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Design and Development of a D-Band Corrugated Horn Antenna
for Millimeter-Wave Plasma Diagnostics

Gupta J. Vishnu1, *, Dhaval Pujara1, and Hitesh Pandya2, 3

Abstract—In fusion reaction, plasma parameters such as the density and temperature of electrons
should be diagnosed continuously. There are various methods to diagnose plasma parameters. In these,
reflectometry systems are widely used to measure the electron density and plasma physics study. In
reflectometry systems, antenna plays an important role as a transmitter/receiver element. This paper
presents the design of a D-band (110–170 GHz) corrugated horn antenna suitable for reflectometry
system. The simulated results for antenna are compared with that of the measurements. Further,
different structures are proposed to ease fabrication complexities and reduce cost.

1. INTRODUCTION

In the situation of energy scarcity, fusion plasma energy is one of the vital energy sources. To generate
fusion power, highly dense plasma in the range of 1020 m−3 is required. Plasma density affects the
behavior of fusion plasma. The number of free electrons per unit volume, also known as electron
density, gives the degree of ionization of the plasma [1]. Hence, it should be monitored continuously.
Reflectometry system is widely used to diagnose the plasma [2]. It works on the principle of Radio
Detection and Ranging (RADAR).

Antenna plays a very important role in a reflectometry system. Generally, horn antennas are
preferred to transmit/receive the electromagnetic waves in such systems. Sakaguchi et al. [3] have
proposed horn antenna for an ECRH system, i.e., a system for a single frequency.

There are several horn antenna options [4] available for quasi-optical systems. These include
the conventional conical and pyramidal horns [5, 6], Potter horn [7], corrugated horn [8], dielectric
horn [9, 10], metamaterial horn [11, 12], etc. In some fusion devices, oversized waveguides are also utilized
as antennas [13]. Among all, corrugated horn antenna satisfies all the requirements for a reflectometry
system due to high quasi-optical coupling [14]. It offers high gain, low cross-polarization over a wide
bandwidth and can produce a Gaussian-like radiation pattern [15, 16] with spatial resolution necessary
for analyzing the density profile for the fusion plasma. However, at the millimeter-wave frequencies,
the dimensions of the corrugations are in submillimeter range. Therefore, the fabrication of a horn
is quite challenging. In recent years, many researchers have proposed a few solutions to mitigate this
challenge [17–20].

In this paper, the design of a D-band (110–170 GHz) corrugated horn antenna suitable for fusion
plasma diagnostics in a swept reflectometer system is discussed. The simulated and measured results of
the antenna are compared and presented. The horn fabrication challenges are also discussed. To ease
the fabrication complexities and to reduce the cost, different structures are proposed.
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2. REFLECTOMETRY SYSTEM FOR PLASMA DIAGNOSTICS

A basic block diagram of the reflectometry system used for the plasma diagnostics is shown in Fig. 1. It
consists of a signal generator, multiplier, isolator, variable attenuator, 3-dB directional coupler, mixer,
and transmitting/receiving horn antennas. In this setup, the signal generator (Keysight N5173B, 9 kHz
to 20 GHz) is used as a microwave source to generate the power at different frequencies. The multiplier
multiplies the input signal with the value of the multiplication factor (here, 12) and increases it to the
higher frequencies (D-band). The isolator is used to prevent the damage of the source from the reflected
power, and the variable attenuator is used to control the power level. The 3-dB directional coupler is
used to divide the input power. Half of the power is applied to the transmitting horn antenna, and the
other half is sent to the mixer as the reference power. The reflected power from the receiver is passed to
the mixer for further process. Using quadrature mixer, the phase difference between the reflected and
incident waves can be obtained. The same is analyzed by applying all the frequencies of the D-band.
It is minimum when the correlation of the waves is maximum.

Figure 1. Basic block diagram of the reflectometry system for plasma diagnostics [20].

Plasma contains different layers with different density values as per the slab model [21]. In a
reflectometry system, to obtain the density value at different layers of the plasma, the electromagnetic
waves with different frequencies are incident to the plasma under test. Out of all incident frequencies,
when a particular frequency becomes equal to the plasma frequency, maximum waves will be reflected
back. Using this frequency, the density (ne) of the layer can be obtained using the procedure described
in the subsequent paragraphs.

Propagation of the electromagnetic waves within the plasma can be of two types: ordinary (�E ‖ �B)
and extraordinary (�E⊥ �B) waves, where �E is the electric field vector of the antenna, and �B is the
applied magnetic field to the plasma. For ordinary waves, the dispersion relation for the frequency of
the incident wave (ω) can be given as Eq. (1).

ω2 = ω2
p + c2k2 (1)

where c is the speed of light, k the wave number, and ωp the plasma frequency [22] which can be
expressed as Eq. (2)

ωp =

√
ne · e2

ε0 · me
(2)
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where ne is the density of electrons, ε0 the free space permittivity, e the electric charge of the electron
(in esu), and me the effective mass of the electron (in grams).

Similarly, for extraordinary waves, the dispersion relation between the incident and plasma
frequencies can be given as Eq. (3).

c2k2

ω2
= 1 − ω2

p

ω2
· ω2 − ω2

p

ω2 − ω2
h

(3)

where ω2
h = ω2

p+ω2
c in which ωh is the upper hybrid frequency, and ωc is the electron cyclotron frequency.

By putting k = 0 for cutoff condition, Eq. (3) can be summarized as Eq. (4).

ωR/L =
1
2

[
±ωc +

(
ω2

c + 4ω2
p

)1/2
]

(4)

where ωR and ωL are the right and left cutoff frequencies. For extra ordinary waves, the waves cannot
propagate and reflect back for plasma frequency between 0 to ωL and ωh to ωR. The density profile of
the plasma can be obtained by applying the frequencies of D-band that can be summarized as Eq. (5).

ne =
ε0 · me

[
ω2 ∓ ω · ωc

]
e2

(5)

Similarly, by analyzing different layers of the plasma, the total density profile can be obtained.
Generally, for fusion reaction, the plasma has a very high density in the range of 1020 m−3. Hence, to

diagnose the plasma in this range millimeter-wave reflectometry setup in the D-band, i.e., 110–170 GHz,
is required.

3. MILLIMETER-WAVE CORRUGATED HORN ANTENNA

To diagnose the plasma using a reflectometry system, the transmitting/receiving horn antenna should
have a Gaussian-like radiation pattern [15, 16]. The Gaussian beam has its energy concentrated at the
center and gradually reduces towards the boundaries. Generally, a hybrid mode horn is used to obtain
a Gaussian-like radiation pattern. It has high coupling to the fundamental free space Gaussian mode
(TEM00) [14]. The hybrid mode (HE11) is the combination of two modes (85% of TE11 and 15% of
TM11). It produces linear electric field lines at the aperture of the horn antenna which forms a symmetric
beam pattern [4]. Due to symmetricity of the fields in E and H planes, the cross-polarization is also
relatively low. Different techniques, such as step change, slope/profiling, pins/posts, and corrugations,
can be used to generate the hybrid modes. Among these, corrugated mode converters [23, 24] are widely
used. They give a nearly ideal field pattern at the aperture.

Various performance parameters of the corrugated horn antenna are controlled by different design
regions as shown in Fig. 2. It shows the inner structure of the conical radially corrugated horn geometry.

The step-by-step design procedure for the corrugated horn antenna is described by Granet and
James [24]. In fact, it starts with a list of desired specifications. Different geometrical parameters
like input radius, length of the horn, pitch, width, depth of the corrugations, aperture radius, etc. are
decided after a series of iterations to achieve required performance of the antenna.

In the present case, the antenna specifications were decided for the reflectometry system as given
in Table 1.

Table 1. Specifications of D-band corrugated horn antenna.

Specifications Desired values

Frequency range D-band (110–170 GHz)
S11 (dB) ≤ −10 dB

Gain (dB) ≥ 22 dB
Radiation pattern Gaussian
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Figure 2. Various design regions of the corrugated horn antenna.

The theoretical calculation was done to determine geometrical parameters of the horn antenna to
meet the specifications. The simulation was performed using the commercially available software (Ansys
HFSSv16). Once the design parameters are calculated, a parametric study was carried out using the
software simulator to obtain the best performanc, and optimized design parameters are listed in Table 2.

Table 2. Optimized design parameters of D-band corrugated horn antenna.

Design parameters Optimized values

Input radius (ai) 0.611·λc

Length of a horn (L) 34.336·λc

Slot width of the corrugation (w) 0.243·λc

Pitch of the corrugation (p) 0.383·λc

Depth of the corrugation (d) λc/2 to λc/4
Aperture radius (ao) 6.944·λc

In order to study the dimensional tolerances, the sensitivity analysis was carried out by varying all
the design parameters equally by ±λc/200, ±λc/150 and ±λc/100 microns (where λc is the wavelength
at the center frequency of 140 GHz). From this analysis, it was found that the antenna performance was
acceptable for dimensional variations below ±λc/200 microns. Detailed discussion on the sensitivity
analysis, corresponding results, and the conclusions of the study can be found in [25].

After getting the desired simulated performance, it was decided to fabricate the prototype antenna.
Initially, there was a plan to fabricate the entire horn in a single piece, i.e., as one fabricated unit.
However, due to submillimeter dimensions of the corrugations of the horn antenna at millimeter-wave
frequencies, the first fabrication attempt was not successful. In fact, the cutting tool of the Computer
Numerical Control (CNC) turning machine could not perform the operation due to a very small throat
section of the horn antenna. Also, the vibration of a cutting tool due to the large horn length resulted
in poor dimensional accuracy.

Subsequently, it was decided to fabricate the horn in multiple parts. The horn was then fabricated
in two axially split (symmetric) parts, and each part was individually fabricated using the mechanical
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turning process. These parts were then joined with each other. Photographs of the fabricated antenna
(iteration 1) are shown in Fig. 3. Due to the axially split antenna structure, the performance of the
horn was not satisfactory because of the misalignment of a large number of corrugations (total 87
corrugations). Based on this experience, it was decided to split the horn such that the majority of the
corrugations remain unsplit. Accordingly, in the subsequent fabrication attempt, the major part of the
horn with a broader diameter was fabricated in a single piece. Only the compact throat section (up
to sixteenth corrugation) was axially split and fabricated in two pieces. Photographs of the fabricated
horn antenna with rectangular to circular transition is shown in Fig. 4.

Figure 3. Axially splitted D-band corrugated horn antenna (Iteration 1).

Figure 4. Photographs of the fabricated D-band corrugated horn antenna with transition (Iteration
2).

The rectangular to circular transition was fabricated using the Wire Electrical Discharge Machining
(EDM) technique. The split throat section has two symmetrical parts. Both the parts were fabricated
using Sink EDM technique. In this, the electrode made by turning operation is used for the electrical
discharge process. The material of electrode should have high melting point as well as high wear
resistance. Tungsten copper material was used for this. The second part of the horn having larger
diameter was fabricated using the conventional and CNC turning operations. The accuracy of the
dimensions was ensured by using the vision measurement system. By using the measuring probe and
high definition camera, it was assured that the fabricated horn was under acceptable tolerance limit.

The measurement of all parameters of the fabricated horn antenna was carried out at the Institute
for Plasma Research (IPR), Bhat, Gandhinagar. Three important parameters, i.e., S11 (Return-loss),
gain, and the radiation characteristics of the horn, were measured. The measured performance in terms
of S11 (dB) is compared with the simulated results in Fig. 5. For the fabricated horn in iteration 2, S11

(dB) is better than −10 dB for the entire D-band.
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Figure 5. Measured and simulated S11 (dB).

The gain measurement of the fabricated horn antenna was also carried out. The measured results
are compared with that of the simulated ones and shown in Fig. 6. It can be seen that the fabricated
horn antenna gives better than 25.5 dB of gain for the entire D-band frequencies.

G
ai

n
 (

d
B

)

Frequency (GHz)

Simulated Measured (Iteration 2)

24

25

26

27

28

29

30

22

23

110 120 130 140 150 160 170

Figure 6. Measured and simulated gain (dB).

As mentioned previously, for the application of the horn antenna for plasma diagnostics, it should
have Gaussian-like radiation characteristics at the aperture. Hence, after measurement of S11 and gain,
the radiation characteristic of the horn was measured. Fig. 7(a) shows the graph of measured received
power in the propagation direction (z = 5.4 cm) at 140 GHz for the horn antenna under consideration.
In order to verify it, the theoretical 2-dimensional Gaussian function given in [26] was plotted as shown
in Fig. 7(b). On comparison of the graphs shown in Figs. 7(a) and 7(b), it can be concluded that the
measured results are in good agreement with the theoretical 2-D Gaussian function. The fabricated
horn antenna has a Gaussian pattern with the side-lobes of −17 dB as it is less than 2% of the peak
amplitude as shown in Fig. 7(a). The performance of the horn antenna under consideration satisfies
the requirements of the plasma diagnostics having Gaussian shaped beam and high gain suitable for
quasi-optical coupling as described in [1, 3, 14].
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Figure 7. Normalized power for Gaussian pattern validation, (a) measured, (b) theoretical 2D Gaussian
function.

4. CONCLUSIONS

In this paper, a D-band corrugated horn antenna useful for the fusion plasma diagnostics system is
explained with the measured and simulated results. The fabrication issues of a corrugated horn antenna
operating at millimeter-wave frequencies are discussed. The fabrication of the corrugated horn in a single
piece affects the accuracy of the inner grooves and in turn degrades the horn performance. In fact, the
narrow throat section and the small corrugations in the mode converter region impose serious fabrication
challenges. The problem can be resolved by splitting the structure into multiple parts. However, utmost
care must be taken in fabrication while splitting and assembling the horn. The axial splitting of the
entire horn creates a mismatch in all the corrugations and leads to performance degradation.

The proposed horn design with multiple split structure satisfies all the requirements of a
reflectometry system for the plasma diagnostics system. It gives S11 better than −10 dB and gain
better than 25.5 dB for the entire D-band frequencies with less than −17 dB of side lobe level.
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