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Estimating Electric Parameters of Nonhomogeneous Laminar

Materials Using Differo-Integral Method

Adam Steckiewicz* and Boguslaw Butrylo

Abstract—The electrical network model and differo-integral method (D-IM) were applied to electrical
parameters estimation of nonhomogeneous composite materials. The laminar composite is arranged of
conductive unit cells with adjustable geometry. Modification of unit cell’s internal geometry results
in change of composite’s effective properties. Stationary electric and magnetic fields of exemplary
structures were numerically analyzed. Theoretical computations along with network model were verified
by experimental measurements of 10 fabricated samples. Obtained results indicate that D-IM is a
valuable tool for qualitative and quantitative estimation of electrical parameters.

1. INTRODUCTION

Artificial electromagnetic (EM) structures attract great interest nowadays. Their ability to achieve
wide range of selected parameters has led to many applications. Recent advances in fields control
introduced metamaterials [1, 2] operating in thermal, electric and magnetic fields. Fractal inductors [3]
are an alternative for planar inductors in electronic devices, and textile composites are used for EM
shielding [4], frequency selective surfaces as filtering devices [5], while metamaterials allows fabricating
ideal absorbers [6]. Most of the modern EM composites are inhomogeneous materials with complex
structures resulting from various shapes of fillers, which complicates the analysis of their properties [7].
Despite some analytical field distribution models in the systems with rectangular cross-section [8],
numerical methods such as finite element method [9], higher order method of moments [10], and finite-
difference time-domain method [11] are used to extract the effective properties of composites. However,
these methods are advanced, computationally expensive, and mostly applied to the analysis of dielectric
structures with spherical [9, 10] fillers in high-frequency EM fields.

The nonhomogeneous composite with conductive layer (Fig. 1(a)) can be distinguished from many
artificial materials. Applications as elastic low power heaters or low-pass filters [12] have been proposed
and tested numerically. Composite’s effective electric and magnetic properties are adjusted at the
lowest structural level, by the selection of geometrical parameters and constituent materials of the
elementary unit cell Ωe (Fig. 2(b), Fig. 3). Since the nonhomogeneous composite consists of many
conductive elements Ωe arranged periodically on the nonconductive base ΩB, an electrical network
model is proposed as a primary analysis tool for calculating electric potential distribution at material’s
surface as well as its equivalent impedance or power losses in large scale systems. However, a solution
of the network model requires the identification of lumped parameters (resistance Re, self inductance
Le, and coupling coefficient k of elements Ωe).

In this article, a numerical differo-integral method (D-IM) for evaluating two-dimensional (2D) local
stationary electric and magnetic field distributions and lumped parameters of the unit cell is presented.
Proposed composite materials are designed to operate in low and medium-frequency fields (f < 1MHz).
Unit cell’s characteristic size is much smaller than wavelength (de � λ), hence quasi-static approach
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Figure 1. Exemplary composite structure: (a) view on the composite with periodically arranged
conductive elements Ωe on the dielectric base ΩB ; (b) electrical network model of the composite with
elementary resistance Re, inductance Le and coupling coefficient k.

(a) (b)

Figure 2. Numerical model of the unit cell: (a) uniform mesh for the finite difference algorithm; (b) 2D
representation of Ωe.

for local field distribution calculation may be applied. Combination of the finite difference method and
integral vector potential formulation for thin-film structures simplifies quasi-static EM field analysis.
Lumped parameters estimated by D-IM as well as proposed network model are verified by experimental
measurements which indicate acceptable qualitative and quantitative agreement.

2. PROBLEM FORMULATION

2.1. Electrical Network Model

Nonhomogeneous laminar composite consists of at least two phases: the functional layer ΩA arranged
with connected unit cells Ωe and elastic adhesive base ΩB (Fig. 1). In low-frequency (f < 1 MHz)
EM fields, where external and induced currents flow through ΩA layer, any displacement currents are
negligible. Thus dielectric, nonconductive base ΩB is omitted. Despite this assumption, numerical
EM field analysis becomes disadvantageous by requiring a lot of computational effort when large scale
systems with hundreds or thousands cells are considered.

Electrical network model of the composite focuses on its periodic functional phase. Each unit
cell Ωe is represented as a parallel-series connection of four identical elementary resistances Re and
inductances Le (Fig. 1(b)). Individual branch consisting of a series connection of Re and Le represents
one quarter of Ωe structure. Since the size and period of Ωe are relatively small (several millimeters),
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coupling coefficient k is introduced to consider energy transfer via magnetic field. For simplification it
is assumed that the magnetic coupling occurs only between neighboring cells.

2.2. Electric Field Analysis

Any analysis of composite (network model) requires prior identification of the unit cell’s lumped
parameters. For this task the differential algorithm is applied. Let us consider the stationary field
of electric potentials V (x, y) assigned to vertexes of 2D mesh with spacing h in x and y directions
(Fig. 2(a)). Components of current density vector J(x, y) are located at the orthogonal edges. The
differential form of Ohm’s law defines the relationship among V (x,y), J(x, y), and σ(x, y)

J(x, y) = −σ(x, y)∇V (x, y) = −σ(x, y)
[

∂
∂x

∂
∂y

]
V (x, y). (1)

The discretization of Eq. (1) on a square mesh and the approximation of the derivatives by the
linear Euler’s scheme (as an example vector element Jx,y−1/2h will be used) results in

Jx,y−1/ 2 h = −σx,y−1/ 2 h

∂V

∂y

∣∣∣∣
x,y−1/ 2 h

= −σx,y−1/ 2 h

Vx,y − Vx,y−h

h
. (2)

Then the transformation of Eq. (2) leads to the form

b−1
x,y−1/ 2 h

Jx,y−1/ 2 h + cx,y−1/ 2 hVx,y−h + cx,yVx,y = 0. (3)

where bx,y−1/2h = h−1σx,y−1/2h; cx,y−1/2h = −1 (Jx,y−1/2h directed out of vertex) and cx,y = 1 (Jx,y−1/2h

directed into vertex) are incidence matrix elements (c = 0 in other cases). For each branch in mesh
and both directions x and y, an equation in the form of Eq. (3) is generated, thus the system of
p = (n− 1)m + n(m− 1) equations is formed, where n and m are respectively the total number of rows
and columns of the mesh. The matrix form of these equations is then specified as[

B C
CT 0m

]
·
[

J
V

]
=

[
u
0v

]
. (4)

where B = diag
(
b−1
0,0; b−1

h,0; . . . ; b−1
n·h,m·h

)
, dim(B) = p×p; C is an incidence matrix, dim(C) = p×n·m;

J is a vector of unknown current densities, dim(J) = p×1; V is a vector of unknown electric potentials,
dim(V) = n ·m×1; u is an input vector of the applied electric potentials; 0m and 0v are the null matrix
and vector, respectively. Applying Woodbury’s formula to Eq. (4),. one may obtain the solution for J

J = B−1u −B−1C
(
CTB−1C

)−1 (
CTB−1u

)
︸ ︷︷ ︸

X

. (5)

where x is an unknown vector. In Eq. (5), the inverse of B appears, although B is a diagonal matrix,
hence its inverse is trivial. The main effort is put into computation of x by numeric solvers.

Differential algorithm is applied to solve the electric field of the unit cell. Each Ωe is represented as
a 2D sketch (Fig. 2(b)) with isotropic constituent materials A (conductor) and B (isolator) assigned to
contrasting colors. At the top and bottom edges, the Neumann boundary conditions (b.c.) are applied.
On the left Γu and right Γo edge Dirichlet b.c. are assigned where in typical case Γu is a voltage source
(VΓu = 1V), and Γo has a reference potential (VΓo = 0V).

2.3. Magnetic Field Analysis

Electric field computations are performed for restricted 2D model (Fig. 2(b)) whose length de,x and
width de,y are equal to external size of unit cell de,x = de,y = de. Since the unit cell is thin (de,z � de),
magnetic field computations are significantly simplified. Let us assume that J is found by differential
algorithm. The stationary magnetic field (magnetic vector potential A) is computed using Helmholtz
theorem of vector potential for thin-film systems

A (x, y) =
μ0

4π
de,z

∫∫
S

J (x′, y′)√
(x − x′)2 + (y − y′)2

dS. (6)
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where S-2D model surface of a size de,x×de,y in [m2]; μ0 — magnetic permeability of air in [H/m], (x, y)
— observation point coordinates, (x′, y′) — source point coordinates. Since the differential mesh is used
the numerical form of Eq. (6), for longitudinal and perpendicular components of A, will be presented
in form

Ax−1/ 2 h,y =
μ0

4π
de,z

n∑
i=1

m∑
j=1

Ji·h−1/ 2 h,j·h√
(x − i · h)2 + (y − j · h)2

, (7a)

Ax,y−1/ 2 h =
μ0

4π
de,z

n∑
i=1

m∑
j=1

Ji·h,j·h−1/ 2 h√
(x − i · h)2 + (y − j · h)2

, (7b)

where i is a row number, and j is a column number of differential mesh (Fig. 2(a)).
If constituent materials and infinite space around the unit cell are nonmagnetic, the numerical

integration of Eqs. (7a) and (7b) permits calculation of the magnetic field in the cross section of Ωe.
The magnetic field is directly calculated for only restricted 2D model with natural Neumann boundary
conditions at the unit cell’s external edges, and no additional b.c. are required.

2.4. Lumped Parameters

Differential approximation of electric field and integral magnetic field calculations are applied to the
quasi-static field analysis, and combined together, they form the differo-integral method (D-IM).
Calculated field distributions of the analyzed unit cell are used for lumped parameters estimation.
Firstly, a total current is calculated

I = de,z

∫
Γu

|J| dy, (8)

and then elementary resistance is given as

Re =
VΓu − VΓo

I
. (9)

Secondly, the definitions of the total magnetic energy

W =
1
2
de,z

∫∫
S

(A · J) dS, (10a)

W =
1
2
LeI

2, (10b)

are combined altogether with Eq. (8), and as a result the formula for self-inductance is obtained

Le =

de,z

∫∫
S

(A · J) dS

I2
. (11)

While Equation (9) is easily found, Equation (11) requires another numerical integration over model’s
surface. However, this integral has non-zero values only for conductive parts where J �= 0. This
emphasizes two advantages of D-IM:

• solution for only conductive parts is required;
• electric and magnetic fields are found in 2D model (cross section) of the unit cell.

In order to estimate coupling coefficient k, it is sufficient to find self inductance Le of a single unit
cell, then enhance model to a series connection of two adjacent unit cells and compute total inductance
Lt. Finally, coupling coefficient may be calculated as

k =
Lt

2Le
− 1. (12)

Equations (9), (11), and (12) express all necessary parameters of the proposed equivalent circuit model
(Fig. 1(b)). For the periodically arranged composite structure, they have to be calculated once, since
all of the unit cells are identical.
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2.5. Homogenization Procedure

Calculated lumped parameters may be utilized to extract the effective electrical conductivity and
permeability of the composite. Comparing the unit cell with an equivalent, homogenous, rectangular
conductor possessing identical resistance

Re =
de,x

σeff de,yde,z
(13)

and assuming de,x = de,y = de, Equation (13) will be transformed into

σeff = (Rede,z)
−1 . (14)

Similarly, comparing inductance of the unit cell with inductance of a rectangular conductor, the effective
relative permeability will be defined as

μeff =
Le − L 1

aL
+ 1, (15)

where L1 is the inductance of a rectangular conductor for μeff = μ1 = 1

L 1 =
μ0

2π
de

[
ln

(
2de

de + de,z

)
− 0.2235 ln

(
de + de,z

de

)
+ 0.5

]
. (16)

The linear approximation coefficient aL

aL =
L 1 − La

μ1 − μa
, (17)

describes the relation between homogeneous rectangular conductor self-inductance and its relative
permeability. Theoretical prediction of its value may be performed by a numerical calculation of a
magnetic field distribution in a homogeneous slab possessing designed external length (de,x), width
(de,y), and height (de,z), as well as some relative permeability (μa > 1), in order to retrieve corresponding
inductance La. Combining Eqs. (16) and (17) with Eq. (15), one will find effective relative permeability
of the composite for non-stationary magnetic fields.

3. EXPERIMENTAL SETUP

3.1. Analyzed Structure

For the purpose of testing the presented D-IM two isotropic geometries of the unit cell are proposed. In
relation to homogeneous conductive plate, star structure (Fig. 3(a)) is ideal to obtain higher values of
both resistance and inductance by the adjustment of internal geometrical parameters. d1 and d2 modify
the location of star ’s edge (conducting path) which changes electric connection (d1) and path’s rotation

d2
 d1 d3

 

de 

d1
 

d2 

d3

de

(b)(a)

Figure 3. Structure and geometrical parameters of the unit cell Ωe: (a) star element; (b) lattice
element.
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(d2), while d3 regulates the internal resection. Lattice structure (Fig. 3(b)) has three parallel conducting
paths. Its inductance is slightly higher then homogeneous plate and remain similar despite the values
of geometrical parameters, while resistance changes significantly. For example, square resections are
modified by d1, circular resection by d3, and central conducting area diameter by d2.

Considered structures have identical external size de = 10 mm and thickness de,z = 0.035 mm,
which satisfies the condition de,z � de. The constituent material A is a copper (σA = 5.7 · 107 S/m),
and material B is a ceramic-filled PTFE (σB ≈ 0 S/m). Presented unit cells are firstly calculated by
D-IM (22500 degrees of freedom) and then fabricated using identical materials.

3.2. Equivalent Circuit

Constituent material (copper) and size (10 mm) of Ωe are directly connected with values of its lumped
parameters which are expected to be relatively small (milliohms and microinductances). Experimental
estimation of Re, Le, and k requires preparation of a sample consisting of many serially connected
unit cells. Hence, 10 samples (5 star and 5 lattice structures) with 20 linearly arranged unit cells are
analyzed and fabricated (Fig. 4(a)). The network model of an equivalent complex system (Fig. 5(a)) is
reduced to simpler one (Fig. 5(b)), which is a chain circuit composed of identical lumped parameters
and positive magnetic coupling between neighboring elements. This series connection leads to total
resistance Rt = 20Re and inductance Lt = 20Le + 38kLe of a single sample (Fig. 5(c)).

The geometries of samples are chosen in a way to obtain high structural variety. Lumped parameters
Rt and Lt are measured on an experimental stand using Hameg HM8118LCR Bridge with 4-wire Kelvin
probes (Fig. 4(b)). The Kelvin clips and samples are placed in a 3D printed measuring stand with
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5 

LCR bridge 

Measuring stand 

Sample 

Kelvin clips 

Clamping 
screws 

 

(b)

(a)

Figure 4. Experimental stand: (a) photograph of 10 fabricated samples (5 star and 5 lattice, 20 cells
each); (b) LCR bridge and 3D printed measuring stand with insulating clamping screws and grips for
samples and clips positioning.
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(b)

(a)

(c)

Figure 5. Electrical model of tested samples: (a) full circuit model; (b) simplified circuit; (c) measured
impedance of a sample with series resistance Rt and coupled inductance Lt.

insulating clamping screws for the reduction of parasitic impedances. In every test, each sample is
measured at three source voltage frequencies: 5, 10, and 20 kHz. Then the obtained results are averaged.
The mean accuracy of all measurements is ±0.54%.

4. RESULTS AND DISCUSSION

Firstly, the surface distribution of current density and magnetic vector potential are calculated by D-IM
for all the unit cells (samples). The star sample number 3 (Fig. 6) is a representative example. Current
density norm distribution (Fig. 6(a)) shows areas with higher (thin conducting paths in a center part)
and lower densities (thick connections near edges) of flowing charge. On the basis of magnetic vector
potential A, the magnetic induction B = ∇ × A is found (Fig. 6(b)). In the cross section of Ωe

magnetic field has only z-component, whose distribution is very heterogeneous and strongly depends on
cell’s structure.

-1

1 

0 

1

 
(b)(a)

Figure 6. Star element No. 3 — computed by D-IM: (a) relative current density norm |J|; (b) relative
magnetic induction Bz.

Calculated total resistance of star structures matches acceptably with measured ones (Fig. 7)
both qualitatively and quantitatively. Good qualitative agreement of the results can be seen for lattice
samples. Obtained results also indicate an ability of precise selection and determination of resistance
by simple adjustment of the unit cell’s geometrical parameters.
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Figure 7. Calculated and measured total resistance of samples.
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Figure 8. Calculated and measured total inductance of samples.

Similar to Rt, total inductances Lt of star cells were predicted accurately (Fig. 8). Most of all,
qualitative agreement of theoretical and measured values is clearly seen for every sample. While change
in lattice’s resistance is achieved with different structures, total inductance preserves similar values.
Despite this, D-IM is still able to follow and model even subtle change of parameters.

Table 1. Relative difference between calculated and measured total resistance Rt and inductance Lt.

No.
Star Lattice

ΔRe ΔLe ΔRe ΔLe

1 −29.11% 7.11% −18.86% 10.74%
2 −9.10% 7.37% −17.33% 11.08%
3 1.94% 2.00% −24.40% 8.32%
4 −18.78% 8.60% −25.43% 11.03%
5 26.77% 10.08% −26.45% 11.19%

Avg −5.66% 7.03% −22.49% 10.47%
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Relative differences

ΔRe =
RD−IM − Rmeas.

Rmeas.
100%. (18a)

ΔLe =
LD−IM − Lmeas.

Lmeas.
100%. (18b)

of lumped parameters between electrical network model of the samples and their measured parameters
(Table 1) confirm sufficient accuracy of D-IM. The average relative difference ΔLe = 10.47%, while
for resistance mean absolute relative error |ΔRe| is below 23%. Hence, the unit cell’s inductance is
estimated with smaller relative error than resistance. One of the main reasons for this is a nonuniform
surface thickness and conductivity of a copper layer used for sample’s fabrication. These factors have a
strong impact on the total resistance but minor impact on self inductance and coupling coefficient.

5. CONCLUSION

Nonhomogeneous composite materials are represented by complex electrical networks. Since composite
operates at low frequency field, lumped parameters (resistance, self inductance, and coupling coefficient)
are required. For the simplification of electric and magnetic field analysis, the numerical differo-integral
algorithm is proposed and presented. For the purpose of D-IM verification, the isotropic star and
lattice structures are computed numerically, and then 10 different samples are fabricated and measured.
The mean relative difference between theoretical and experimental results are below 11% and 23% for
magnetic and electric parameters, respectively. Thus, D-IM provides acceptable qualitative accuracy
for estimating lumped electrical parameters.
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