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Abstract—Various formulations of the inverse equivalent surface-source problem and corresponding
solution approaches are discussed and investigated. Starting from the radiation integrals of electric and
magnetic surface current densities, the probe-corrected inverse equivalent source formulation is set up
together with different forms of side constraints such as the zero-field or Love condition. The linear
systems of equations resulting from the discretized forms of these equations are solved by the normal
residual (NR) and normal error (NE) systems of equations. As expected and as demonstrated by the
solution of a variety of inverse equivalent surface-source problems, related to synthetic as well as realistic
antenna near-field measurement data, it is found that the iterative solution of the NE equations allows
for a better control of the solution error and leads in general to a slightly faster convergence. Moreover,
the results show that the incorporation of the zero-field condition into the solution process is in general
not beneficial, which is also supported by the structure of the NE systems of equations. If desired, Love
surface current densities, or just fields in general, can more easily be computed in a post-processing
step. The accuracy of the obtained near-fields and far-fields depends more on the stopping criterion of
the inverse source solver than on the particular choice of the equivalent surface-source representation,
where the zero-field condition may influence the stopping criterion in a rather unpredictable way.

1. INTRODUCTION

Inverse equivalent source solvers have become very mature tools for the flexible and efficient
transformation of antenna fields, in particular of measured near-fields (NFs) [1], over the past 25 years.
Since surface-source representations are sufficient and efficient for time-harmonic fields, we focus in
this paper on such formulations only. Early formulations worked with planar surface current densities
together with planar NF scanning surfaces [2, 3], where only one type of surface current density, e.g.,
the magnetic surface current density, was involved. A rather general three-dimensional formulation
with electric and magnetic surface current densities was presented in [4]. Based on the observation that
a formulation with electric and magnetic surface current densities (sometimes also called dual-source
formulation) is redundant, dual-equation formulations were introduced and discussed in [5–9] that work
with a zero-field or Love condition for the fields in order to eliminate the redundancy of the dual-source
approach. Zero-field condition means here that the fields due to the sources on a closed Huygens surface
around the antenna under test (AUT) are forced to be zero within the enclosed volume. The surface
currents obtained under the zero-field condition have a direct relation to the tangential components of
the electric and magnetic fields and support thus physical intuition towards the diagnostic interpretation
of the obtained results. The question remains, however, whether these Love currents can be computed
from “other valid surface sources” in a post-processing step with the same or an even better quality
(see also [5]). A clear downside of the zero-field condition is its considerable numerical extra effort,
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which can easily exceed the effort required for the solution of the actual inverse equivalent surface-
source problem (IESSP) without additional constraint. Instead of working with electric and magnetic
surface current densities at the same time, it is also possible to work with just one of these surface current
types [5, 6, 10], where the corresponding integral operators are, however, not advantageous for a solution
with an iterative solver. As an approximation of the zero-field condition, the combined-source condition
has been proposed in [11] in strong-form, with basis functions in form of the well-known Huygens
elementary radiators, and in weak form in [12]. Interesting to mention is also the work described in [13–
15], where the focus was on radome applications and where the body-of-revolution symmetry was utilized
in order to decompose the inverse equivalent current problem by the corresponding eigenmodes. The
techniques in [16, 17] work with full matrix representations of the transformation problem and are, thus,
very flexible in terms of measurement sample locations, but they are not accelerated, and by working
with modal expansions they do not directly have diagnostics capabilities.

Since the IESSPs are in general either over-determined (i.e., more measurement samples than
unknowns) or (in most cases) under-determined (i.e., less measurement samples than unknowns), they
are commonly solved in a least mean square sense by an iterative solver working on a normal system
of equations [18] or by singular value decomposition (e.g., in [19]), where the option with an iterative
solver appears to be more or less mandatory for large problems with millions of unknowns or even more.
Interesting to note is here that all published IESSP solvers work with the normal residual (NR) system
of normal equations, in so far this is evident from the available literature. In [20–22], the NR normal
system of equations is explicitly formed and then solved by the generalized minimal residual solver
(GMRES) [18], in [2] the NR system of normal equations is solved by the conjugate gradient normal
residual (CGNR) solver and the same approach is followed in [4]. In [5, 6], very detailed investigations
on solution errors are presented, as well as singular value spectra, again on the basis of the NR system of
normal equations. The NR type of equations are utilized in [7, 8], too, together with a Tikhonov-based
formulation, where the weighting coefficient for the Love-condition constraint equations is obtained by
evaluating the L-curve.

Very important for large IESSPs is to work with an acceleration approach, which helps to handle the
fully-populated matrices resulting from the discretization of the integral operators. Most appropriate
appear here approaches following the principles of the fast multipole method (FMM) [23–25] or even of
the multilevel fast multipole method (MLFMM) [11, 20, 26, 27]. Algebraic compression schemes such as
the adpative cross approximation (ACA) method can of course also be employed [28–30].

The major goal of this work is to introduce IESSP formulations and iterative solutions, which
provide for improved control of the solution process. Reviewing the available literature, information
about the stopping criteria of the iterative solver is rarely found and the given residual errors, in case
they are provided, are rather meaningless. A certain residual error level, which gives good results for
one problem or IESSP formulation, can lead to considerably worse results in another situation. When
working with the NR system of normal equations, the actual error with respect to the field observations
or measurement values, called observation error (OE) in the following, can already start to become
unstable before the iterative solver residual starts to stagnate. This issue is overcome by working with
the normal error (NE) system of normal equations [18], which is commonly recommended for under-
determined systems of equations. Instead of working on a more or less meaningless residual error, the NE
system of equations works directly on the OE in case of an IESSP and gives, therefore, direct control of
the OE. The actual unknowns of the NE system of equations are in the space of the observation samples
and in this sense, the NE system of equations realizes the up-sampling scheme as advised in [31], at
least in part. It is found that an iterative solution of an NE system of equations stops reliably when
the achievable OE has been reached within the given tolerance. As a byproduct, it is observed that the
iterative solver convergence is also slightly better than in the case of the corresponding NR system of
normal equations.

A variety of IESSP formulations with different equivalent surface-source representations is evaluated
based on its NE systems of equations and compared to the corresponding solutions with NR systems
of equations. The different formulations comprise single-source equations and dual-source equations,
the latter with and without several kinds of additional constraints. In particular, we investigate also a
zero-field condition in form of Calderón projections [32, 33], which has the great advantage that it does
not require a problem-specific weighting of the constraint equations.
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The paper is organized as follows. First, the considered field transformation configuration is
explained, and the IESSP transmission together with the optional constraint equations are introduced
and discussed. Next, the relevant operator equations are discretized and the NR and NE systems of
normal equations are introduced and adapted to all the relevant formulations. In the results section,
an extensive study of the solution behavior of the various solver and formulation choices is performed,
where one synthetic measurement scenario with simulated field data and one realistic measurement
scenario with real spherical NF measurements is considered. Finally, the observed results are evaluated
and conclusions are drawn.

2. INVERSE EQUIVALENT SURFACE-SOURCE SOLUTION

2.1. Field Transformation Configuration and Basic Equations

Consider an inverse equivalent surface-source formulation as depicted in Fig. 1. Equivalent electric
and magnetic surface current densities JA and MA are introduced on a closed surface A around the
test volume containing all radiation sources of the AUT. The equivalent surface sources are unknown
quantities, which shall be determined in a way that they produce the AUT radiation fields in form of
the measurement samples U (rm) on the measurement surface S, which is in general located in some
(arbitrary) distance away from A — typically in the near field of the AUT — and also closed†. Following
the notation in [11, 22], the probe-weighted radiation integral of the equivalent surface current densities
can be written in the form

U (rm) =
∫∫∫

Vw

w (r − rm) ·
∫∫

A

[
ḠE

J

(
r, r′

) · JA

(
r′
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+ ḠE

M

(
r, r′

) ·MA

(
r′

)]
da′ dv, (1)

where a suppressed time factor ejωt dependent on the angular frequency ω is assumed for all fields
and sources. The vector r′ defines source locations, r observation locations, and w is a localized
function, which produces a weighted field observation in form of the signal (voltage) U(rm) at the
output of the measurement probe with volume Vw at location rm. This testing function w repre-
sents a volumetric electric current density which is an equivalent representation of the probe antenna:
The far-field radiation characteristic of the probe antenna must be identical to the far field of the
equivalent current density w. In a practical implementation with MLFMM-acceleration it is of course
more convenient to work with plane-wave spectra. The Green’s functions ḠE

J and ḠE
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Figure 1. Inverse equivalent source configuration with electric and magnetic surface current densities
on a Huygens surface A with outward unit normal n̂ and field observations U(rm) collected on a closed
measurement surface S. The infinite volume outside A is called the solution domain and the surface
sources on the surface A are equivalent sources representing the radiation fields of all sources within
the enclosed AUT volume.

† In practical configurations, the measurement surface S can of course be chosen as an open surface, if possible truncation effects
are acceptable. Also, the Huygens surface A can easily be chosen as an open surface as long as the equivalent sources are able to
reproduce the observation fields with good enough accuracy.
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chosen as Green’s functions of free-space in order to simplify the formulation [11, 22, 34]. If desired, the
formulation can, however, also be extended towards the consideration of other solution environments,
such as for measurements above a metallic ground plane [35] or for measurements above a dielectric
ground half-space [36, 37].

The formulation of the forward transmission equation from the sources to the measurement probe
given in Equation (1) is a spatial-domain formulation, which is in this form not very convenient for
efficient numerical evaluation. A series of other, spectral formulations based on propagating plane
waves, possibly in multi-level representation, or in terms of measured scattering parameters instead of
probe voltages, are found in a collection of references, such as [11, 20–22, 38].

Due to the uniqueness theorem and the various forms of the Huygens and equivalence
principles [5, 11, 34, 39, 40] together with the fact that all original sources are enclosed by the surface A,
the following statements about the IESSP hold true:

• Once equivalent surface sources have been found that are able to exactly reproduce the tangential
components of the electric and/or magnetic fields on the measurement surface S, represented
by the measurement samples U(rm), these sources will produce the correct AUT radiation fields
everywhere outside of A, no matter whether the surface A is convex or concave.

• Equivalent volume-source distributions in the AUT volume can serve the same purpose, but will
not further be considered in the following due to their more complicated placement and control.

• An IESSP formulation with electric and magnetic surface sources is redundant, one type of sources,
or a linear combination of the different types of sources, can be used to achieve a unique set of
sources. In theory, all the source types can exactly reproduce the observation fields including
radiating and evanescent modes. The redundancy among the different sources can be expressed by
the superposition of non-radiating surface sources. The justification for the use of different surface
source types follows the equivalence principle, as shortly summarized in Appendix A.

• A particular linear combination of the electric and magnetic surface current densities is obtained
by enforcing the zero-field or Love condition for all observation locations within the AUT volume‡.
In this case, the surface current densities are related to the electric and magnetic fields according
to

JL
A

(
r′

)
= n̂ × H

(
r′

)
, ML

A

(
r′

)
= −n̂ × E

(
r′

)
, (2)

where n̂ is the unit normal vector on the surface A as seen in Fig. 1 and the superscript L indicates
Love current densities.

Towards the solution of inverse equivalent surface-source problems, it must be noted that these problems
can be ill-posed in several ways [5]:

• First, if we work with a redundant set of sources, then the sources may be super-imposed by
non-radiating sources lying in the null-space of the radiation operator and the problem is severely
ill-posed.

• Second, evanescent fields produced by the sources may decay so quickly that they cannot reliably
be measured at the surface S or they may be so small in magnitude that their reconstruction may
not be possible within the realizable accuracy of the inverse source solution. In this sense, the
problem is called mildly ill-posed.

• Third, in practical problem configurations the measurement data is in general super-imposed with
noise and/or parasitic signal contributions due to the imperfect measurement environment.

Therefore, it is in general agreed on that the solution of IESSPs requires a solver with certain additional
regularization constraints, e.g., related to the smoothness of the solution or related to the energy
content of the solution. The null-space due to the redundant field representation with electric and
magnetic surface current densities is often removed by additional side constraints, such as the zero-field
condition [5, 7, 9, 39] or by a combined-source condition [11, 12]. The option of just working with electric
or magnetic surface current densities alone, is commonly not pursued, since the corresponding expansion
bases exhibit strong linear interdependencies for 3D problems and the resulting equations are hard to
solve by iterative equation solvers. For problems with open measurement surfaces such as a plane, as,
‡ Due to the uniqueness theorem an enforcement of the zero-field condition on the surface A just inside the AUT volume is sufficient.
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e.g., considered in the early days of inverse source solutions [2, 3], electric or magnetic surface current
densities alone are, however, a very feasible option.

In order to arrive at the zero-field or Love condition, we can evaluate our weighted radiation integral
in Equation (1) directly on the surface A, with a surface vector weighting function wA, e.g., a typical
MoM testing function, instead of the probe weighting function w, resulting in∫∫
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where the integral contribution with the factor 1
2 in front of it comes due to the integration of the

singularity of the Green’s functions, so that all surface integrals are now defined in a Cauchy principal
value sense. With Equation (2) and some vector algebraic arrangements, this equation can be written
as ∫∫
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+ ḠE

M

(
r, r′

) ·MA

(
r′

)]
da′ da, (4)

with vA(r) = (n̂ × wA(r)).
A similar equation can be written for the magnetic field, which is given by∫∫
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ḠH

J

(
r, r′

)·JA

(
r′

)
+ḠH
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where the characteristic impedance of free space Z =
√

μ/ε with permittivity ε and permeability μ
was introduced in order to scale the magnetic field on the same order of magnitude as the electric field.
Obviously, these two equations (here written in weighted form) allow to compute Love surface current
densities, fulfilling the zero-field condition, from any other surface current densities. In literature, such
equations are often denoted as Calderón projections [32, 33].

Enforcing the Love condition as a side constraint can be achieved by replacing the arbitrary surface
current densities on the right-hand sides of Equations (4) and (5) by the corresponding Love surface
current densities resulting in
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ḠE

J

(
r, r′

) · JL
A

(
r′

)
+ ḠE
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which are nothing else than electric field and magnetic field surface integral equations (EFIE and MFIE),
as known from radiation and scattering problems [41], but without incident fields. If desired, the EFIE
and the MFIE can be combined into a combined field integral equation (CFIE) in the form of

(1 − γ) (n̂ × MFIE) − γ EFIE = 0 (8)

where γ is the common CFIE combination parameter, chosen between 0 to 1.
As an approximation of the CFIE, we may write it with the assumption that all integrals on the right-
hand side of Equations (6) and (7) are zero and this gives the combined-source (CS) condition [11, 12, 42]∫∫

A
[vA(r) · Z (n̂ × JA(r)) − MA(r)] da = 0 (9)

where γ was here set to 1/2. Also, the superscript L was dropped since we cannot expect Love current
densities anymore with this condition.
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2.2. Discretization and Solution

Towards the solution of the IESSP, we discretize the electric and magnetic surface current densities by
low-order Rao-Wilton-Glisson (RWG) basis functions β [43] according to
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with p = 1, ..., P and q = 1, ..., Q, where, however, higher-order basis functions may also be used [21].
Plugging these expansions into the transmission Equation (1) gives a linear system of equations

[Lmp] [ZJp] + [Kmq] [Mq] = [Um] (11)

with m = 1, ...,M , where [.] denotes a discrete vector for an entry with single subscript and a matrix
for an entry with double subscript. The matrix elements are given by
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and Um = U(rm). Instead of the unknown coefficients Jp, we work with ZJp to scale the different
surface current types to the same order of magnitude and obtain thus a better conditioned system of
equations.

For the discretization of the projection Equations (5) and (4), we choose vA = β and, thus,
wA = −n̂×β in order to obtain a well-conditioned Gram matrix on the left-hand side of the equations,
resulting in
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with s = 1, ..., S, t = 1, ..., T and p, q as defined before, in most cases with S = T = P = Q. The
elements of the RWG functions Gram matrix are computed via
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(13), and (16). By inverting the Gram matrices on the left-hand side of the equations in (14) and (15),
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to directly compute the unknown electric and magnetic current coefficients with Love constraint from
any unconstrained coefficients. In a numerical implementation, these equations suffer from similar
accuracy problems as classical MFIE solutions based on RWG functions [44].

In order to discretize the Love-condition side constraint Equations (6) and (7), we choose wA = β
and, thus, vA = n̂ × β, which results in the discrete Love-constraint equations[
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with s, t, p, q as defined before. Also, it is noted that L superscripts of the unknown coefficients have
been dropped, but L superscripts for the matrix elements have been introduced. Both of these equations
are tested as the classical EFIE, where the matrix elements can formally be written as done for the
previous discrete equations.

Finally, the Love constraint in form of the CFIE in Equation (8) can be discretized in a similar
way, where the MFIE part would then be tested in a n̂×-rotated form. In the following, the CFIE is
not further considered since it is not really beneficial for the solution of our IESSP. The CS condition
in (9) can be considered in strong form as shown in [11] or in weak form as found in [12].

Since the inverse equivalent surface-source problem according to Equation (11) has in general more
unknown coefficients than equations, it is commonly solved in a least mean square sense in form of the
normal system of equations[

L∗
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=
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where * indicates the complex conjugation, and the flipping of the subscripts means the transpose of the
corresponding matrix blocks. According to [18], such a system of equations is called a normal residual
(NR) system of normal equations. When solved by an iterative solver such as the generalized minimal
residual solver (GMRES), which is exclusively considered in this work, due to its good regularization
properties (minimization of energy content of solution), this residual error is minimized in the space
of the solution vector with commonly more elements than equations. Once the solution vector has
been obtained by solving the NR system of equations, the error with respect to the measurement or
observation values (OE)
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By introducing the mapping [
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which works on the set of unknowns um in the space of the NF measurements and has, thus, the same
number of unknowns as equations. According to [18], such a system of equations is called a normal
error (NE) system of equations and is obviously better suited for under-determined systems of equations
as commonly found for our inverse equivalent surface-source problems. The residual error of this NE
system of normal equations is identical to the OE of the original equation system.

The discrete Love current projection equations in (17) and (18) can be applied to both systems of
normal equations as a pre-conditioner, for the NR system of equations as a left-hand side preconditioner
resulting into[
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and for the NE system of normal equations as a kind of right-hand side pre-conditioner leading to
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Finally, both systems of normal equations are combined with the Love condition as side constraint
equations in (19) and (20). For the NR system of normal equations in (21), we obtain[

L∗
pm LL∗

pt K
′L∗
ps

K∗
qm KL∗

qt L
′L∗
qs

]⎡
⎢⎣

Lmp Kmq

λLL
tp λKL

tq

λK
′L
sp λL

′L
sq

⎤
⎥⎦[

ZJp

Mq

]
=

[
L∗

pm

K∗
qm

]
[Um] (27)



54 Kornprobst et al.

and for the NE system of normal Equation (24) the result is⎡
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where vt and vs are additional unknowns in the space of the Love condition equations, obtained by a
mapping similar to the one in Equation (23).
In both systems of equations, the constant multiplier λ was introduced (in Equation (28) symmetrically
as

√
λ) in order to allow for an appropriate scaling of the constraint equations with respect to the actual

inverse equivalent source equations. The multiplier can be chosen empirically, but its proper value can
also be determined from an analysis of the properties of the individual submatrices or by following
the L-curve approach [7, 8]. Since the correct choice of this scaling parameter depends strongly on the
measurement configuration as well as on the quality of the measurement data (noise level), its need is
certainly a disadvantage of the formulations with Love condition in form of a side constraint.

In contrast to radiation and scattering problems of computational electromagnetics [41], where
commonly well-determined systems of equations with equal numbers of unknowns and equations are
considered, it is here obviously relatively simple to include the constraint equations separately for the
electric and magnetic fields and obtain more equations than actually needed. Within the systems of
normal equations, everything is solved together in a least mean square sense and there is thus no need
to work with a halved number of equations in form of the CFIE.

If the CS condition in Equation (9) shall be considered as a side constraint, then it is recommended
to either use it in strong form as in [45] or to invert the involved Gram matrix explicitly whenever the
current coefficients are needed within the solution of IESSPs according to Equation (21) or (24). Both of
these methods are computationally very efficient and avoid to handle an additional side constraint with
the corresponding weighting parameter λ. The option to solve the Love constraint equations explicitly
for one type of currents within every iteration is, in contrast, not beneficial, due to the considerably
larger computational effort.

As already said before, due to the size of the systems of equations it is recommended to solve
them with an iterative linear system of equations solver, where we use GMRES [18] in this work. It
is also recommended to support the solution of the systems of equations by utilizing some kind of fast
algorithm for the evaluation of the involved matrix-vector products. The most efficient and still accurate
algorithms in this respect appear to be hierarchical multi-level algorithms working with a decomposition
of the fields into propagating plane waves [11, 22, 26, 27], which may be upgraded by the use of directive
Gaussian-beam based translation operators [11, 46].

3. FIELD TRANSFORMATION RESULTS

3.1. Horn Antenna — Synthetic Measurement Data

3.1.1. Synthetic Measurement Generation

The first AUT under consideration is a simulation model of a pyramidal horn antenna with infinitely
thin perfectly conducting walls. The NF measurement data and the reference FF patterns have been
generated by FEKO using the method of moments solver [47]. The reason for utilizing synthetically
generated measurement data is that a highly-accurate solution (i.e., a reference solution) can be obtained
from the simulation. Dependent on the accuracy settings in the simulation and in the IESSP solution,
reconstruction accuracies can be achieved, which are considerably better than for measurements wich
unavoidable uncertainties and noise. The utilized triangular IESSP reconstruction mesh consisting of
6322 triangles as shown in Fig. 2 also gives the geometric dimensions of the AUT. The shown mesh is
obviously closed. The mesh for the FEKO simulations was similar, but without the aperture closing,
i.e., the FEKO mesh was open. A rectangular waveguide port forms the excitation of the dominant H10

mode. The simulations have been carried out for a frequency of f = 11GHz, the wavelength at this
frequency is λ = 27.3mm and the common FF distance according to rFF = 2D2

AUT /λ is around 0.7 m,
where DAUT is the diameter of the minimum sphere enclosing the AUT.
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Figure 2. Pyramidal horn antenna mesh with geometric dimensions.

Considered is a spherical measurement configuration with regular sampling in ϑ and ϕ and a
measurement distance of 0.1m. Synthetic NF data have been computed for 30 sample locations in ϑ
and 60 in ϕ, two orthogonal polarizations for each location. The assumed measurement probe is a
Hertzian dipole. The total number of the synthetic measurement values is 3600, where samples at the
poles are avoided by starting the sampling in ϑ at 3◦.

3.1.2. Transformation Results

The E-plane vertical FF cut of this AUT is depicted in Fig. 3 for different IESSP solver configurations in
comparison to the FEKO reference data. The explanation of the acronyms used to denote the different
solver configurations is found in Table 1. J NE is obviously a solver working with electric surface
current densities only and by iterative solution of the NE system of normal equations. JM NE is the
corresponding solver with electric and magnetic surface current densities without additional constraint
equations. The shown error or deviation measure for all patterns in this paper is the linear magnitude
error normalized to the maximum of the magnitude of the reference pattern. It is quite good for both
of the solver configurations, i.e., even for the electric surface currents only, which are known to lead
to worse conditioned equation systems than dual-source formulations [5]. All solver configurations as
found in Table 1 give here rather similar accuracies and are not worth to be discussed in detail. The

(a) (b)

Figure 3. Horizontal far-field pattern cut of the horn antenna as seen in Fig. 2 in comparison to MoM
reference results by FEKO [47], see Table 1 for explanation of legends. (a) Co-polarized component.
(b) Cross-polarized component.
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Table 1. Explanation of acronyms in figure legends.

Acronym Explanation

J electric surface currents only

JH directive Huygens radiators based on electric surface currents, strong form
according to (9)

JM electric and magnetic surface currents, no constraint

JM Love CP JM, but with Love current projection according to (17) and (18)

JM Love SC JM, but with Love condition as side constraint according to (19) and (20)

JM WF CS JM, but with weak-form combined-source condition according to (9)

NR normal residual system of normal equations

NE normal error system of normal equations

FEKO commercial electromagnetics solver [47]

NSI-MI spherical mode NF FF transformation by NSI-MI [48]

dev. deviation between an IESSP solution and results from either a reference
or another NF FF transformation

necessary computation time for one of these transformations using our multi-level implementation (no
additional side constraint such as a zero-field condition) is on the order of half a minute on a standard
desktop computer (Intel Core i7-4820K @ 3.70 GHz, four cores).

The solution and iteration behaviour of various solver configurations according to Table 1 is
summarized in Fig. 4. The graph in Fig. 4(a) shows the solver residual for NR systems of normal
equations and the graph in Fig. 4(b) provides the same results for the corresponding NE systems of
normal equations. The NE residual is identical to the OE except for the solution with Love condition
as a side constraint, where the residual contains also the contributions due to vt and vs as found in
Equation (28). In contrast, the NR residual is defined in the space of the solution vector (see Section 2.2).
The NE residual, i.e., the OE reaches here a comparable level as the FF error in Fig. 3 and also the NR
solvers reach this OE level, see Fig. 4(c), except for the solver with the Love condition in form of the
Love current projections. However, it must be noted that the NR residual needs to reach until below
−140 dB before the OE level of about −80 dB is reached. The termination criterion for all solver runs
was relative in a way that the solver stopped, when 3 iterations in a row did not give a relative residual
improvement of better than 0.9999. All solver choices stopped with this criterion and also all of them
needed about the same number of iterations to reach the stopping criterion, where the OE was about
the same for all of them, except for the NR solver with the Love current projections. Obviously, the
projections introduce additional errors, which limit the achievable OE and thus also the FF error to
around −65 dB when utilized within the NR system of equations. It is interesting to note that some
of the NR solutions without Love constraint show OE oscillations towards the end of the iteration
process, which can, however, easily be avoided by stopping the solver early enough§. In the NE system
of equations, the Love current projections do not show any notable effect. When the Love condition is
considered in the form of an additional side constraint, then it is obvious that the convergence behavior
of both solver types changes, where, however, still similar values of the residuals are achieved at the end,
if the weighting of the Love condition via the scaling parameter is not too strong‖. Fig. 4(c) compares
§ The JM WF CS NR solver (not included in Fig. 4(c)) did also stop early enough by itself.
‖ As said before, the particular choice of the scaling parameter is problem-specific and can, e.g., be found following the L-curve
method [7, 8].
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(b)(a)

(c)

Figure 4. Convergence behavior of different inverse equivalent surface-source solvers for the horn
antenna in Fig. 2, for legend explanation see Table 1. Except for JM Love SC NE, the residuals of
the NE equations in subfigure (b) are identical to the corresponding observation errors in subfigure (c).
(a) Residual of NR equations. (b) Residual of NE equations. (c) Exemplary observation errors of NR
and NE equations.

the OEs of both solver types, where it should be noted that in NR solutions the computation of the
OE in every iteration is not standard and causes extra computation effort, in particular in an iterative
solver such as GMRES. The NE solvers with no or a simple CS side constraint show obviously the best
convergence behavior of the OE, where, however, the NR solutions are not much worse, except for the
fact that the OE can start to increase and oscillate, if the iterations are not stopped early enough.
This behavior is expected to become worse when the measurement data contains imperfections or noise.
In both cases, the solvers with Love condition behave worse than the solvers with no or a simple side
constraint. For the solutions with Love condition as a side constraint, the convergence behavior depends
strongly on the chosen weighting of the side constraint. The given convergence results are for a typical
setting of the weighting parameter (λ = 0.1 in case of NE and λ = 10 in case of NR). An evaluation
of the NF distribution very close to the Huygens surface for JM NE solvers without Love condition
and with Love condition in form of a side constraint is illustrated in Fig. 5. Fig. 5(a) is for an IESSP
solution working directly on the FEKO NF data, whereas for Fig. 5(b) random noise with a signal-to-
noise ratio (SNR) of 40 dB with respect to the maximum of the NF observation data was added. The
shown NF difference is the linear magnitude difference with respect to the linear magnitude average
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(a) (b)

Figure 5. NF magnitude differences between JM NE and JM Love SC NE solutions for NF data with
0.1 m distance for the horn antenna as seen in Fig. 2, see Table 1 for explanation of acroyms. (a) FEKO
NF data. (b) FEKO NF data plus noise, SNR = 40 dB.

Figure 6. Horizontal far-field pattern cut of the horn antenna as seen in Fig. 2 for noisy NF data
(SNR = 40 dB, 0.1 m distance) in comparison to MoM reference results by FEKO [47], see Table 1 for
explanation of legends.

over the complete range of one of the solutions. It is clearly seen that the range with somewhat larger
differences is very localized around the mesh and if every single solution was compared to the FEKO
reference it would not be possible to decide which one is better. Looking into the NF distribution of the
JM NR solution, where the OE started already to become unstable, see Fig. 4(c), a larger NF difference
with respect to the FEKO data is also observed. Finally, Fig. 6 shows an FF pattern cut obtained from
IESSP solutions with noisy NF data. Again, the difference between the JM NE and the JM Love SC NE
results is marginal, where, however, the FF pattern accuracy of around −50 dB is about 10 dB better
than the SNR of the NF observation data in 0.1 m distance. The OE, as seen in Fig. 5 is for these
solutions on the order of −25 dB only, since it is not normalized with respect to the maximum but with
respect to the squared average of the observation field data.

In summary, we can say that the simple IESSP solvers without additional side constraint, or with
the simple CS condition, show the best behavior for the lowest computational effort and the solution of
the NE systems of normal equations allows for a more direct control of the solution accuracy. For the
NR systems, it would certainly also be possible to control the convergence dependent on the OE and
not dependent on the residual, but this would in general need extra computations within the solver.
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3.2. Double-Ridged Waveguide Horn Antenna — Real Measurement Data

3.2.1. Measurement Setup

To evaluate the solution behavior of the different IESSP formulations and solvers with measured
NF data, we consider an HF907 double-ridged waveguide horn antenna from Rohde & Schwarz as
shown in Fig. 7. The geometric size of the HF907 antenna in x, y, z-direction, respectively, is about
0.280m × 0.226m × 0.305 m (16.8λ × 13.6λ × 18.3λ); the common FF distance is approximately 17 m.
The selected measurement frequency of 18 GHz is at the upper working frequency limit of this ultra-
wideband antenna. Spherical measurements with a distance of 2.73 m from the rotation center and
with 45 451 measurement locations (two measured polarizations for each), regularly spaced in ϑ and ϕ,
have been performed in the anechoic chamber of the Technical University of Munich. A open-ended
rectangular hollow waveguide was utilized as measurement probe.

(a) (b)

Figure 7. Double-ridged waveguide horn HF907 by Rohde & Schwarz [49]. (a) Photograph in anechoic
chamber. (b) Conformal mesh for field transformations.

3.2.2. Transformation Results

The IESSP solutions have been obtained with sources defined on two different meshes, the conformal
mesh seen in Fig. 7(b) with 188 090 triangles and with a spherical mesh tightly enclosing the AUT. The
AUT and also the meshes are slightly offset from the rotation center in −z-direction, so that the ends
of the ridges are close to the rotation center. A summary of the solution and iteration behavior of the
different IESSP solver choices is given in Fig. 8 for both meshes. Again, separate plots for the iteration
count dependent residuals of the NR and the NE systems of normal equations are given together with a
comparison of the corresponding OEs. The explanation of the legends is found in Table 1. The solution
times for the JH NE solutions were around 16 min for the conformal mesh and around 10 min for the
spherical mesh, respectively, again on a standard desktop computer (Intel Core i7-4820K @ 3.70 GHz,
four cores).

The stopping criterion of all solver runs was achieved, when 3 iterations in a row did not yield a
relative residual improvement of better than 0.999¶. All solver runs stopped with this criterion and
all solutions achieved about the same OE level. However, while the NE solutions stopped well-defined,
the NR solutions continued far longer until they terminated, which is again a clear indication that the
residual of the NR equations is not that directly related to the OE. As expected, the electric currents-
only solvers show again the worst convergence behavior. The solvers with Love current projections show
rather similar behavior to the JM solvers with no or a simple CS condition, no matter whether in weak
or in strong form. Only the NR solution with Love projection stops rather early, which is obviously
due to the additional numerical error of the Love projections. The solutions with Love condition as a
side constraint show a rather different convergence behavior during the course of the iterations. Due
to residuals which now also contain the deviations of the additional side constraints, this is, however,
expected. Interesting is again that the residuals and also the OEs reach about the same values as without
¶ This stopping criterion is more relaxed than for the synthetic example due to the worse achievable OE.
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(b)(a)

(d)(c)

(f)(e)

Figure 8. Convergence behavior of different inverse equivalent surface-source solvers for the HF907
antenna in Fig. 7, the left row (a), (c), (e) with the mesh in Fig. 7(b), the right row (b), (d), (f) with
a spherical mesh tightly enclosing the antenna. Except for JM Love SC NE, the residuals of the NE
equations in subfigure (c) and (d) are identical to the corresponding observation errors in subfigure (e)
and (f), respectively. (a) Residual of NR equations. (b) Residual of NR equations. (c) Residual of NE
equation. (d) Residual of NE equation. (e) Exemplary observation errors of NR and NE equations. (f)
Exemplary observation errors of NR and NE equations.

Love-condition side constraint. Concerning the OE, it is again found that the NE solutions converge
slightly faster than the NR solutions. Interesting is also that the OEs achieved with the spherical mesh
as seen in Fig. 8 are a few dB lower than for the case of the conformal mesh as found in Fig. 8. This
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(a) (b)

Figure 9. Magnetic Love surface current densities on the conformal mesh in Fig. 7(b) for the HF907
antenna. (a) Result of JM Love NE. (b) Result of JM NE with post-processing.

(a) (b)

Figure 10. E-plane far-field pattern cut of the HF907 antenna as seen in Fig. 7, in comparison
to NSI-MI spherical mode expansion based results [48], CM: conformal mesh in Fig. 7(b), SM: tight
spherical mesh, both obtained by JM NE, see Table 1. (a) Co-polarized component. (b) Cross-polarized
component.

can be explained by the fact that the spatial extent of the spherical mesh is larger and the sources
on the spherical mesh are thus able to represent more of the parasitic field contributions coming from
the absorber behind the AUT and from the fixtures of the positioner. In contrast, the conformal mesh
removes some of the parasitic field contributions by spatial filtering. Overall, it is also observed that
the solutions with the spherical mesh converge considerably more quickly than the solutions with the
conformal mesh. The well-defined stop of the NE solutions at the achievable OE is remarkable. Again,
the NR solutions continue considerably longer before they reach the stopping criterion.

In Fig. 9, two examples of computed surface current distributions are shown. Both are Love currents
of the magnetic type corresponding to the tangential electric field. One is obtained from a true solution
with Love current projections during the entire iterative solution, the second one is obtained in a post-
processing step from an unconstraint solution, again by Love current projection. The differences of
both surface current distributions are certainly negligible. Finally, Fig. 10 shows E-plane FF cuts of the
antenna obtained from IESSP solutions in comparison to pattern values obtained with the spherical-
mode based NF FF transformation from NSI-MI [48]. The agreement of the IESSP solution with the
spherical mesh is, as expected, somewhat closer to the spherical-mode result, which is obtained with
even less pronounced spatial filtering. The achieved deviation of the different patterns is on the order
of what can be expected with the available measurement equipment.
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4. CONCLUSION

A variety of inverse equivalent surface-source formulations with different kinds of sources and different
kinds of additional constraint equations were investigated. The discretized systems of equations were
solved in the form of normal systems of equations. In addition to the commonly employed normal
residual (NR) systems of normal equations, we considered also the normal error (NE) systems of
normal equations, which were found to be a better choice for the iterative solution of inverse equivalent
surface-source problems (IESSPs). The NE solutions work directly on the error with respect to the
measurements or observations (OE) of the IESSP, which are actually the relevant quantity in the
area of antenna field measurements. In contrast, the residual of the NR equations is defined in the
commonly considerably larger space of the discrete sources and its relation to the relevant OE is strongly
dependent on the particular measurement and transformation configuration. The iterative solutions of
the NE systems of normal equations were found to stop reliably when the achievable OE was reached
and their convergence behavior with respect to the OE was found to be slightly better compared to
NR systems of equations solutions. With respect to additional side constraints such as the Love or
zero-field condition, we could not find any evidence that such conditions are beneficial compared to
unconstraint solutions. Since the Love-current solutions have in general a larger energy content than
unconstraint solutions, in particular for Huygens surfaces of complicated shape, we would even expect
disadvantages due to stronger cancellation effects of the radiated fields. Overall, the achieved accuracy
of the fields computed from the obtained sources depends more on the particular problem configuration
and the solver stopping criterion than on the choice of sources and/or side constraint, except of course
for single-current solutions, which show in general a worse behavior. With respect to the stopping
criterion, it is, however, observed that an additional side constraint with a corresponding weighting
factor can influence the stopping criterion considerably dependent on the weighting factor and, thus,
the results may become less predictable. If one wants to remove the null-space of the IESSP, this can
easily be done by a simple combined-source condition, either in strong or in weak form. Finally, it
is recommended that the iterative solution of the IESSP is stopped when the achievable OE due to
noise and inaccuracies is reached within a reasonable tolerance level, in order to avoid the accumulation
of numerical errors. In this respect, the solution of NE systems of equations has a clear advantage
compared to the solution of corresponding NR systems of normal equations.
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APPENDIX A. SURFACE EQUIVALENCE PRINCIPLE REVIEW

Consider a distribution of some material and of radiation sources, e.g., impressed electric and magnetic
currents J and M, inside a volume V enclosed by a surface A with an outward pointing unit normal n̂,
as for instance seen in Fig. 1. The fields generated by these sources are denoted as Eext and Hext for
the exterior fields and as Eint and Hint for the interior fields. Without loss of generality, we assume V
to be embedded in free space.

The generally accepted form of the equivalence principle states that the exterior fields due to the
sources J and M in the volume V can be represented by equivalent surface current densities [39, 40, 50–
52]

JL
A = n̂ × Hext, ML

A = Eext × n̂ (A1)

which are known as Love surface current densties. The interior fields due to these surface current
densties are zero. Also, it is clear that the original sources J and M are not present anymore after the
equivalent surface current densities have been introduced. Since the volume V is now free of any field,
its material properties can be changed and it is possible to set up an equivalent free-space problem in
order to arrive at equivalent surface current densities radiating in infinite free space.

If we define and solve an interior field problem for the volume V with prescribed tangential electric
or magnetic fields on the surface A, and represent the interior fields by corresponding Love equivalent
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surface current densities+, then it is clear that these surface current densities are non-radiating with
respect to the exterior of the volume V .

Superimposing the non-radiating surface current densities related to interior fields in V with the
equivalent surface current densities in Equation (A1) of the exterior problem, we can construct infinitely
many equivalent surface current distributions, which still correctly represent the exterior fields. By
choosing

Eint × n̂ = Eext × n̂ (A2)

an equivalent surface current distribution with electric surface current densities only will result (see,
e.g., also [10]), and with

Hint × n̂ = Hext × n̂, (A3)

an equivalent exterior field representation with magnetic surface current densities only will result.
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