stands for the position of the lth scattering point. When drt and drti are both known, H(k) is
decomposed by means of singular value decomposition (SVD) [12].

H(k) = UΣV (7)

where U ∈ C
Nr×Nr , V ∈ C

Nt×Nt both stand for the unitary matrix and respectively contain the left
and right singular vectors as to H. U and V are obtained by the eigenvalue decomposition of Hermitian
matrices HHH and HHH. Σ ∈ C

Nr×Nt is a diagonal matrix with the positive singular values such that
μ1, · · · , μn, where n = min{Nt, Nr} is the rank of H. In the case of no channel state information, the
capacity C(k) of the channels can be generally derived by

C(k) =
n∑

i=1

log2

(
1 +

Pμi

nσ2
n

)
bps/Hz (8)

where P is the total transmitting power at transmitter.
Before allowing for the scattering environment, the elements layout needs to be given beforehand.

The elements layout as an optimization problem is summarized as follows

find (Ri, Tj) = argmax C(k)

subject to |Ri − Ri−1| � λ/2, i = 1, · · · , Nr

|Tj − Tj−1| � λ/2, j = 1, · · · , Nt

(9)

This problem is evidently nonconvex so that it is difficult to resolve by means of convex optimization
methods, thus we turn to BWOA for use.
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3. BINARY WHALE OPTIMIZATION ALGORITHM (BWOA)

The whale optimization algorithm (WOA) as a nature-inspired algorithm exhibits unique features such
as robustness and practical convenience [13]. Such advantages motivate us to resort to the WOA
algorithm to solve the problem in Eq. (9). However, it is difficult to directly deal with the above
mentioned problem in Eq. (9), because the original WOA algorithm is only able to solve the problem
of real number variable. Consequently, we propose the binary WOA algorithm to solve binary problem.
For such a problem, the crucial point is to map a continuous search space into discrete binary search
space only including 0 and 1 as for the candidate solution. Here we prepare to exploit the transfer
function to achieve the search space transformation. In addition, the crossover strategy is introduced
to overcome the problem of updating the worst individual, which causes the low efficiency of WOA
algorithm. For simplicity, only modified components are presented.

(i) Crossover strategy: For the ith individual to enforce the crossover operator, the ith and i − 1th
individuals are selected from the current population pool, then both of them take part in the
crossover operation. The process can be formulated as

(x̂i, x̂i−1) =�� (xi, xi−1) (10)

where �� is an operator carrying out the crossover scheme between the two selected binary solutions
only for the latter half of dimension. xi represents the ith individual at the tth iteration. Using
Eq. (10) will produce two intermediate solutions in binary search space, and choosing which one of
them as the final solution is determined by the random probability r. Its determinant criterion is
written as the following

xi(new) =
{

x̂i, r ≥ 0.5
x̂i−1, otherwise

(11)

(ii) Space transformation: For search space mapping, there are two families of transfer functions
available, S-shaped and V-shaped transfer functions. Firstly, we use the S-shaped transfer function
to obtain the probability p.

p(xi
j) =

1
1 + exp(−xi

j)
(12)

where xi
j is the ith individual in the jth dimension at the tth iteration. p(xi

j) is the output
probability of individual xi

j. Next comparing p(xi
j) with a rand number obtains and updates the

new position x, and the determined behavior can be written as

xi
j =

{
0 r < p(xi

j)
1 r ≥ p(xi

j)
(13)

where xi
j represents the i element at the j dimension in the candidate solution space at the dth

iteration.

Algorithm 1 provides the pseudo code of the BWOA, and the corresponding parameters definition
is given in Table 1. See [13] for more details of WOA. In summary, the entire design procedure is
provided as follows.

(1) Initialization: Given Nr and Nt, the maximum iteration tmax equals 100, and set Copt = 0.

(2) Array design: Using BWOA produces the new elements layout. Compute H and C(k).
(3) Update optimum capacity: Obtain the best fitness fit from current population and compare fit

with Copt. If fit outperforms Copt, Copt will be updated by the current fit.
(4) Convergence check: When iteration times is greater than the given tmax, end iteration. Otherwise,

return (2).

The computational complexity of BWOA is of O(t(d ∗ n + Cof ∗ n)), where t is the times of
iteration; d and n are the dimension of problem and the number of populations; Cof stands for the cost
of objective function.
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Algorithm 1: Pseudo code of the BWOA
Input: input parameters t, tmax, l, r
Output: X∗
Initialize the whales population Xi (i = 1, 2, · · · , n)1

Calculate the fitness of each search agent2

X∗ =the best search agent3

while t < tmax do4

for each search agent do5

Update α,A,C, l and p6

if p < 0.5 then7

if |A| ≤ 1 then8

Update the position of the current search agent by D = |C · x∗(t) − X(t)|9

X(t + 1) = X∗(t) − A · D
else10

Update the position of the current search agent by the D = |C · xrand − X(t)|11

X(t + 1) = xrand − A · D
else12

Update the position of the current search agent by D
′
= |X∗(t) − X(t)|13

X(t + 1) = D
′ · ebl + cos(2πl) + X(t)

Calculate the probabilities using a transfer function taking Eqs. (12) and (13)14

Crossover operator between xi and xi−1 by Eqs. (10) and (11)15

Calculate the fitness of each search agent16

Update X∗ if there is a better solution17

t = t + 118

Table 1. Parameters specification.

Symbol Quantity Value

Algorithm 1

t iteration times [1, tmax]
tmax maximum of iteration 100

b random number (0, 10)
l random number (−1, 1)
A control parameter 2α · r − α

C control parameter 2 · r
α control parameter 2(1 − t/tmax)
r random number [0, 1]

4. SIMULATION RESULTS

Herein considering a case, Nt = Nr = 5 and the power P = 1 W. The channel realization K is chosen
to be 100, and the scattering point number I ∈ [10, 1000]. Assume that xr

i , x
t
j respectively denote the

ith and jth element positions along x dimension at the receiver and transmitter.
The optimum element layout is obtained using the proposed algorithm as at = {1, 4, 6, 9, 10}.

The positions of elements can be set as xr
i = 500λ, i = 1, ..., Nr , xt

j = 0, j = 1, ..., Nt, yt =
(atλ)/2 ∈ {0.5λ, 2λ, 3λ, 4.5λ, 5λ} = yr. The scattering positions are selected at random and used
to evaluate the channel matrix H(k). The process is repeated for each channel realization with I
scatters, so as to derive the capacity C(k) and average capacity Cave of the system. The simulation
results are plotted in Fig. 1, which shows the capacity and average capacity as a function of scatters
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(a)

(b)

Figure 1. The optimum capacity and average capacity for Nt = Nr = 5 under the optimum elements
layout. (a) The resultant capacity and average capacity with channel realizations number (I = 10). (b)
The resultant capacity Copt and average capacity Cave with scattering points number (k = 1).

realization k and scattering points number I. In Fig. 1(a), the capacity and average capacity are
provided with varying k ∈ [1, 100] when I = 10. The average capacity Cave = (

∑K
i=1 Copt)/K reaches

45.98 bps/Hz and is marked as a straight line in Fig. 1(a). As can be seen, there is an improvement of
15 bps/Hz in Cave in comparison with the almost difference sets (ADS) of the literature [8]. Fig. 1(b)
depicts the relationship between the capacity and the number of scattering points with the BWOA
and ADS. As can be seen, the proposed BWOA obtains a better normalized capacity than ADS. It
demonstrates the effectiveness of the proposed BWOA for improving the capacity of system. When
I varies from 10 to 1000, the corresponding normalized capacities obtained by BWOA and ADS are
presented in Fig. 2, which includes the optimal capacity ∇Copt � (C̄opt − C̄λ/2), average capacity
∇Cave � (C̄ave − C̄λ/2), and capacity ∇Cλ � (C̄λ − C̄λ/2) with varying the uniform distribution by
spacing λ, where C̄ = (

∑n
i=1 C)/n (n = 1, · · · , I). As can be seen, Copt and Cave of BWOA outperform

those of ADS. The convergence curve corresponding to Fig. 2 is presented in Fig. 3. As can be seen,
BWOA is able to implement the fast convergence in a short iteration.

To examine the effect of the scattering point number on the capacity, we further increase the
number of elements to 15, and the constraints remain unchanged. The simulation results are depicted
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Figure 2. The normalized capacity vs number of scattering points (Nt = Nr = 5, k = 100).

Figure 3. The convergence curve of BWOA corresponding to Fig. 2 (Nt = Nr = 5, k = 100).

in Fig. 4. As can be seen, �Copt decreases as the number of scatters points increases. The varying trend
of the optimal capacity is consistent with the one in Fig. 2, which is determined by the intrinsic features
of the channel matrix. In contrast to ∇Cλ of the uniform distribution, the optimal capacity �Copt

with nonuniform sampling attains considerable improvement in the presence of all element number
configurations. Even in the smallest of �Copt with the BWOA, �Copt still reaches an improvement
around 20% relative to uniform sampling. In particular, when the number of scattering points I is
smaller than 200, the improvement in ∇C̄opt seems more notable. The convergence curve corresponding
to Fig. 4 is given in Fig. 5, and as can be seen, BWOA exhibits a good feature of convergence over the
iterations. It is noted that the shape of convergence curve looks like a stair, because the decision space
is binary and noncontinuous. Thus it is difficult to implement a smooth and continuous convergence as
continuous decision space.
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Figure 4. The normalized capacity vs number of scattering points (Nt = Nr = 15, k = 100).

Figure 5. The convergence curve of BWOA corresponding to Fig. 4 (Nt = Nr = 5, k = 100).

5. CONCLUSION

In this work, we investigate the effect of varying scattering environment on the capacity of a MIMO
system. To solve this problem, BWOA is proposed. In order to exhibit the performance, we make use
of BWOA to optimize the capacity of a MIMO system with different configurations. Unlike most of
existing literature, we consider the effect of scatters on the capacity of a MIMO system. Through these
examples, it can be seen that our method greatly contributes to improving the capacity performance
of a MIMO system, even in the presence of a poor scattering environment, in contrast to the existing
method ADS.
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