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Spreading of Four-Petal Lorentz-Gauss Beams Propagating
through Atmospheric Turbulence
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Abstract—The analytical propagation equation of a four-petal Lorentz-Gauss (FPLG) beam
propagating through atmospheric turbulence is derived, and the spreading of average intensity is
analyzed by using numerical examples. It is found that the FPLG beam propagating through
atmospheric turbulence will evolve into Gaussian beam due to the influences of atmospheric turbulence,
and the atmospheric turbulence will accelerate the spreading of FPLG beam as the propagation distance
increases. It is also found that the FPLG beam with different N or Lorentz widths propagating through
atmospheric turbulence will have the same beam spot when the FPLG beam evolves into the Gaussian
beam at the same propagation distance.

1. INTRODUCTION

Recently, the free space optical communication has become a topic of laser applications in high rate
communication under atmospheric turbulence. Therefore, the evolution properties of laser beam
propagating in atmospheric turbulence have been widely studied, such as two Gaussian laser beams [1],
apertured partially coherent beam [2], superimposed partially coherent Hermite-Gaussian beams[3],
pseudo-Bessel correlated beams [4], Lorentz-Gauss beam [5], radial phased-locked partially coherent
anomalous hollow beam array [6], Gaussian array beams [7], four-petal Gaussian vortex beam [8], Airy
beam [9], multi-cosine-Laguerre-Gaussian correlated Schell-model beam [10], cusped random beam [11],
partially coherent anomalous elliptical hollow Gaussian beam [12], pseudo-Bessel-Gaussian Schell-mode
beam [13], partially coherent beam [14], partially coherent crescent-like optical beam [15], partially
coherent Lorentz-Gauss beam [16], partially coherent flat-topped vortex hollow beam [17], pulsed
Laguerrian beam [18], radial phased-locked partially coherent Lorentz-Gauss array beam [19], phase-
locked partially coherent flat-topped array laser beam [20], partially coherent Lorentz-Gauss vortex
beam [21], partially coherent four-petal Gaussian vortex beams [22], and ring Airy Gaussian beams
with optical vortices [23]. With the development of laser optics, a new beam called four-petal Lorentz-
Gauss (FPLG) beam has been introduced and studied [24, 25]. However to our knowledge, the evolution
properties of FPLG beam propagating through atmospheric turbulence have not been given. In this
paper, we derive the analytical propagation equations of FPLG beam propagating through atmospheric
turbulence based on the extended Huygens-Fresnel integral, and the average intensity of FPLG beam
propagating through atmospheric turbulence is analyzed by using numerical examples.

Received 19 April 2019, Accepted 22 May 2019, Scheduled 17 June 2019
* Corresponding author: Yansong Song (songyansong2018@sohu.com).
1 National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and
Technology, Changchun 130022, China. 2 School of Electronics and Information Engineering, Changchun University of Science and
Technology, Changchun 130022, China.



38 Chang et al.

2. PHYSICAL MODEL

In a Cartesian coordinate system, within the validity of the paraxial propagation, propagation of a laser
beam through atmospheric turbulence from the source plane z = 0 to the space z can be described by
the extended Huygens-Fresnel principle [1–9]:
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where r10 = (x10, y10) and r10 = (x20, y20) are the position vectors in the plane z = 0; r = (x, y) is the
position vector in the plane z; k = 2π/λ is the wave number with λ is the wavelength; E (∗, 0) is the
electric field of laser beam at the plane z = 0; ψ (r, r10) is the random complex phase perturbation caused
by the atmospheric turbulence; and the asterisk denotes the complex conjugation. In Equation (1),
〈exp [ψ (r, r10) + ψ∗ (r, r20)]〉 can be written as
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where ρ0 =
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)−3/5 is the spatial coherence length of a spherical wave propagating through

the atmospheric turbulence, and C2
n is the constant of refractive index structure constant of atmospheric

turbulence.
Recently, the Lorentz beam has been given to describe the output of diode laser [26], and a new array

beam called the four-petal Lorentz-Gauss (FPLG) beam has also been introduced, which is composed
by four Lorentz-Gauss beams and takes the form as [25]:
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where r0 = (x0y0) is the position vector in the plane z = 0; w0x and w0y are the beam widths of Lorentz
beam in the x-axis and y-axis, respectively. w0 is the beam width of the Gaussian beam; N is the order
of the FPLG beam.

Substituting Equation (3) into Equation (1), the analytical expressions of FPLG beam propagating
through atmospheric turbulence can be derived as

I (r, z) =
k2

4π2z2

(
1

2w2
0xw

2
0y

)2(
1
w2

0

)4N M∑
m1=0

M∑
n1=0

σ2m1σ2n1

M∑
m2=0

M∑
n2=0

σ2m2σ2n2I (x, z) I (y, z) (4)

where

I (x, z) = exp
(
− k2

4axz2
x2

)
π√
axbx

m1∑
t=0

(−1)t (2m1)!
t! (2m1 − 2t)!

(
2
w0x

)2m1−2t

(2N + 2m1 − 2t)!

×
(

1
ax

)(2N+2m1−2t) [ 2N+2m1−2t
2 ]∑

s=0

1
s! (2N + 2m1 − 2t− 2s)!

(ax

4

)s

×
2N+2m1−2t−2s∑

e=0

(2N + 2m1 − 2t− 2s)!
e! (2N + 2m1 − 2t− 2s− e)!

(
ik

2z
x

)2N+2m1−2t−2s−e ( 1
ρ2

0

)e

×
m2∑
h=0

(−1)h (2m2)!
h! (2m2 − 2h)!

(
2
w0x

)2m2−2h

2−(2N+e+2m2−2h)i2N+e+2m2−2h exp
(
c2x
bx

)

×
(

1√
bx

)2N+e+2m2−2h

H2N+e+2m2−2h

(
− icx√

bx

)
(5)



Progress In Electromagnetics Research Letters, Vol. 85, 2019 39

I (y, z)] = exp
(
− k2

4ayz2
y2

)
π√
ayby

n1∑
t=0

(−1)t (2n1)!
t! (2n1 − 2t)!

(
2
w0y

)2n1−2t

(2N + 2n1 − 2t)!

×
(

1
ay

)(2N+2m1−2t) [ 2N+2n1−2t
2 ]∑

s=0

1
s! (2N + 2n1 − 2t− 2s)!

(ay

4

)s

×
2N+2n1−2t−2s∑

e=0

(2N + 2n1 − 2t− 2s)!
e! (2N + 2n1 − 2t− 2s− e)!

(
ik

2z
y

)2N+2n1−2t−2s−e ( 1
ρ2

0

)e

×
n2∑

h=0

(−1)h (2n2)!
h! (2n2 − 2h)!

(
2
w0y

)2n2−2h

2−(2N+e+2n2−2h)i2N+e+2n2−2h exp

(
c2y
by

)

×
(

1√
by

)2N+e+2n2−2h

H2N+e+2n2−2h

(
− icy√

by

)
(6)

aj =
1

2w2
0j

+
1
w2

0

+
1
ρ2

0

+
ik

2z
(j=x, y) (7)

bj =
1

2w2
0j

+
1
w2

0

+
1
ρ2

0

− ik

2z
− 1
aj

(
1
ρ2

0

)2

(8)

cj =
(

1
ajρ2

0

− 1
)
ik

2z
j (9)

In the derivation Equation (4), the following equations have been used [27, 28]
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whereM is the number of the expansions for Lorentz function. σ2m and σ2n are the expanded coefficients
and given in [27], and M is chosen as M = 5. The Hermite polynomial H2m (x) can be written as [28]
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3. NUMERICAL RESULTS AND ANALYSES

Here, we carry out the average intensity of an FPLG beam propagating through atmospheric turbulence.
The parameters of FPLG beam are chosen as w0x = w0y = 1 cm, w0 = 2cm, and N = 1 in the numerical
calculations.

To investigate the influences of the atmospheric turbulence on the evolution of FPLG beam, 3D
normalized FPLG beam propagating through atmospheric turbulence and free space are shown in
Figures 1 and 2, respectively. The refractive index structure constant of atmospheric turbulence C2

n is
set as C2

n = 10−14 m−2/3 in the numerical analysis. The FPLG beam propagating through atmospheric
turbulence will gradually evolve from four-petal pattern into the Gaussian beam as the propagation
distance increases. To compare with Figure 1, Figure 2 gives the 3D normalized of a FPLG beam
propagating through free space (C2

n = 0). One can find that the FPLG beam propagating through free
space will also lose the four-petal pattern, but the FPLG beam propagating through free space will
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(a) (b)

(c) (d)

Figure 1. The 3D average intensity and contour graphs of a FPLG beam propagating through
atmospheric turbulence. (a) z = 100m, (b) z = 500m, (c) z = 1000m, (d) z = 3000 m.

(a) (b)

Figure 2. The 3D average intensity and contour graphs of a FPLG beam propagating through free
space. (a) z = 1000 m, (b) z = 3000m.

evolve into a Gaussian-like beam around by the smaller beams which is accordance with the previous
reports [24]. By comparing Figure 1(d) with Figure 2(b), we can conclude that the FPLG beam
propagating through atmospheric turbulence evolving into Gaussian beam is caused by the atmospheric
turbulence.

To carry out the effects of Lorentz widths w0x = w0y on the spreading of FPLG beam, the cross lines
of an FPLG beam propagating through atmospheric turbulence with C2

n = 10−14 m−2/3 for the different
w0x = w0y is plotted in Figure 3. From Figure 3(a), it is shown that the FPLG beam with smaller
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w0x = w0y will have a smaller beam spot as the shorten propagation distance. As the propagation
distance increases into a longer distance, the FPLG beam with the different w0x = w0y will evolve
into a Gaussian beam with the same beam profile due to the influences of atmospheric turbulence
(Figure 3(b)).

(a) (b)

Figure 3. Cross lines of a FPLG beam propagating through atmospheric turbulence along the slanted
axis (y = x) for the different w0x = w0y. (a) z = 100 m, (b) z = 3000 m.

The effects of N on the spreading of an FPLG beam propagating through atmospheric turbulence
with C2

n = 10−15 m−2/d3 is given in Figure 4. One can find that the FPLG beam with smaller N will
first have a smaller beam spot, and the beam with the different N will evolve into a similar beam spot
with the Gaussian distribution as the propagation distance increases.

To study the influences of refractive index structure constant of atmospheric turbulence C2
n on the

evolution properties of FPLG beam, the cross lines of an FPLG beam propagating through atmospheric
turbulence and free space for the different C2

n are illustrated in Figure 5. It is found that FPLG beam
propagating through stronger atmospheric turbulence (larger C2

n) will evolve into the Gaussian-like
beam faster (Figure 4(a)), and the beam propagating through stronger atmospheric turbulence will
have a larger beam spot at the longer propagation distance. Thus, the atmospheric turbulence will
accelerate the spreading of FPLG beam.

(a) (b)

Figure 4. Cross lines of a FPLG beam propagating through atmospheric turbulence along the slanted
axis (y = x) for the different N . (a) z = 100m, (b) z = 3000 m.
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(a) (b)

Figure 5. Cross lines of a FPLG beam propagating through atmospheric turbulence along the slanted
axis (y = x) for the different C2

n. (a) z = 1000 m, (b) z = 3000 m.

4. CONCLUSIONS

Based on the extended Huygens-Fresnel principle, the average intensity equation of FPLG beam
propagating through atmospheric turbulence is derived, and the effects of beam parameters and
atmospheric turbulence on spreading of FPLG beam are investigated by using derived equations. It
is found that the atmospheric turbulence will accelerate the spreading of FPLG beam, and the FPLG
beam propagating through atmospheric turbulence will evolve gradually from four-petal pattern into
Gaussian beam due to the influences of atmospheric turbulence.
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