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Abstract—A general auxiliary differential equation (ADE) finite difference time-domain (FDTD)
method with Crank-Nicolson (CN) scheme is proposed to model electromagnetic wave propagation in
dispersive materials in this paper. The proposed method introduces an ADE technique that establishes
the relationship between the electric displacement vector and electric field intensity with a differential
equation in dispersive media. The CN scheme applies only to Faraday’s law, resulting in reduced memory
usage and computing time. To validate the advantages of the proposed approach, two examples with
plane wave propagation in dispersive media are calculated. Compared with the conventional ADE-CN-
FDTD method, the results from our proposed method show its accuracy and efficiency for dispersive
media simulation.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method has been widely used in simulating and designing
many electromagnetic devices [1]. However, the Courant-Friedrich-Levy stability condition restricts the
time step making the CPU simulation prohibitively long. To eliminate this limitation, an unconditionally
stable FDTD method with Crank-Nicolson scheme has been proposed [2–5]. This scheme has no limit
on the time step size arising from stability considerations and has high numerical accuracy [5].

The CN scheme leads to a huge sparse matrix equation which is very challenging to solve. To solve
the huge sparse matrix equation, a few efficient algorithms are used to implement the CN-FDTD method,
such as Crank-Nicolson direct-splitting (CNDS) and Crank-Nicolson cycle-sweep-uniform (CNCSU) [3].
These algorithms use factorization-splitting leading to simple matrices at each sub-step. For method
much simpler and more concise than original CN scheme, a new efficient algorithm for implementing
3-D Crank-Nicolson-based FDTD methods has been proposed [4]. In this method, auxiliary updating
is introduced to reduce the flops count. The above methods are split- or sub-step. To improve the CPU
efficiency and save memory, a new two-dimensional (2-D) unconditionally stable FDTD method based
on CN scheme is proposed [5]. This method applies only to one of the Maxwell curl equations, and
only one of the electric or magnetic fields needs to be updated during the iterations of the algorithm.
Although this method improves the calculation efficiency, it cannot be used to model dispersive materials
due to the lack of frequency-dependent relative dielectric constant. In [6], a novel ADE-FDTD with CN
scheme is proposed for electromagnetic simulation of dispersive materials.

In this paper, by introducing auxiliary difference equation and applying the CN scheme to Faraday’s
law, a general auxiliary differential equation (ADE) finite-difference time-domain (FDTD) method with
Crank-Nicolson (CN) scheme is proposed to model electromagnetic wave propagation in dispersive
material. Compared to the conventional implementation, less CPU runtime is spent. The accuracy
and efficiency of the proposed method are verified by simulating electromagnetic wave propagation in
a variety of dispersive media.
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2. MATHEMATICAL FORMULATION

With lossless and dispersive media, the Maxwell’s equations can be written as

jωε0εr(ω)E(ω, r) = ∇×H(ω, r) (1)
jωμ0H(ω, r) = −∇× E(ω, r) (2)

where ε0 and μ0 are the electric permittivity and magnetic permeability of free space, respectively. εr

describes the relative dielectric constant and can be written in a general form as [7]

εr(ω) = ε∞

(
1 +

Nd∑
n

an

bn + jωcn − dnω2

)
(3)

where ε∞ is the infinite dielectric constant. an, bn, cn, and dn are known constants. Nd is the number
of poles. Substituting Eq. (3) into Eq. (1), we get

jωε0ε∞E(ω, r) + jωε0ε∞
Nd∑
n=1

Sn(ω, r) = ∇×H(ω, r) (4)

where S is the auxiliary variable and can be written as

Sn(ω, r) =
an

bn + jωcn − dnω2
E(ω, r) (5)

With the transition relationship from frequency domain to time domain (jω → ∂/∂t), Eqs. (2), (4),
and (5) can be written as

ε0ε∞
∂E(t, r)

∂t
+ ε0ε∞

Nd∑
n=1

∂Sn(t, r)
∂t

= ∇× H(t, r) (6)

μ0
∂H(t, r)

∂t
= −∇× E(t, r) (7)

bnS(t, r) + cn
∂S(t, r)

∂t
+ dn

∂2S(t, r)
∂t2

= anE(t, r) (8)

For the sake of simplicity, in the following sections we will employ a 2-D TEz case and single
pole dispersive media (Nd = 1) to describe the procedures for deriving the general ADE-CN-FDTD
algorithm. By discretizing Eqs. (6)–(8) in time domain with some manipulations, we get

Hn+0.5
z = Hn−0.5

z +
Δt

μ0
DTEn (9)

2ε0ε∞ (1 + C1) En+1
x = 2ε0ε∞ (1 − C1) En

x +2ε0ε∞ (1 + C2)Sn
x +2ε0ε∞C3S

n−1
x +2ΔtDyH

n+0.5
z (10)

2ε0ε∞ (1 + C1) En+1
y = 2ε0ε∞ (1 − C1) En

y +2ε0ε∞ (1 + C2)Sn
y +2ε0ε∞C3S

n−1
y −2ΔtDxHn+0.5

z (11)

Sn+1
ξ = C1E

n+1
ξ + C1E

n
ξ − C2S

n
ξ − C3S

n−1
ξ , ξ = x, y (12)

where En = [En
x , En

y ]T , C1 = anΔt2/(Δt2bn + 2Δtcn + 2dn), C2 = (Δt2bn − 2Δtcn − 4dn)/(Δt2bn +
2Δtcn +2dn), C3 = 2dn/(Δt2bn +2Δtcn +2dn). DT = [Dy,−Dx], Dx and Dy are the first-order central
finite-difference operators along x and y directions. Combining Eqs. (10) and (11) leads to

AEn+1 = BEn + 2ΔtDHn+0.5
z + CSn + FSn−1 (13)

where En+1 = [En+1
x , En+1

y ]T , Sn = [Sn
x , Sn

y ]T and

A =
[

2ε0ε∞ (1 + C1) 0
0 2ε0ε∞ (1 + C1)

]
, B =

[
2ε0ε∞ (1 − C1) 0

0 2ε0ε∞ (1 − C1)

]
,

C =
[

2ε0ε∞ (1 + C2) 0
0 2ε0ε∞ (1 + C2)

]
, F =

[
2ε0ε∞C3 0

0 2ε0ε∞C3

]
.
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By applying the CN scheme to Eq. (9), we have

Hn+0.5
z = Hn−0.5

z +
Δt

2μ0
DT

(
En+1 + En−1

)
(14)

Next, substitute Eq. (14) into Eq. (13) gives(
A− Δt2

μ0
DDT

)
En+1 = BEn + 2ΔtDHn−0.5

z +
Δt2

μ0
DDTEn−1 + CSn + FSn−1 (15)

Enforcing Eq. (13) at time step n − 1/2, i.e.,

2ΔtDHn−0.5
z = AEn − BEn−1 − CSn−1 − FSn−2 (16)

And substitute Eq. (16) into Eq. (15), we have(
A− Δt2

μ0
DDT

)(
En+1 + En−1

)
= (B + A)En +(A− B)En−1 +CSn +(F −C)Sn−1−FSn−2 (17)

By introducing an auxiliary field variable e as
en+1 = En+1 + En−1 (18)

the updating equation reforms to:(
A− Δt2

μ0
DDT

)
en+1 = (B + A)En + (A− B)En−1 + CSn + (F − C)Sn−1 − FSn−2 (19)

Split −DDT into two parts −DDT = MS + MM , where

MS =
[ −D2

y 0
0 −D2

x

]
, MM =

[
0 DxDy

DxDy 0

]
(20)

Substituting Eq. (20) into Eq. (19) and utilizing the approximation MMen+1 ≈ 2MMEn, we can obtain(
A +

Δt2

μ0
Ms

)
en+1 =

(
B + A− 2Δt2

μ0
MM

)
En+(A− B)En−1+CSn+(F − C)Sn−1−FSn−2 (21)

With reference to Eq. [5], we can obtain the update equations of the proposed method as(
2ε0ε∞ (1 + C1) +

2Δt2

μ0Δy2

)
en+1
x |i,j − Δt2

μ0

(
en+1
x |i,j+1 + en+1

x |i,j−1

)
= 4ε0ε∞En

x |i,j − 2Δt2

ΔxΔyμ0

(
Ey

∣∣n
i+1,j − Ey

∣∣n
i,j − Ey

∣∣n
i+1,j−1 + Ey

∣∣n
i,j−1

)
+ 4ε0ε∞C1E

n−1
x |i,j

+2ε0ε∞ (1 + C2) Sn
x |i,j + 2ε0ε∞ (C3 − 1 − C2)Sn−1

x |i,j − 2ε0ε∞C3S
n−2
x |i,j (22)(

2ε0ε∞ (1 + C1) +
2Δt2

μ0Δy2

)
en+1
y |i,j − Δt2

μ0

(
en+1
y |i+1,j + en+1

y |i−1,j

)
= 4ε0ε∞En

y |i,j − 2Δt2

μ0ΔyΔx

(
Ex

∣∣n
i,j+1 − Ex

∣∣n
i,j − Ex

∣∣n
i−1,j+1 + Ex

∣∣n
i−1,j

)
+ 4ε0ε∞C1E

n−1
y |i,j

+2ε0ε∞ (1 + C2) Sn
y |i,j + 2ε0ε∞ (C3 − 1 − C2)Sn−1

y |i,j − 2ε0ε∞C3S
n−2
y |i,j (23)

where
En+1

ξ |i,j = en+1
ξ |i,j − En−1

ξ |i,j (24)

Sn+1
ξ |i,j = C1E

n+1
ξ |i,j + C1E

n
ξ |i,j − C2S

n
ξ |i,j − C3S

n−1
ξ |i,j (25)

Hence, the proposed method can be summarized into three steps. First, implicitly update x and y
components of e using Eqs. (22) and (23). Second, explicitly update Ex and Ey with Eq. (24). Finally,
the auxiliary variables are obtained from Eq. (25). Compared with the conventional ADE-CN-FDTD
method in [8], the proposed method does not have the magnetic field, and only two tridiagonal matrix
equations need to be solved. Compared with the novel ADE-CN-FDTD method in [6], the update
equation of the proposed method includes En−1 in Equations (22), (23) and En+1 plus En instead of
minus in Equation (25). Our proposed method is an alternative technique to simulate wave propagation
in general dispersive media.
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3. NUMERICAL RESULTS

In order to validate the effectiveness of the proposed method, we simulate the transient fields in a 2D
cavity with dispersive media, as shown in Fig. 1. A sinusoidally modulated Gaussian pulse is used as
an incident electric current profile

Jy(t) = exp

[
−
(

t − Tc

Td

)2
]

sin 2πfc(t − Tc) (26)

where Td = 1/(2fc), Tc = 3Td and fc = 10 GHz. The computational domain consists of 100 × 100 cells
with a uniform cell size of 1.25 × 1.25 cm2. PEC boundary is utilized in both x and y directions. The
problem is solved with both the conventional ADE-CN-FDTD and the proposed method. The dispersive
material is described by the Lorentz model, in which the relative complex permittivity is given by

εr(ω) = ε∞ + (εs − ε∞)
G1ω

2
1

ω2
1 + 2jδ1ω − ω2

(27)

where εs = 3, ε∞ = 1.5, ω1 = 2 × 109 rad/s, G1 = 0.4 and δ1 = 0.1ω1.

Figure 1. Diagram of computational domain for
ADE-CN-FDTD.
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Figure 2. The transient fields calculated with
conventional ADE-CN-FDTD and the proposed
method for Lorentz model.

Figure 2 shows the calculated transient fields from both the conventional ADE-CN-FDTD and the
proposed method at observation point O (40Δx, 75Δy). Simulation results of the two methods agree well
with each other. In order to reveal the computational accuracy of the proposed method, the calculated
results for conventional ADE-FDTD method as benchmark are given in Fig. 2. Fig. 3 shows the relative
difference of the transient field from the conventional ADE-CN-FDTD and proposed method. The
relative difference of the transient field is defined as: |EADE-CN-FDTD − EADE-FDTD|/

∑
EADE-FDTD ×

100%, where EADE-FDTD is the reference transient fields from ADE-FDTD, EADE-CN-FDTD the
transient fields from the conventional ADE-CN-FDTD or the proposed method, and

∑
EADE-FDTD

the accumulation of the transient electric fields from ADE-FDTD.
Table 1 presents the required computational resource and computing time for numerical simulations.

Compared with the conventional ADE-CN-FDTD in [8] with the Courant-Friedrich-Levy number
(CFLN) of 8, for example, the proposed method with CFLN = 8 shows the reductions of 50%
and 18% on computing time and memory usage, respectively. To investigate the accuracy of the
proposed method, the resonant frequencies obtained through discrete Fourier transform for different
methods are compared with each other, and the relative error of the resonant frequency is defined
as |fADE-CN-FDTD − fADE-FDTD|/fADE-FDTD × 100%, where fADE-FDTD is the reference frequency from
ADE-FDTD, and fADE-CN-FDTD is the resonant frequency from the conventional ADE-CN-FDTD [8]
or the proposed method. It can be seen from Table 1 that the relative error becomes large when Δt
increases in the conventional ADE-CN-FDTD or the proposed method.
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Table 1. Comparison of the computational efforts for the 2-D cavity loaded Lorentz material.

Method
Δt

(ps)
Marching

steps
Memory
(MB)

Computing
time (s)

Error
(%)

FDTD 0.2 10800 1.6 29 –
CN-FDTD (CFLN = 8) 1.6 1350 3.8 40 0.09
CN-FDTD (CFLN = 16) 3.2 675 3.8 31 0.38
This work (CFLN = 8) 1.6 1350 3.1 20 0.23
This work (CFLN = 16) 3.2 675 3.1 10 0.94
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Figure 3. The relative difference calculated with
conventional ADE-CN-FDTD and the proposed
method for Lorentz model.
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Figure 4. The relative difference calculated with
conventional ADE-CN-FDTD and the proposed
method for Debye model.

As the second example, we employ a Debye model replacing Lorentz material in the first example.
The relative complex permittivity of Debye model is given as

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

(28)

where εs = 4.301, ε∞ = 4.096, and τ = 2.294 × 10−9. Fig. 4 shows the relative difference of transient
fields from both the conventional ADE-CN-FDTD and the proposed method. From their profiles,
one can find that the accuracy of the proposed method is verified. Table 2 presents the required
computational resource and computing time for the numerical simulations. The proposed method
shows much improvement in computation efficiency compared to the ADE-CN-FDTD. All calculations
were performed on intel (R) Core (TM) i5-4210 CPU with 8 GB RAM.

Table 2. Comparison of the computational efforts for the 2-D cavity loaded Debye material.

Method
Δt

(ps)
Marching

steps
Memory
(MB)

Computing
time (s)

Error
(%)

FDTD 0.2 10800 1.6 29 –
CN-FDTD ((CFLN = 8) 1.6 1350 3.8 46 0.09
CN-FDTD (CFLN = 16) 3.2 675 3.8 31 0.19
This work (CFLN = 8) 1.6 1350 3.1 20 0.16
This work (CFLN = 16) 3.2 675 3.1 10 0.22
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4. CONCLUSION

A general ADE-FDTD method based on the CN scheme for dispersive media is presented in this paper.
Compared with the conventional ADE-CN-FDTD, the proposed method greatly increases computing
efficiency without degrading the calculation accuracy. Two numerical examples have been presented to
verify the accuracy and efficiency of the proposed method.
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