
Progress In Electromagnetics Research B, Vol. 85, 27–48, 2019

Step-Like Structures in Electrostatic and Electrodynamic
Implementation of Method of Moments: Some Unique Observations

Junbo Wang* and Yahya Rahmat-Samii

Abstract—Step-like perfect electric conductor (PEC) structures are studied in both electrostatic and
electrodynamic cases implementing Method of Moments. The canonical geometries included in these
step-like structures such as edges, wedges and corners as well as the unique charge and current behaviors
are characterized and discussed. Both 2D and 3D electrostatic problems are studied. In 2D electrostatic
problem, a constant is introduced to the traditional 2D Green’s function which effectively adjusts the
zero potential reference embedded in the Green’s function. This modification alleviates the contradiction
between 2D and 3D definitions of electrostatic quantities and avoids unrealistic charge solutions obtained
by Method of Moments. In 2D electrodynamic problem, the occasional appearance of singular surface
current near the step’s right angle bends is observed, discussed and then linked with the analytical
solution of a canonical wedge scattering problem. Physical Optics approximation is also utilized as a
comparison to Method of Moments in solving the 2D scattering problems.

1. INTRODUCTION

Method of Moments (MoM), as a numerical technique solving integral equations, has become a powerful
tool tackling electromagnetic problems [1, 2], and a good overview of MoM is presented in [1]. Through
decades of development, MoM is now capable of solving various complex structures [3–5], and abundant
commercialized software is now available using MoM engine. However, revisiting some simple but
representative structures with MoM could be very interesting and may even direct attention to some
problems that have been overlooked. Step-like structures are very good examples since they consist of a
series of canonical geometries such as edges, wedges, and corners, making them appropriate candidates
to observe and discuss unique charge and current behaviors. Benefiting from these features, conclusions
from previous works focusing on single wedges [6–8] can be found well represented in this step-like
structure.

In this paper, with implementation of MoM, thin perfect electric conductor (PEC) step-like
structures are investigated in both electrostatic and electrodynamic scenarios. In Section 2, the charge
density distribution on a 2D PEC step-like structure will be determined, and then the potential and
electric field distribution will be calculated. Due to the logarithmic nature of 2D static Green’s function,
the zero of potential cannot be picked at infinity as conventionally done in 3D, which not only leads to
contradictions in definition of potential (and consequently capacitance), but also results in unrealistic
solutions of charge. A modified 2D static Green’s function is introduced to eliminate this contradiction,
which unifies the definitions of potential and capacitance in both 2D and 3D. In Section 3, a similar
electrostatic analysis is performed for a charged 3D PEC step-like structure, and some unique features
of the results are highlighted. In Section 4, a dynamic scattering problem considering 2D PEC step-like
structure under plane wave illumination will be touched upon. The surface current near the step bends
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(treated as wedges) appears either singular or vanished, depending on the orientation of the wedge and
the incident angle of the plane wave. This expected current behavior [6] is reexamined with the help
of analytical solution of the canonical wedge scattering problem. Physical Optics (PO) approximation
will also be utilized as a comparison with MoM to evaluate surface current. The resulting scattered far
field pattern will be calculated, and some insightful observations will be made.

2. 2D STATIC PROBLEM

In this section, MoM will be applied to solve a 2D static problem, whose schematic is shown in Fig. 1.
The “step” consists of three connected PEC plates, labeled as “1”, “2”, and “3”. Plate 1 and plate 3
are perpendicular to the horizontal plate 2. The thickness of the structure is neglected. The structure
carries electric charge, and its surface therefore becomes equipotential with a value of V . The goal
is to obtain charge distribution on this structure based on the knowledge of its surface potential, and
subsequently, the potential and electric field distribution in the exterior space due to this specific charge
distribution.

Figure 1. Schematic for the 2D static problem. The widths of plate 1 and plate 3 are 2b, plate 2 is 2a.
There are N1, N2 and N3 subsections on each plate, numbered in the order as shown.

2.1. Construction of Matrix Equation

In an attempt to relate charge distribution and potential, a modified 2D Green’s function Gγ(ρ) =
ln(ρ/γ) is used in this paper, instead of the conventional G(ρ) = ln(ρ). The introduced parameter γ
shifts zero potential reference to a designated position, which is preferred to be very far away from the
object (though impossible to be true infinity) in order to mimic the 3D conventions (that potential at
infinity is 0). The necessity of this modification becomes significant when one is studying electrostatic
quantities such as potential and capacitance of large 2D objects. More detailed discussions can be found
in Appendix A.

Since the structure is infinitely thin, the surface integral degrades to line integral, and the induced
potential φ(�r) is determined by:

φ(�r) = − 1
2πε

∫
L
σGγ(ρ)dl′ = − 1

2πε

∫
L
σ ln

ρ

γ
dl′ (1)

where �r and �r ′ are position vectors in observation coordinates and source coordinates; ρ = |�r − �r ′|; dl′
is the line integral element; σ is the line charge density per unit length; γ is a constant much larger
than the dimensions of the object. As will be shown in Appendix A, the choice of γ is not unique,
thus a fixed value of γ must be maintained when comparing electrostatic quantities among different 2D
objects.

To construct integral equation, one applies the boundary condition by moving the observation point
to the surface of the object, which in this case means replacing the left-hand side of Eq. (1) by the known
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value V . For this specific geometry, the right-hand side of Eq. (1) can be expanded into three parts,
corresponding to the integration on three plates, which leads to the integral equation:

V =
−1
2πε

∫ 2b

0
σ(−a, y′) ln

ρ

γ
dy′ +

−1
2πε

∫ a

−a
σ(x′, 0) ln

ρ

γ
dx′ +

−1
2πε

∫ 0

−2b
σ(a, y′) ln

ρ

γ
dy′ (2)

in which ρ =
√

(x− x′)2 + (y − y′)2.
As shown in Fig. 1, three plates are evenly subdivided into N1, N2, and N3 subsections. Basis

function is defined on plate i as pulse function on each subsection:

f i
n(�r ′) =

{
1 �r ′ ∈ Δln
0 �r ′ /∈ Δln

i = 1, 2, 3 n = 1, 2, . . . , Ni (3)

The charge density σ can now be approximated as weighted summations of basis functions:

σ =
3∑

i=1

Ni∑
n=1

αi
nf

i
n (4)

with αi
n being the unknown coefficients to be solved. Substitute Eq. (4) into Eq. (2) and rewrite it in

operator representations:
3∑

i=1

N1∑
n=1

αi
nL

if i
n = V (5)

Finally, apply point matching and calculate inner product with weighting functions wj
m on both

sides of Eq. (5):
3∑

i=1

N1∑
n=1

αi
n〈wj

m, L
if i

n〉 = 〈wj
m, V 〉 (6)

with the weighting functions wj
m defined on plate j as:

wj
m = δ(�r − �r j

m) j = 1, 2, 3 m = 1, 2, . . . , Nj (7)

with �rj
m located at the center of the mth subsection on plate j.

Now, denoting the inner product 〈wj
m, Lif i

n〉 by ljimn, we write Eq. (6) in matrix equation form:⎡
⎣[l11mn] [l12mn] [l13mn]

[l21mn] [l22mn] [l23mn]
[l31mn] [l23mn] [l33mn]

⎤
⎦
⎡
⎣[α1

n]
[α2

n]
[α3

n]

⎤
⎦ =

⎡
⎣[V 1

m]
[V 2

m]
[V 3

m]

⎤
⎦ (8)

in which each block [ljimn] represents anNj×Ni matrix; [αi
n] represents anNi×1 column vector containing

the coefficients αi
n; [V j

m] represents an Nj × 1 column vector with its elements V j
m = 〈wj

m, V 〉.

2.2. Diagonal and Off-Diagonal Terms

Before solving Eq. (8), the values of ljimn have to be determined. Recall that:

ljimn = 〈wj
m, L

if i
n〉 =

−1
2πε

∫ ln+Δl/2

ln−Δl/2
ln

|�r j
m − �r i′ |
γ

dl′ (9)

where ln is measured from the center of the nth subsection on plate i, and Δl is the width of subsection.
Notice that for self-patches (diagonal terms, m = n and i = j), �r i′ can be very close to and even overlap
with �r j

m, causing a singularity in the integrand of Eq. (9). However, this integral containing singularity
can be evaluated in closed form [10]:

liinn = − Δl
2πε

ln
Δl
2γe

(10)
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where e is the Euler’s number approximately equal to 2.7182.
As for the off-diagonal terms, one simple approximation is to assume the logarithmic function to

be constant over the entire subsection, and the integral becomes a multiplication:

ljimn ≈ − Δl
2πε

ln
|�r j

m − �r i′
n |

γ
i = j, m �= n or i �= j (11)

in which �r i′
n is now located at the center of the nth patch on plate i.

However, sometimes this approximation is too crude to give reliable results, especially in this 2D
static scenario. Equation (11) can be very inaccurate for patches that are close to each other, which is
more likely to happen when both �r j

m and �r i′
n are on the same plate. It is advisable to use closed form

solution for the integral in these cases [10]:

l22mn = − 1
2πε

(
t ln

t

γe

) ∣∣∣∣ t=|xm−x′
n|+Δx/2

t=|xm−x′
n|−Δx/2

, m �= n (12)

liimn = − 1
2πε

(
t ln

t

γe

) ∣∣∣∣ t=|ym−y′
n|+Δy/2

t=|ym−y′
n|−Δy/2

,
m �= n
i = 1, 3 (13)

With the results so far, one can determine each element of [ljimn] and solve the matrix Equation (8)
to obtain coefficients αi

n.

2.3. Potential, Electric Field and Capacitance

With full knowledge of coefficients αi
n, charge distribution σ can be obtained readily by Eq. (4). With

Eq. (1), one is able to obtain the potential at any point �r in the space, by substituting the charge by
that calculated and approximating the integration in the way as done previously:

φ(�r) = − 1
2πε

∫
L
σ ln

ρ

γ
dl′ = − 1

2πε

∫
L

(
3∑

i=1

Ni∑
n=1

αi
nf

i
n

)
ln
ρ

γ
dl′ ≈ − 1

2πε

3∑
i=1

Ni∑
n=1

(
αi

n ln
|�r − �r i′

n |
γ

)
(14)

Electric field could be obtained using the relation:

�E(�r) = −∇φ (�r) =
1

2πε

∫
L
σ∇

(
ln
ρ

γ

)
dl′ =

1
2πε

[
x̂ ·
∫

L
σ
x− x′

ρ2
dl′ + ŷ ·

∫
L
σ
y − y′

ρ2
dl′
]

≈ 1
2πε

3∑
i=1

Ni∑
n=1

αi
nΔl

|�r − �r i′
n|
[
(x− xi′

n)x̂+ (y − yi′
n )ŷ
]

(15)

where �r i′
n = xi′

n x̂+ yi′
n ŷ.

Capacitance for a single object is originally defined as the ratio of total charge to its potential [11].
However, in 2D problems, charge is evaluated per unit length, so will be the capacitance. It is also
worth noting that the potential is conventionally measured from zero at infinity, which is not the case
if the original 2D Green’s function is used. Only with the modified Green’s function, which creates a
zero of potential at “quasi-infinity”, one can conveniently follow the definition above to calculate the
capacitance per unit length as:

C =
Ql

V
=

∫
L
σdl′

V
≈ 1
V

(
3∑

i=1

Ni∑
n=1

αi
nf

i
nΔl

)
(16)

2.4. Results

A fixed value of 1010 m for γ is used to generate all of the following 2D results. For all the object
dimensions we picked, this value is large enough to shift the zero of potential to “quasi-infinity”. The
criterion for an appropriate value of γ can be found in Appendix A.
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2.4.1.

A special case of a = 0.5 m, b = 0 m is first studied, which means that only plate 2 exists. With the
potential on the plate set to V = 1 V, charge density is calculated using different numbers (N2) of
subsections to manifest the convergence of MoM, whose results are shown in Fig. 2.

Figure 2. For object dimensions of a = 0.5 m, b = 0 m and V = 1 V. Charge density on the object
calculated using N2 = 10, 50, 100.

Singular behavior can be observed near the edge of the plate. As expected, the larger is N2, the
better the result will resolve the singular charge distribution near the edge. On the other hand, the
charge density in the central area remains at the same level as N2 increases. Overall, N2 > 50 is
acceptable.

Potential φ and electric field amplitude |E| distribution in the range of −2a < x, y < 2a are plotted
in Fig. 3. From the electric field pattern one can easily observe the enhanced electric field resulting
from the high charge density at both edges of the plate.

Figure 3. For object dimensions of a = 0.5 m, b = 0 m and V = 1 V. Potential φ and electric field
amplitude |E| distribution in x-y plane within −2a < x, y < 2a.

The capacitance per unit length of this object is calculated to be 2.28 pF/m.

2.4.2.

Then, a complete “step” with dimensions of a = 0.5 m, b = 0.5 m and a surface potential of
V = 1V is studied. Here, based on previous results, each plate is divided into 100 subsections, i.e.,
N1 = N2 = N3 = 100. Calculated charge density on the object following the order of top to bottom, left
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Figure 4. For object dimensions of a = 0.5 m, b = 0.5 m and V = 1 V. Following the order shown in
insets (red arrows), the charge density on plate 1, 2 and 3 is plotted continuously.

to right is plotted continuously in Fig. 4. The three segments separated by red dash lines correspond to
charge distributions on plates 1, 2, and 3. Still, one can observe singular charge density at both edges
(y = ±2b). At the two bends (x = ±a), higher charge density occurs but is less singular than that at
the edges. Also, on average, plate 1 and plate 3 appear to carry more charge than plate 2.

Potential φ and electric field amplitude |E| distribution in the range of −4a < x, y < 4a are plotted
in Fig. 5. The electric field pattern reveals the shape of the structure clearly, and the enhanced electric
field at edges and bends can be observed.

Figure 5. For object dimensions of a = 0.5 m, b = 0.5 m and V = 1V. Potential φ and electric field
amplitude |E| distribution in x-y plane within −4a < x < 4a, −4b < x < 4b.

The capacitance of this structure is calculated to be 2.37 pF/m, which is very close to the
capacitance of the single plate shown previously. This proximity is reasonable if we compare the charge
distribution on single plate (Fig. 2) and that on step-like structure (Fig. 4). Capacitance does not
increase as much as the increase of total area of the structure because the overall charge density level
drops, and the total charge on the structure does not change as much. As a comparison, the capacitance
of a single PEC plate with the same surface area as this step-like structure is also calculated to show
the effect of bending. The obtained value is 2.39 pF/m, slightly higher than 2.37 pF/m of the “step”,
which implies that folding a 2D planar conductor will reduce its capacitance.

3. 3D STATIC PROBLEM

In this section, similar calculations will be demonstrated for a 3D step-like structure as shown in Fig. 6.
The dimensions of this structure in x and y directions are identical to that in previous 2D problem,
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Figure 6. Schematic for the 3D static problem. Plate 1 and plate 3 form right angles with plate 2.
The three plates have the same width of 2a in z direction and lengths of 2b, 2a and 2b respectively.
There are N1 ×N1, N2 ×N2 and N3 ×N3 subsections on each plate, and are numbered in the order as
shown. (only shown for plate 2, plate 1 and plate 3 follow the same rules of numbering).

only that the structure is now finite in z direction, with a width of 2a. Still, the structure has a given
potential V , and the goal is to solve its surface charge density, as well as the resulting potential and
electric field distribution in the exterior space.

3.1. Construction of Matrix Equation

The construction of matrix equation for 3D problem follows the same routine as discussed for 2D
problem. The difference lies in the specific form of integral equation, basis function, and weighting
function, thus extra work is required only when it comes to the evaluation of inner products.

Green’s function for 3D static problem is G(R) = 1/R, with R = |�r − �r ′|. The potential due to
certain charge distribution σ(�r ′) can then be determined by:

φ(�r) =
1

4πε

∫∫∫
σ(�r ′)
R

dv′ =
1

4πε

∫∫
σ(�r ′)
R

ds′ (17)

in which volume integral reduces to surface integral because the thickness of the structure is neglected,
and therefore σ in this case becomes surface charge density. Following the same procedures done for
2D problem, the integral equation can be constructed for this specific structure as:

V =
∫ a

−a
dz′
∫ 2b

0
dy′

σ(−a, y′, z′)
4πεR

+
∫ a

−a
dz′
∫ a

−a
dx′

σ(x′, 0, z′)
4πεR

+
∫ a

−a
dz′
∫ 0

−2b
dy′

σ(a, y′, z′)
4πεR

(18)

With the structure divided in the way shown in Fig. 6, pulse function is defined on each subsection
of plate i as basis function:

f i
n(�r ′) =

{
1 �r ′ ∈ ΔSn

0 �r ′ /∈ ΔSn
i = 1, 2, 3 n = 1, 2, . . . , N2

i (19)

and the weighting function for point matching is now defined as:

wj
m = δ(�r − �r j

m) j = 1, 2, 3 m = 1, 2, . . . , N2
j (20)

with �r j
m located at the center of the mth patch on plate j. Now, a matrix equation similar to Eq. (8)

can be constructed, whose process will not be repeated here.
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3.2. Diagonal and Off-Diagonal Terms

In general, the inner product ljimn takes the form of:

ljimn = 〈wj
m, L

if i
n〉 =

1
4πε

∫∫
ΔSn

1
|�r j

m − �r i′ | ds
′ (21)

which includes an integrable singularity for self-patches (diagonal terms, m = n, i = j) that can be
evaluated in closed form [1]:

liinn = 0.282
√
An

ε
(22)

where An is the area of the nth patch on plate i.
As for off-diagonal terms, it is a good approximation to assume the integrand in Eq. (21) to be

constant over each patch, so that:

ljimn =
An

4πε|�r j
m − �r i′

n|
i = j, m �= n or i �= j (23)

with �r i′
n being the center of the nth patch on plate i.

3.3. Potential, Electric Field and Capacitance

With the charge distribution solved by MoM, the induced potential in the entire space can be obtained
with Eq. (17), by substituting the charge by calculated and approximating the integration:

φ(�r) =
1

4πε

∫∫ ⎛⎝ 3∑
i=1

N2
i∑

n=1

αi
nf

i
n

⎞
⎠ 1
R
ds′ ≈ 1

4πε

3∑
i=1

N2
i∑

n=1

(
αi

n

An

|�r − �r i′
n|

)
(24)

The electric field is calculated by:

�E = −∇φ(�r) = − 1
4πε

∫∫
σ∇

(
1
R

)
ds′

= − 1
4πε

[
x̂ ·
∫∫

σ
−(x− x′)

R3
ds′ + ŷ ·

∫∫
σ
−(y − y′)

R3
ds′ + ẑ ·

∫∫
σ
−(z − z′)

R3
ds′
]

≈ 1
4πε

3∑
i=1

N2
i∑

n=1

(
αi

nAn

|�r − �r i′
n|3
)[

(x− xi′
n)x̂+ (y − yi′

n)ŷ + (z − zi′
n )ẑ
]

(25)

in which �r i′
n = xi′

n x̂+ yi′
n ŷ + zi′

n ẑ.
The capacitance for this structure can be evaluated in a way similar to Eq. (16).

3.4. Results

3.4.1.

Again, a special case of single plate with a = 0.5 m, b = 0 m, V = 1 V is first studied, whose charge
density distribution is calculated using different numbers of subsections, shown in Fig. 7. As expected,
charge density appears singular at the edges, especially at the four corners. The finer the subsections
are, the better the singular charge distribution will be resolved. However, when Ni increases, the
total number of subsections, or equivalently saying, the dimensions of the matrices, will increase as the
square of Ni, which costs much more time to compute. For consideration of both computation time and
accuracy, N2 = 30, a total number of subsections of 900 is used for following results.

The potential and electric field distribution in x-y plane for this 3D structure are very similar to
those shown in Fig. 3 for 2D, thus will not be shown here. It is more informative to view the potential
and field in horizontal sections, as shown in Fig. 8. Note that the observation x-z plane is offset from
the y = 0 plane by a distance of d = 0.1a to move away from the surface so as to avoid singularity.
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Figure 7. For object dimensions of a = 0.5 m, b = 0m and V = 1 V. Charge density calculated using
N2 = 30 and 50.

Figure 8. For object dimensions of a = 0.5 m, b = 0 m and V = 1 V. Potential φ and electric field
amplitude |E| distribution in an offset x-z plane, with offset amount of d = 0.1a from y = 0 plane.

Since the offset d is small, the electric field amplitude is still strongly dependent on the local charge
density on the structure. A direct relationship between the charge and electric field amplitude can be
found from |E| pattern: electric field is the strongest near the corners, less strong at the edges, and
weakest at the center, which agrees well with the charge density distribution in Fig. 7.

The capacitance of this structure is calculated to be 40.49 pF.

3.4.2.

Then, a complete “step” with a = 0.5 m, b = 0.5 m, V = 1V is studied. N1 = N2 = N3 = 30 are used,
which means that there are 900 subsections on each plate. The calculated charge distribution on three
plates is presented in Fig. 9. Separated by red dash lines, the three segments correspond to charge
distributions on plate 1, 2, and 3, from which one can observe singular charge distribution on corners
and edges. Charge accumulation can also be found at the bends where adjacent plates are connected.

The potential and electric field distribution in x-y plane are very similar to that shown in Fig. 5
for 2D problem and will not be discussed again. Instead, the electric field distributions in a series of
cross sections parallel to y-z plane are shown in Figs. 10(b)–(d).

Figure 10(a) presents the electric field amplitude in x-y plane, in which the white dashed lines
indicate the positions of the cross sections chosen for Figs. 10(b) to (d). As the observation plane
pushing from left to right, the electric field near plates 1, 2, and 3 can be observed. Electric field near
the corners is significantly enhanced due to the singular charge density, whereas the field near the center
is less strong.



36 Wang and Rahmat-Samii

Figure 9. For object dimensions of a = 0.5 m, b = 0.5 m and V = 1V. Charge density σ on each plate
is plotted continuously.

(a) (b)

(c) (d)

(b)

(c)

(d)

Figure 10. For object dimensions of a = 0.5 m, b = 0.5 m and V = 1 V. (a) |E| distribution in x-y
plane. The white dash lines marks the positions of cross sections taken by (b), (c) and (d). (b) |E|
distribution in x = −1.1a plane. (b) |E| distribution in x = 0 plane. (d) |E| distribution in x = 1.1a
plane.

The capacitance of this structure is calculated to be 69.12 pF. Again, for comparison, the
capacitance of a single plate with the same surface area is calculated to be 70.36 pF. So, the conclusion
holds in 3D that folding a planar conductor will reduce its capacitance slightly. Additionally, it is clear
that the capacitance of a single object does not increase linearly with conductor area as that of parallel
plates capacitor.
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4. 2D DYNAMIC PROBLEM

In this section, a 2D dynamic scattering problem will be solved by MoM, whose schematic is shown in
Fig. 11. The PEC structure is identical to that used previously for 2D static problem. However, the goal
is now to solve the current induced by incident plane wave and then obtain the field scattered by this
structure. The incident plane wave forms an angle of φi with x axis and is chosen to be TMz polarized,
meaning that the electric field is always along z direction. Physical Optics (PO) approximation will
also be applied to solve the same problem as a comparison with MoM.

Figure 11. Schematic for the 2D dynamic problem. The widths of plate 1, 2 and 3 are 2b, 2a and 2b.
There are N1, N2 and N3 evenly divided subsections on each plate, and are numbered in the order as
shown.

4.1. Construction of Matrix Equation

For this kind of thin PEC object, electric field integral equation (EFIE) is typically used [12]:

n̂× �Einc = n̂× 1
4π

P.V.
∫∫ (

jωμ �Jψ +
1
jωε

∇′ · �J∇′ψ
)
ds′ (26)

in which n̂ is the surface normal; �Einc is the known incident electric field on the surface of the object;
the sign P.V. represents principal value integral; �J is the surface current density; and ψ is the free space
Green’s function:

ψ =
e−jkR

R
, R = |�r − �r ′| (27)

Equation (26) can be simplified for this 2D problem. Based on the fact that �Einc and �J are z
invariant and have only z component under TMz illumination, one could realize that:

∇′ · �J = ∇′ · (ẑJz) =
∂

∂z′
Jz = 0 (28)

which means that the second term in the integral of Eq. (26) vanishes, and Eq. (26) gets simplified:

n̂× ẑEinc
z = n̂× ẑ

1
4π

P.V.
∫∫

(jωμJzψ + 0) ds′ ⇒ Einc
z =

1
4π

P.V.
∫∫

(jωμJzψ) ds′ (29)

The surface integral in Eq. (29) is supposed to perform on a closed surface. However, for this 2D
case, this “closed surface” is stretched to ±∞ in z direction, meaning that the surface integral can now
be treated as a contour integral in x-y plane and a line integral in z direction from −∞ to +∞:

Einc
z =

1
4π

P.V.
∫

C
jωμJzdl

′
∫ +∞

−∞

e−jkR

R
dz′ (30)
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Notice that the integral taken with respect to z becomes Hankel function of the second kind of
order zero [13]: ∫ +∞

−∞

e−jkR

R
dz′ =

∫ +∞

−∞

e−jk
√

|�ρ−�ρ ′|2+(z−z′)2√
|�ρ− �ρ ′|2 + (z − z′)2

dz′ =
π

j
H

(2)
0 (k|�ρ− �ρ ′|) (31)

where �ρ = x̂x+ ŷy, �ρ ′ = x̂x′ + ŷy′. The EFIE then reduces to:

Einc
z =

kη

4
P.V.

∫
C
JzH

(2)
0 (k|�ρ− �ρ ′|)dl′ (32)

in which η = 120π is the free space impedance. Equation (32) means that Hankel function of the second
kind of order zero is the Green’s function for 2D electrodynamic problem. Since H(2)

0 (x) goes to 0 when
x goes to infinity, it agrees with convention (that field at infinity is zero), and no modification is required
as we did for 2D electrostatic case.

Equation (32) can further be expanded into three parts for this specific structure:

Einc
z =

kη

4
P.V.

[ ∫ 2b

0
Jz(−a, y′)H(2)

0 (k|�ρ− �ρ ′|)dy′ +
∫ −a

a
Jz(x′, 0)H

(2)
0 (k|�ρ− �ρ ′|)dx′

+
∫ 0

−2b
Jz(a, y′)H

(2)
0 (k|�ρ− �ρ ′|)dy′

]
(33)

Though integral equations bear different forms in different scenarios, the steps to construct matrix
equation are identical. As done for static problems, pulse function is used as basis function so that the
induced current Jz can be approximated by weighted summation:

Jz =
3∑

i=1

Ni∑
n=1

αi
nf

i
n (34)

in which the coefficients αi
n are to be solved, and the basis function f i

n is defined as:

f i
n(�ρ ′) =

{
1 �ρ ′ ∈ Δln
0 �ρ ′ /∈ Δln

i = 1, 2, 3 n = 1, 2, . . . , Ni (35)

Then Eq. (33) can be written into operator form as:

Einc
z =

3∑
i=1

Ni∑
n=1

αi
nL

if i
n (36)

Dirac function is used as weighting function in order to perform point matching:
wj

m = δ(�ρ − �ρ j
m) j = 1, 2, 3 m = 1, 2, . . . , Nj (37)

with �ρ j
m being the center of the mth patch on plate j. For both sides of Eq. (33), calculate inner

product with wj
m:

3∑
i=1

Ni∑
n=1

αi
n〈wj

m, L
if i

n〉 = 〈wj
m, E

inc
z 〉 (38)

With the expression of the incident TMz determined explicitly by:

Einc
z (�ρ) = Einc

z (x, y) = E0e
jk(x cos φi+y sinφi) (39)

whose inner product with weighting function becomes: 〈wj
m, Einc

z 〉 = Einc
z (�ρ j

m). Finally, denote
〈wj

m, Lif i
n〉 by ljimn, and a matrix equation can be constructed from Eq. (38):⎡

⎣[l11mn] [l12mn] [l13mn]
[l21mn] [l22mn] [l23mn]
[l31mn] [l23mn] [l33mn]

⎤
⎦
⎡
⎣[α1

n]
[α2

n]
[α3

n]

⎤
⎦ =

⎡
⎣[E1

m]
[E2

m]
[E3

m]

⎤
⎦ (40)

in which each block [ljimn] represents a Nj ×Ni matrix; [αi
n] represents a Ni×1 column vector containing

the coefficients αi
n; [Ej

m] represents a column vector with its elements Ej
m = Einc

z (�ρ j
m).
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4.2. Diagonal and Off-Diagonal Terms

In general, the matrix element ljimn is:

ljimn = 〈wj
m, L

if i
n〉 =

kη

4

∫ ln+Δl/2

ln−Δl/2
H

(2)
0 (k|�ρ j

m − �ρ i′ |)dl′ (41)

where ln is measured from the center of the nth patch on plate i, and the width of this patch is Δl. For
self-patches, or say the diagonal terms (i = j, m = n), the Hankel function in Eq. (41) has an integrable
singularity, which has a closed form solution [13]:

liinn ≈ βη

4
Δln

[
1 − 2j

π
ln
(

1.781kΔln
4e

)]
(42)

As for off-diagonal terms, the integral is approximated by:

ljimn ≈ βη

4
ΔlnH

(2)
0 (k|�ρ j

m − �ρ i′
n |) i = j, m �= n or i �= j (43)

in which the Hankel function is assumed constant over the patch, with ρi′
n being the center of the nth

patch on plate i.

4.3. Physical Optics (PO) Approximation

Apart from MoM, PO is another method to acquire the induced current on the object and yields very
good result for large and flat objects. PO assumes the current in shadowed regions on the object to be
zero, while approximating the induced current in regions lit by the incident wave as [13]:

�JPO = 2n̂× �H inc (44)

in which �H inc is the incident magnetic field on the surface and can be rewritten under plane wave
incidence as:

�H inc =
1
η
ŝ× �Einc =

1
η
ŝ× ẑEinc

z (45)

with ŝ being the unit vector in the direction of plane wave propagation:

ŝ = − cosφix̂− sinφiŷ (46)

Use expression of Einc
z from Eq. (39), PO current becomes:

�JPO(�ρ ′) =
2
η
n̂× (− sinφix̂+ cosφiŷ)Einc

z (�ρ ′) (47)

Simply picking �ρ ′ on the surface of the object and using the correct surface normal n̂, one can
determine the PO current explicitly.

Since the structure under study consists of only thin plates, the determination of lit region is
straightforward. However, at certain incident angles one should be careful with extra blockage caused
by bending features on this structure.

4.4. Scattered Field

Once induced current �J is obtained by either MoM or PO, one can calculate the radiation by this
current in order to obtain the scattered field. The scattered field is related to current as [13]:

�Es = −kη
4

∫
C

�JH
(2)
0 (k|�ρ− �ρ ′|) dl′ (48)

Obviously, the scattered field �Es is also in z direction since �J has only z component. The large
argument approximation of Hankel function can be used since we are interested in the far field behavior
of the scattered field, with:

H
(2)
0 (x) ≈

√
2j
πx
e−jx, x→ ∞ (49)
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as well as far field approximation for phase term:

e−jk|�ρ−�ρ ′| ≈ e−jkρ · ejkρ̂·�ρ ′
, �ρ = ρρ̂ (50)

(48) reduces to:

�Es = −ẑη
√
jk

8π
e−jkρ

√
ρ

∫
C
Jze

jkρ̂·�ρ ′
dl′ (51)

Finally, substituting Jz by MoM or PO current, one will obtain the scattered field.

4.5. Results

4.5.1.

First, the scattering property of a single plate is studied (a �= 0, b = 0). The width of the plate (2a)
is normalized to wavelength, and two typical values are chosen to compare the performance of MoM
and PO at different object dimensions. The subsections are chosen to be λ/10 in width. Normalized
currents on the object calculated by MoM and PO, with object dimensions of 2a = 2λ and 2a = 10λ,
for two incident angles φi = 45◦ and 90◦, are plotted in Fig. 12.

For φi = 90◦ (normal incidence), one could observe that MoM current has singular behavior near
the edges, whereas PO does not see the boundary of the structure, and PO current is uniform over the

(a) (b)

(c) (d)

Figure 12. Induced current on single plate calculated by MoM and PO for (a) 2a = 2λ, φi = 90◦. (b)
2a = 2λ, φi = 45◦. (c) 2a = 10λ, φi = 90◦. (d) 2a = 10λ, φi = 45◦. The currents are normalized to
E0/η.
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(a)

(b)

Figure 13. Normalized scattered far field pattern for normal incidence (φi = 90◦) in Cartesian and
polar representation for object dimensions of (a) 2a = 2λ; (b) 2a = 10λ. The blue dash lines mark the
direction of reflection while the red dash lines mark the direction of transmission.

(a)

(b)

Figure 14. Normalized scattered far field pattern for oblique incidence (φi = 45◦) in Cartesian and
polar representation for object dimensions of (a) 2a = 2λ; (b) 2a = 10λ. The blue dash lines mark the
direction of reflection while the red dash lines mark the direction of transmission.
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entire object. However, MoM and PO currents are very close when the observation point is away from
the edges. Similar observations can be made for φi = 45◦ (oblique incidence), and only MoM current is
now unsymmetric whereas PO current remains uniform. As the structure increases its size, MoM and
PO currents show better overall agreement. The corresponding scattered fields are plotted in dB scale,
in both Cartesian and polar representations in Figs. 13 and 14.

In both figures, the blue dashed lines highlight the direction of reflection, in which a mainlobe is
expected. The red dashed lines stand for the direction of transmission, in which a mainlobe is also
expected so as to cancel the incident field when calculating the total field (in the shadow of the object).
It can be observed that MoM and PO have very similar predictions of the direction and beamwidth of
the mainlobes, but PO appears to give much deeper nulls.

In oblique incidence case, compared with PO, a little deviation in the direction of mainlobe can be
observed for MoM, especially when 2a = 2λ. When 2a = 10λ, this difference becomes negligible, and
the patterns of MoM and PO agree much better for the entire range of φ.

4.5.2.

Now, a complete PEC “step” with 2a = 2λ, 2b = 2λ is considered. The induced currents on this
structure obtained with MoM and PO are as presented in Fig. 15 for normal and oblique plane wave
incidence. From left to right, the currents on plates 1, 2, and 3 are plotted continuously.

Figure 15 reveals huge difference between MoM and PO currents. Under normal incidence
(φi = 90◦), as can be expected from Eq. (44), there is no presence of PO current on plates 1 and
3 due to the absence of tangential component of �H inc over them, which leads to an unrealistic sudden

(a)

(b)

Figure 15. Induced current on the structure calculated by MoM and PO for (a) 2a = 2λ, 2b = 2λ,
φi = 90◦. (b) 2a = 2λ, 2b = 2λ, φi = 90◦. The current corresponding to different plates are separated
by red dash lines and are normalized to E0/η.
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change of current at the bends. However, MoM does predict non-zero current on plates 1 and 3, and is
continuous at the bends.

Under oblique incidence (φi = 45◦), PO current is uniform on each plate, whereas MoM current
shows fluctuation around the value of PO current, especially on plates 1 and 2. This fluctuating behavior
is a result of mutual effect between plates 1 and 2 (e.g., reflection and diffraction), which is not taken
into account by PO. However, MoM current seems flat on plate 3, because under this specific incident
angle, the wave hitting plate 3 is simply reflected away and does not further interact with other plates.

Figure 16. The schematic for wedge scattering problem. Incident TMz plane wave forms an angle of
φ′ with x axis. The angle of the wedge is 2α.

It is also interesting to look at the current behavior at the bends (marked by red dashed lines in
Fig. 15). Unlike charge density σ for 2D static problem that shows singularity at both bends, current
density J for 2D dynamic problem becomes singular only at the second bend and becomes 0 at the first
bend. This phenomenon can be explained by the canonical wedge scattering problem, whose schematic
is shown in Fig. 16. The analytical solution of the total electric field under TMz plane wave illumination
with an incident angle of φ′ is [13]:

�Et = ẑE0

∑
v

jvJv(kρ) sin[v(φ′ − α)] sin[v(φ − α)] (52)

where
v =

mπ

2(π − α)
, m = 1, 2, 3, . . . (53)

Then, according to Maxwell’s equation, the total magnetic field can be determined by:

�Ht = − 1
jωμ

∇× �Et = − 1
jωμ

(
ρ̂

ρ

∂Et
z

∂φ
− φ̂

∂Et
z

∂ρ

)
(54)

Thus the surface current density:
�J = n̂× �Ht (55)

Notice that the relation n̂ = ±φ̂ always holds, which leads to:

�J ∝ ẑ
1
ρ

∑
v

vjvJv(kρ) sin[v(φ′ − α)] cos[v(φ− α)] (56)

Since we are interested in current behavior near the tip of the wedge (ρ → 0), use the small
argument approximation for Bessel function, and Eq. (56) reduces to:

J ∝
∑

v

v(jk/2)v

Γ(v + 1)
ρv−1 sin[v(φ′ − α)] cos[v(φ− α)] (57)

which means that current J is now a summation of polynomials of ρ, among which the lowest order of
ρ becomes significant, and the higher order terms are negligible when ρ is small. Therefore, only the
first term (i.e., m = 1) in Eq. (57) is considered:

J ∝ ρ
2α−π

2(π−α) (58)
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from which one can observe that when α ≥ π/2 (inside corner), the current is proportional to non-
negative order of ρ, showing no singularity but goes to 0 near the tip of the wedge; when α < π/2
(outside corner), the current will have a singular behavior near the tip.

Based on the discussions above, one can now explain that the current behavior occurs in Fig. 15.
Under these illumination angles (φ = 45◦ or 90◦), plate 1 and plate 2 actually form a wedge that has
α = 3π/4, where the current depends on ρ, whereas plate 2 and plate 3 form a wedge that has α = π/4,
where the current depends on ρ−1/3. So, the results agree with what can be expected from Eq. (58)
that the current goes to zero at the first bend and becomes singular at the second bend. Following this
concept, the edges can be treated as a special case of α = 0, meaning that the edge current will vary at
the order of ρ−1/2. This helps explain why edge current seems more singular than bend current. Note
that these current behaviors are related to both the angle of the bend and the incident direction of the
plane wave, as stated in [6]. For example, if the plane wave is incident from the other direction, say
φ′ = 225◦, then the equivalent wedge angles for the two bends will be exchanged. Then, one would
expect a singular current at the first bend and a vanished current at the second bend.

The scattered field patterns generated by MoM or PO currents, for object dimensions of 2a = 2λ,
2b = 2λ, under normal and oblique TMz plane wave incidences are presented in Fig. 17. The blue,
red, and green dashed lines highlight the direction of reflection by horizontal plate 2, the direction of
transmission, and the direction of reflection by vertical plates 1 and 3. In the direction of transmission,
two methods agree well, whereas in other directions, the patterns of PO or MoM can be very different.

(a)

(b)

Figure 17. Normalized scattered field pattern for object dimensions of 2a = 2λ, 2b = 2λ in Cartesian
and polar representations, for (a) normal incidence (φi = 90◦) and (b) oblique incidence (φi = 45◦).
The blue, red and green dash lines correspond to direction of reflection by horizontal plate, direction of
transmission and direction of reflection by vertical plates. The red and green lines overlap for normal
incidence case.

Under normal incidence, PO current generates a symmetric pattern since it ignores the current on
vertical plates 1 and 2, whereas MoM takes into account the mutual effect between complex structures
and predicts an unsymmetric pattern. Under oblique incidence, PO totally fails in back scattering
direction (φ = 45◦), whereas MoM suggests a more correct pattern.
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In the direction of reflection by horizontal plate 2 (blue lines), the scattered field is very weak,
since most of the reflected energy is then reflected by vertical plate 1, which finally directs the wave
back to φ = 45◦ direction. However, in the direction of reflection by vertical plates (green lines), there
exists a strong peak, because the wave reflected by vertical plate 3 does not encounter any obstacles.
To better illustrate the effect of the vertical plates, a combination of 2a = 2λ, 2b = 4λ is also studied,
which means that the vertical plates are lengthened. The patterns are shown in Fig. 18.

(a)

(b)

Figure 18. Normalized scattered field pattern for object dimensions of 2a = 2λ, 2b = 4λ in Cartesian
and polar representations, for (a) normal incidence (φi = 90◦) and (b) oblique incidence (φi = 45◦).
The blue, red and green dash lines correspond to direction of reflection by horizontal plate, direction of
transmission and direction of reflection by vertical plates. The red and green lines overlap for normal
incidence case.

For both normal and oblique incidence cases, one can now observe a stronger scattered field in the
right half space and weaker one in the left half. This agrees with intuition since the lengthened vertical
plates tend to block more energy transmitting to the left and reflect more energy to the right.

It is worth noting that when dealing with such perfect conducting objects with sharp edges, the
accuracy of PO can be improved by the Physical Theory of Diffraction (PTD) [14], which corrects PO
current by introducing nonuniform current component. However, the implementation of PTD will not
be discussed in this paper for brevity.

5. CONCLUSIONS

Step-like PEC structures, as combinations of several representative canonical geometries, are analyzed
with MoM in both electrostatic and electrodynamic scenarios. Unique charge and current behaviors in
vicinity of these elemental geometries are revealed by numerical results and validated with the analytical
solutions available from corresponding canonical problems.

In 2D electrostatic problem, a modified Green’s function is introduced to maintain consistency in
definition of potential with 3D conventions. The constant γ is set to be large and fixed, which is a crucial
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premise for valid comparison of electrostatic quantities such as potential, electric field, and capacitance
among different 2D structures. For both 2D and 3D static cases, charge density distribution under a
given surface potential is obtained, whose singular behavior is observed near the edges, corners, and
bends on the structures. The potential and electric field in the surrounding space induced by the surface
charge are calculated.

In 2D electrodynamic problem, both MoM and PO are utilized to solve induced surface current
on a TMz plane wave illuminated PEC step-like structure. In contrast to PO which suggests uniform
or discontinuous surface current, MoM reveals fluctuating and continuous surface current. The unique
current behavior near the bend region is discussed and explained by modeling each bend as a PEC wedge
and resorting to the analytical solution of the canonical wedge scattering problem, which suggests that
the appearance of singular current near the bends is determined by the angle of the wedge and the
direction of illumination. The scattered far field patterns are also calculated and discussed.

APPENDIX A. MODIFICATION TO 2D STATIC GREEN’S FUNCTION

When dealing with electrostatic potential, it is a convention to choose infinity as a zero potential
reference. Since Green’s function is actually the potential induced by a Dirac source, thus setting the
potential at infinity to be zero is equivalent to setting the Green’s function to be zero at infinity, which
leads to G(R) = 1/R in 3D static case. However, when it comes to 2D static case, the conventionally
used Green’s function G(ρ) = ln ρ implies that the zero potential reference is now at ρ = 1, instead
of ρ = ∞. This special choice of reference not only causes confusion in definition of potential and
capacitance (the ratio of charge to potential), but also results in unrealistic charge solutions when
solving 2D static problems with MoM.

The problem occurs when the dimensions of the object become large. Consider a single PEC plate,
whose width is 2a, and the surface potential is 1 V. Intuitively, an object with a positive potential
should carry a positive total charge. However, as shown in Fig. A1, as the width of the plate increases
(while keeping the surface potential fixed), the charge distribution turns from positive to negative. This
phenomenon is actually embedded in the logarithmic nature of this 2D Green’s function. Recall that
the off-diagonal terms ljimn for 2D are determined by:

ljimn ≈ − Δl
2πε

ln |�r j
m − �r i′

n | (A1)

from which one can observe that when �r j
m is very close to �r i′

n, ljimn will be positive, indicating that the
nth patch on plate i has a positive contribution to the potential at point �r j

m. As �r i′
n moves away from

�r j
m, at a point when |�r j

m −�r i′
n| = 1, this contribution becomes zero. If �r i′

n is further away from �r j
m, this

Figure A1. The charge distribution on a single PEC plate calculated by MoM using the original
Green’s function. For a given surface potential of 1V, as the plate increases its width, the result of
charge starts to become negative.
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contribution will become negative. Obviously, when the dimensions of the object are large enough, it
is possible that a point �r j

m will receive more negative contribution from remote patches than positive
contribution from nearby patches (unlike in 3D, the contribution from remote patches always decays as
distance increases). So, overall it will result in an unnatural phenomenon: negative charge can produce
positive potential.

This conflict with conventional understanding is actually a result of the choice of zero potential
reference, as mentioned previously, and can be resolved numerically by modifying the 2D Green’s
function. Inspired by the fact that Green’s function is the response of a Dirac source, the potential of
a infinite line charge (point source in 2D) is revisited [11]:

V = − q

2πε
ln ρ+C (A2)

in which q is the line charge density, and C is a constant. Clearly the zero of potential cannot be chosen
conveniently at infinity as this will make C infinite. The original G(ρ) = ln ρ indicates that C = 0 is
picked for this 2D Green’s function, by doing which the zero of potential is moved to ρ = 1.

In order to maintain a unified definition of potential, it is our goal to set the zero of potential to
infinity. Taking advantage of the logarithm function in Eq. (A2), C can be moved inside ln ρ and exist
as a new constant γ:

V = − q

2πε
ln
ρ

γ
(A3)

which changes zero potential reference to ρ = γ, and the corresponding Green’s function becomes:

Gγ(ρ) = ln
(
ρ

γ

)
(A4)

However, one cannot choose γ to be real infinite, as it will make Gγ(ρ) singular. Instead, by using a finite
but large enough γ, the zero of potential is moved to a “quasi-infinity”, which numerically guarantees
consistency in definition of 2D electrostatic quantities with 3D conventions.

To determine the acceptable value of γ, the average charge σavg on the single PEC plate calculated
by MoM is plotted against γ/2a in Fig. A2. By normalizing γ to the maximum width of the plate 2a,
average charge density σavg becomes independent of 2a and can be used as a criterion for convergence.
From Fig. A2 one can tell that when the ratio γ/2a is larger than 1010, σavg becomes much less sensitive
to γ.

It is worth noting that the introduction of this constant γ is only necessary when there is a need
to compare the electrostatic properties among different 2D objects. From Fig. A2, one can conclude
that charge becomes a relative quantity since we fix the surface potential while changing the potential
reference. It must be emphasized that the discussions over charge, potential, capacitance, and even
electric field are only valid under a fixed value of γ. It is interesting to point out that in some applications

Figure A2. Average charge density σavg on the single PEC plate (2a in width, V = 1V) against γ/2a.
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people use 2D static method to analyze strip line structures, in which ground planes are present. The
ground plane works as a zero potential reference, and hence by image theory the choice of zero potential
reference is automatically saved, due to the ratio in the new Green’s function [9]. Thus, concerning
such practical calculations, the original and modified 2D static Green’s function will provide identical
results.
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