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Target Classification with Low-resolution Radars Based on
Multifractal Correlation Characteristics in Fractional Fourier Domain

Huaxia Zhang1, 2 and Qiusheng Li1, 2, *

Abstract—Due to the restrictions of low-resolution radar system and the influence of background
clutter during the target detection, it is difficult to classify different kinds of low-resolution radar
aircraft targets. In this paper, we propose a multifractal correlation method in the optimal fractional
Fourier domain found by fractional Fourier transform (FrFT), in which we extract the multifractal
correlation features of aircraft target echoes and do target identification combined with the support
vector machine. The experimental results show that FrFT can enhance the multifractal correlation
characteristics of aircraft target echoes; the multifractal correlation features extracted from the optimal
fractional Fourier domain can effectively distinguish different types of aircraft; and the classification
and recognition rates of the multifractal correlation method in the optimal fractional Fourier domain
are higher than that of the multifractal correlation method in time domain and the multifractal method
in the optimal fractional Fourier domain.

1. INTRODUCTION

Radar target classification and recognition technology plays a major role in national defense and
battlefield target reconnaissance. The current development trend of radar is wideband, high-resolution,
but due to its prohibitive cost, long implementation cycle and a variety of key technologies still await
breakthroughs, and low-resolution radar cannot be replaced in a short term. Most air-defense radars are
conventional low-resolution radars, which are mainly used for target detection and ranging. Compared
with wideband radar, low-resolution radar is cheaper and more mature in technology, and many
low-resolution radars operating in the VHF band have good anti-stealth and anti-radiation missile
capabilities, so low-resolution radar also plays an irreplaceable role in many fields [1]. Therefore, the
researches on low-resolution radar target recognition have significant strategic and practical significance,
and also provide bases for researches of high-resolution radar target recognition technology [2].
Traditional low-resolution radar generally works in the high-frequency band of 3 ∼ 300 MHz, with
a range resolution of 300 ∼ 1500 m and an azimuth resolution of 1◦ ∼ 10◦. The restrictions of low-
resolution radar system and the influence of background clutter during the target detection reduce
the recognition rate of surveillance radar targets, which further limits the application of aircraft [3–5].
In view of the difficulty in classifying and identifying aircraft targets with conventional low-resolution
radars, many researchers have explored and obtained certain research results. Existing features for
aircraft target classification include: Waveform characteristics of aircraft target echoes, amplitude
modulation features, entropy in the frequency domain, ARMA (Autoregressive moving average model),
dispersion situations of eigenvalue spectra, EEMD (Ensemble empirical mode decomposition), and jet
engine modulation (JEM) features, among which JEM features account for the majority [6–11]. Ref. [12]
analyzes the impact of observation conditions and blade overlap of the conventional low-resolution radars
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on JEM modulation characteristics in detail. The identification of low-resolution radar targets based
on JEM features generally requires high pulse repetition frequency and long observation time, so it is
difficult to extract the JEM characteristics of aircraft target echoes with low-resolution radar.

Fractional Fourier transform (FrFT) is an effective method to improve signal-to-noise ratio by
analyzing signals in time-frequency domain with reversibility, which can be implemented by fast Fourier
transform with low computational complexity [13]. FrFT is widely used in radar signal processing,
such as suppression of chirp interference, SAR imaging, adaptive filtering, and detection of maritime
micro-moving targets [14–17]. Du et al. introduced FrFT to extract the features of jet aircraft, propeller
aircraft, and helicopters, and identified three types of aircraft targets combined with linear correlation
vector machine [18]. Experiments show that this method can improve the recognition rate to a certain
extent compared with traditional methods.

The aircraft target echoes of low-resolution radars and background clutter have fractal
characteristics [19, 20]. Fan et al. analyzed the multifractal characteristics of AR spectra of sea clutter
and detected tiny targets [21, 22]; Qu et al. classified 8 different radar signals using singular value
entropy and fractal dimension [23]; Wang et al. identified jet aircraft, propeller aircraft, and helicopters
with fractal dimension and normalized amplitude, with an average classification recognition rate of
92.67% [4]. Li et al. used fractal theory to study characteristics of self-affine fractal, extended fractal,
and multifractal of low-resolution radar targets [24–29]; Ref. [30] analyzed the multifractal correlation
characteristics of low-resolution radars in time domain and classified low-resolution radar targets by
using multifractal correlation features; by analyzing the multifractal correlation characteristics of sea
clutter, Guan et al. analyzed the similarity of the multifractal correlation spectra and used support
vector machine for target detection [31]. FrFT can suppress clutter and facilitate signal processing, and
fractal theory is an effective tool for radar target classification and identification. Combining these two
methods, Gu et al. analyzed the multifractal characteristics of sea clutter in fractional Fourier domain
to do moving target detection whether there is a target at sea [32]; Li et al. conducted fractal judgment
and scale-free interval estimation on echoes of civil aircraft and fighters in fractional Fourier domain [33];
Zhang et al. researched multifractal characteristics of low-resolution radar target echoes in fractional
Fourier domain [34].

In this paper, we propose a method, multifractal correlation analysis in fractional Fourier domain
(MCIFD), to do aircraft target classification of low-resolution radars. We use FrFT to process low-
resolution radar target echoes in order to decide the optimal fractional Fourier domain, in which the
multifractal correlation characteristics of target echoes are studied, and multifractal correlation features
are extracted to classify different types of low-resolution radar aircraft targets.

2. MULTIFRACTAL CORRELATION ANALYSIS

2.1. Fractional Fourier Transform (FrFT)

FrFT is the generalized form of Fourier transform (FT). On one hand, it has reserved the superiorities
of FT; on the other hand, it has many special properties. FrFT can be viewed as a ray that transforms
the signal from the time axis to the u axis by rotating the angle α counterclockwise. The pth order
FrFT of the signal f(t) can be defined as follows:

fp(u) =
∫ ∞

−∞
Kp(u, t)f(t)dt (1)

kp (t, u) =

⎧⎨
⎩

Aa exp
[
jπ

(
u2 cot α − 2ucscα + t2 cot α

)]
, a �= nπ

δ (t − u) , α = 2nπ

δ (t − u) , α = (2n + 1) π

(2)

fp(u) is the signal obtained by the pth order of FrFT in fractional Fourier domain, and Kp(u, t) is the
kernel function of FrFT, where Aa =

√
1 − j cot α, α = pπ/2, p �= 2n, n ∈ Z. Actually, in digital

signal processing, we generally need the discrete form of FrFT, and this paper uses the method that
transforms FrFT into a convolution form to obtain the discrete form of FrFT [34].
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By using the Shannon interpolation formula:

fp(u) =

√
1 − j cot α

2π
exp

(
jπu2 cot α

) ×
∫ ∞

−∞

[
f(t) exp

(
jπt2 cot α

) × exp (−j2πtucscα)
]
dt (3)

f(t) exp
(
jπt2 cot α

)
=

N∑
n=−N

f
( n

2Δx

)
exp

[
jπ cot αn2

(2Δx)2

]
× sinc

[
2Δx

(
t − n

2Δx

)]
(4)

Substitute Eq. (4) into Eq. (3), we can yield the discrete form of FrFT:

fp

( m

2Δx

)
=

Aa

2Δx
exp

{
jπ [cot α − cscα]m2

(2Δx)2

}
×

N∑
n=−N

exp
[
jπ(cot α)(m − n)2

(2Δx)2

]

× exp
{

jπ [cot α − csc α]n2

(2Δx)2

}
f

( n

2Δx

)
, (5)

where 1/Δx is the sampling interval of the time domain; n and m are the sampling points of time domain
and fractional Fourier domain, respectively; N denotes the total number of time domain samples. If
f(t) is a linear frequency modulation signal, its FrFT fp(m/2Δx) forms an impulse function in the
optimal fractional Fourier domain, so that the energy can be maximally aggregated.

2.2. Multifractal Theory

What multifractal theory describes is the characteristics of different levels of a factual object during the
growth process. The investigated object can be divided into many small regions, whose total number
is Nε, and the size is ε (ε < 1) of a small region; the growth probability of the ith small region is Pi(ε);
and σi indicates the growth probabilities of different regions. The relationship between Pi(ε) and ε is:

pi(ε) ∝ εσi , i = 1, 2, · · · , N (6)

where σi can be called local fractal dimension (LFD) or singular index, whose value reflects the size of
growth probability of fractal in a small region. If different regions have different singular indexes, the
fractal is a multifractal geometry; if all singular indexes are almost the same, the fractal can almost be
considered as a monofractal geometry. Eq. (6) takes the power of q and sums to obtain the partition
function:

Γ(q, ε) =
N∑

i=1

P q
i (ε) = ετ(q) ∝

N∑
i=1

εσiq, qε(−∞,+∞) (7)

In Eq. (7), if q � 1, the subsets with large probabilities dominate; if q 	 1, the subsets with small
probability play a major role. In practical application, the range of q can be determined according to
specific conditions. We can see from Eq. (7) that the partition function Γ(q, ε) and ε have power-law
relationship, and their slope, denoted as τ(q), is called mass index. If τ(q) is a linear function of q,
the fractal has monofractal properties; if τ(q) is a convex function of q, the fractal has multifractal
characteristics.

The definition of multifractal spectrum f(σ) is the fractal dimension of fractal subsets with the
same singular index. We can use the infinite sequences of f(σ), corresponding to different σ, to represent
the fractal dimension of the entire fractal in order to reflect the characteristics of the growth distribution
probability.

2.3. Multifractal Correlation Theory

Based on FrFT, MCIFD discusses the multifractal correlation characteristics of aircraft target echoes of
low-resolution radars and performs target recognition, which mainly involves the theoretical knowledge
of FrFT, multifractal, and multifractal correlation.

Multifractal correlation theory, a generalization of multifractal theory, is generally analyzed by
statistical physics. The measured distribution of multifractal geometry, whose multifractal spectra f(σ)
is f(σ), can be described as μ, and Pσ(ε) is the distribution probability of μ in a small region of the
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multifractal geometry where the singular exponent is σ. The multifractal geometry can be divided into
many small areas of size ε. The total numbers of small areas and regions, whose singular exponent
is equal to σ of multifractal geometry, are denoted as Nε and Nσ(ε), respectively. Then, the fractal
dimension D0 defined from the perspective of measured distribution can be shown below:

D0 = −lnNε/lnε(ε → 0) (8)

From Eq. (8), we can get the following equation:

Nε = ε−D0(ε → 0) (9)

D0 denotes the fractal dimension; Nε stands for singular exponent; and ε represents the size of small
areas of multifractal geometry. Since Nσ(ε) ∝ ε−f(σ)(ε → 0), the probability of a specified singular
exponential σ is:

Pσ (ε) = Nσ(ε)/Nε ∝ ε−D0−f(σ) (10)

If we set measured distribution function of multifractal geometry as με(x) under the condition that the
scale is ε, the q-moment of the measured distribution is:

Mε (q) = 〈μq
ε(x)〉 ∝ εD0+τ(q)(ε → 0) (11)

where τ(q) refers to a quality index; 〈·〉 indicates the mathematical expectation; D0 denotes the fractal
dimension; therefore, the quality index is also called the moment index.

According to the above analysis, multifractal correlation is a generalization of multifractal, which
investigates single-point statistical characteristics of measured distribution on a fractal. Multifractal
correlation theory describes a probability, denoted as Pε(σ′, σ′′, d), in which two given singular exponents
σ′ and σ′′ can be observed at two points on a fractal with distance d, and σ′ and σ′′ are both under the
same scale ε, ε < d < 1.

Multifractal correlation spectra f̃(σ′, σ′′, ω) can be defined as follows:

Pε

(
σ′, σ′′, d

) ∝ ε−D0−f̃(σ′, σ′′, ω) (12)

w = lnd/lnε, Pε(σ′, σ′′, d) stands for the multifractal correlation probability. In order to derive the
relationship between multifractal correlation spectra f̃(σ′, σ′′, ω) and multifractal spectra f(σ), we
generalize the moment function of Eq. (11). The spatial autocorrelation function of the measured
distribution Cx(q′, q′′, d) can be defined as follows:

Cε

(
q′, q′′, d

)
=

〈
μεq

′(x) · μεq
′′(x + d)

〉 ∝ εD0+τ̃(q′, q′′, ω)(ε → 0) (13)

τ̃(q′, q′′, ω) represents the correlation moment index, and με(x) denotes the measured distribution
function of multifractal geometry. Obviously, the spatial autocorrelation function Cε(q′, q′′, d) of the
measured distribution contains more spatial information than the q-moment of the measured distribution
Mε(q). Take the mathematical expectation of Eq. (13), the following formula can be deduced:〈

μq′
ε (x) · μq′′

ε (x + d)
〉
∝ ετ(q′)+τ(q′′)+2D0+min{φ(q′, q′′),1}(ε → 0) (14)

φ
(
q′, q′′

)
= τ

(
q′, q′′

) − τ
(
q′

)
+ τ

(
q′′

) − D0 (15)

By comparing Eq. (13) with Eq. (14), we can get the equation of correlation moment index:

τ̃
(
q′, q′′, ω

)
= τ

(
q′

)
+ τ

(
q′′

)
+ D0 + ω min

{
φ

(
q′, q′′

)
, 1

}
, (16)

where τ(q) refers to a quality index, and q′ and q′′ denote the moment of the measured distributions.
From Eq. (16), we can conclude that the first derivative of the equation τ̃(q′, q′′, ω) will produce a
transition when φ(q′, q′′) = 1, which means that the transition between two regions (I (φ(q′, q′′) < 1)
and II (φ(q′, q′′) > 1)) is discontinuous, which is the first-order phase transition in multifractal theory.

If φ(q′, q′′) < 1, {
σ′ = ωσ (q′ + q′′) + (1 − ω)σ (q′)
σ′′ = ωσ (q′ + q′′) + (1 − ω)σ (q′′)

(17)
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else φ(q′, q′′) > 1, {
σ′ = σ (q′)
σ′′ = σ (q′′)

, (18)

where σ′ and σ′′ are singular exponents. The given data, σ′, σ′′, and ω, may not satisfy both Eq. (17) and
constraint φ(q′, q′′) < 1, or Eq. (18) and constraint φ(q′, q′′) > 1 at the same time. The point satisfying
the above conditions is marked as (Q′, Q′′), and the multifractal correlation spectra f̃(σ′, σ′′, ω) can be
given by the following equation:

f̃
(
σ′, σ′′, ω

)
= Q′σ′ + Q′′q′′ − τ̃

(
Q′, Q′′, ω

)
(19)

When (Q′, Q′′) is located in region I, multifractal correlation spectra can be obtained by substituting
Eqs. (16), (17) into Eq. (19) and combining with Eq. (14).

f̃
(
σ′, σ′′, ω

)
= ωf

[
σ

(
Q′ + Q′′)] + (1 − ω)

{
f

[
σ

(
Q′)] + f

[
σ

(
Q′′)] − D0

}
(20)

When (Q′, Q′′) is located in region II, multifractal correlation spectra can be obtained by substituting
Eqs. (16), (18) into Eq. (19) and combining with Eq. (14).

f̃
(
σ′, σ′′, ω

)
= f

[
σ

(
Q′)] + f

[
σ

(
Q′′)] − D0 − ω (21)

Furthermore, the expression of probability function Pε(σ′, σ′′, d) can be obtained.

3. THE MULTIFRACTAL FEATURE EXTRACTION METHOD

During the short time when an aircraft is being exposed to the irradiation of the radar, the target
can be viewed as a dot moving with a uniform acceleration. To simplify the description, the target
classification method based on multifractal correlation features in fractional Fourier domain is referred
to MCIFD. We study the implementation steps and classification performance of MCIFD algorithm.

3.1. Determination of the Optimal Fractional Fourier Domain

In the optimal fractional Fourier domain, the energy of aircraft echoes can be maximally aggregated,
and the distribution of clutter is relatively dispersed, so we should find the optimal fractional Fourier
domain of low-resolution radar echoes. Before feature extraction, we take FrFT to process the aircraft
echoes and further confirm the optimal fractional Fourier order. In information theory, entropy can
represent the average information of a signal and reflect the degree of distribution of echo energy.
Renyi entropy is the generalized form of Shannon entropy, which has more generality in measuring the
information. Third-order Renyi information entropy is an effective tool for measuring the information of
time-frequency distribution. The maximum value of the third-order Renyi information entropy indicates
that the time-frequency distribution of the analyzed signal has the highest aggregation [35]. Ref. [34]
uses third-order Renyi information entropy to find the optimal fractional Fourier domain and further
measures the time-frequency aggregation of the low-resolution radar target echoes. In the paper, we also
use third-order Renyi information entropy to measure the aggregation performance of aircraft echoes
in time-frequency domain. It is considered that the fractional Fourier domain, whose transform order
is the optimal transform order popr, is the optimal fractional Fourier domain. The optimal transform
order popr corresponds to the maximum value of the third-order Renyi information entropy.

The definition of third-order Renyi information entropy:

v = −1/2
∑

k
log(|FrFTP (K)|3) (22)

Different types of aircraft have different structural parameters, and their third-order Renyi information
entropies are also different. As for the same aircraft, the third-order Renyi information entropy can
also be influenced by the speed, acceleration, altitude, environment, etc. Different third-order Renyi
information entropies generally have different optimal transform orders of FrFT, so every experiment
needs to determine the optimal transform order of FrFT in order to achieve specific analysis of specific
experiment. In order to verify the effectiveness of the algorithm, we use the measured radar echoes to
carry out the following experiments. In experiment, we select six kinds of aircraft, three of which were
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to fly toward the station and three to fly off the station. The radar worked in the VHF band with pulse
repetition frequency of 100 Hz and pulse width of 25µs. Calculating the third-order Renyi information
entropies of six types of aircraft respectively with the range and step of transform order p being [0,
2] and 0.01, respectively, we can obtain their optimal transform orders of FrFT and further determine
their optimal fractional Fourier domains. In Fig. 1, we choose two of the six types of aircraft, the first
class flying toward the station and the fourth class flying off the station, to plot the third-order Renyi
information entropies of target echoes. For other types of aircraft, the third-order Renyi information
entropy curves are roughly similar.

(a) (b)

Figure 1. The third-order Renyi information entropy curve of aircraft. (a) Aircraft flying toward the
station. (b) Aircraft flying off the station.

3.2. Multifractal Correlation Analysis

By using FrFT to process the original aircraft echoes and further determine the optimal transform orders,
we can do multifractal correlation analysis of radar echoes in the optimal fractional Fourier domain.
Multifractal correlation theory based on the multifractal theory investigates the spatial correlation of
two singular exponentials, so aircraft target echoes have multifractal characteristics in the optimal
fractional Fourier domain is the premise and foundation of multifractal correlation theory. Therefore,
it is necessary to explore whether the aircraft target echoes have multifractal characteristics in the
optimal fractional order Fourier domain. There are six types of aircraft targets, and the radar working
parameters have been described above. We compare the multifractal correlation characteristics of six
kinds of aircraft in time domain and the optimal fractional Fourier domain. The experimental results
are shown in Figs. 2∼7.

(a) (b)

Figure 2. The mass index curves of six types of aircraft. (a) Aircraft flying toward the station. (b)
Aircraft flying off the station.
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(a) (b)

Figure 3. The multifractal spectra of six types of aircraft. (a) Aircraft flying toward the station. (b)
Aircraft flying off the station.

(a) (b)

(c)

(d) (e)

Figure 4. Multifractal correlation characteristics of aircraft flying toward station in time domain. (a)
3-D graph of min{φ(q′, q′′), 1}, (b) the contour of 3-D graph of min{φ(q′, q′′), 1}, (c) correlation moment
exponents, (d) multifractal correlation spectra, (e) the contours of multifractal correlation spectra in
σ′-σ′′ plane.
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We can see from Fig. 2 that the mass index curves τ(q) versus q of the six aircraft target echoes
are all convex functions, which indicates that the above six types of airplane target echoes have multi-
fractal characteristics in the optimal fractional order Fourier domain regardless of whether the aircraft
are flying to station or off-station. We can also gain from Fig. 3 that the singularity indexes σ of
multifractal spectra of the six kinds of aircraft target echoes have relatively large distribution ranges,
and the widths of multifractal spectra are larger than 2, which verifies that the above six aircraft
target echoes have multifractal characteristics in the optimal fractional Fourier domain no matter the
aircraft are in toward-station or off-station state. The experiments verify that the aircraft echoes have
multifractal characteristics in the optimal fractional Fourier domain, and we can explore the multifractal
correlation characteristics of the aircraft echoes on this basis. The multifractal correlation characteristics
of conventional radar target echoes are analyzed below.

Compared to the time domain, the shapes of 3-D graph and their contour of function
min{φ(q′, q′′), 1}, shown in Figs. 4–7, change obviously in the optimal fractional Fourier domain

(a) (b)

(c)

(d) (e)

Figure 5. Multifractal correlation characteristics of aircraft flying off station in time domain. (a) 3-D
graph of min{φ(q′, q′′), 1}, (b) the contour of 3-D graph of min{φ(q′, q′′), 1}, (c) correlation moment
exponents, (d) multifractal correlation spectra, (e) the contours of multifractal correlation spectra in
σ′-σ′′ plane.
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(a) (b)

(c)

(d) (e)

Figure 6. Multifractal correlation characteristics of aircraft flying toward station in the optimal
fractional Fourier domain. (a) 3-D graph of min{φ(q′, q′′), 1}, (b) the contour of 3-D graph of
min{φ(q′, q′′), 1}, (c) correlation moment exponents, (d) multifractal correlation spectra, (e) the contours
of multifractal correlation spectra in σ′-σ′′ plane.

regardless of whether the aircraft is flying toward the station or off-station. In the optimal fractional
Fourier domain, region II (φ(q′, q′′) > 1) increases the partial region on the basis of the area of the
original region I. The graphs of correlation moment exponents are approximate planes in time domain;
in the optimal fractional Fourier domain, the planes formed by the correlation moment exponents
exhibit more convexity. Ref. [34] points out that FrFT can enhance the multifractal properties of low-
resolution radar targets, and we can confirm that FrFT can also enhance their multifractal correlation
characteristics. In the optimal fractional Fourier domain, the distribution ranges of singular exponents
of multifractal correlation spectra of the above aircraft target echoes are obviously expanded, and the
ranges of multifractal spectra amplitude are also increased, which further proves that the FrFT can also
enhance the multifractal correlation characteristics of low-resolution radar targets.
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(a) (b)

(c)

(d) (e)

Figure 7. Multifractal correlation characteristics of aircraft flying off station in the optimal fractional
Fourier domain. (a) 3-D graph of min{φ(q′, q′′), 1}, (b) the contour of 3-D graph of min{φ(q′, q′′), 1},
(c) correlation moment exponents, (d) multifractal correlation spectra, (e) the contours of multifractal
correlation spectra in σ′-σ′′ plane.

3.3. Extraction of Multifractal Correlation Features

Different types of aircraft targets have different physical characteristics, and their nonlinear modulations
of radar echoes are also different, so the multifractal correlation spectra characteristics of target echoes of
different types of aircraft are obviously different, which are undoubtedly beneficial for the classification
and recognition of aircraft targets. Next, we explore the multifractal correlation spectra of aircraft
target echoes and further define their characterization parameters to identify different types of aircraft
targets. The characterization parameters of multifractal correlation can be defined as follows:

(1) The width of multifractal correlation spectra σwidth

σwidth = σ′
max − σ′

min, (23)

where σ′
max and σ′

min represent the maximum and minimum values of σ′, respectively. σwidth can also
be calculated from the range of σ′′, due to the symmetry of the multifractal correlation spectra with
respect to the plane σ′ = σ′′. σwidth describes the association ranges of singular indexes of multifractal
correlation spectra.
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(2) Asymmetrical index of multifractal spectra Rσ

Rσ =
ΔσL − ΔσR

ΔσL + ΔσR
, (24)

where ΔσL = σ0 − σmin, ΔσR = σmax − σ0, σ0 is the singular index corresponding to the maximum of
multifractal spectra f(σ).

(3) The width of correlation moment index τwidth

τwidth = max
{
τ̃

(
q′, q′′, ω

)} − min
{
τ̃

(
q′, q′′, ω

)}
(25)

The width of correlation moment index can measure the differences between the maximum and minimum
values and describe the range of the value of the correlation moment indexes.

(4) The area of region II (φ(q′, q′′) > 1)φnum

φnum = length
(
find(f

(
q′, q′′

)
= 1)

)
, (26)

where f(q′, q′′) = min{φ(q′, q′′), 1}. Region I (φ(q′, q′′) < 1) and region II (φ(q′, q′′) > 1) of six
kinds of low-resolution radar aircraft targets analyzed above are obviously different in time domain
and optimal fractional Fourier domain, and region II has a larger area in optimal fractional Fourier
domain. Therefore, a multifractal correlation parameter φnum, which can measure the area of region II
of min{φ(q′, q′′), 1}, is defined.

Figure 8∼9 show the probability density distributions of four multifractal correlation parameters of
six types of aircraft target echoes. The working conditions and parameters of radars have been shown
above.

In the case of an aircraft flying toward the station, we can conclude from Fig. 8 that the four
multifractal correlation characteristics all have strong ability for target classification. The width of
multifractal correlation spectra can distinguish three types of aircraft targets easily; although the other

(a) (b)

(c) (d)

Figure 8. Probability density distributions of multifractal correlation features of aircraft flying toward
station. (a) The width of multifractal correlation spectra σwidth, (b) asymmetrical index of multifractal
spectra Rσ, (c) the width of correlation moment index τwidth, (d) the area of region II φnum.
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(a) (b)

(c) (d)

Figure 9. Probability density distributions of multifractal correlation features of aircraft flying off
station. (a) The width of multifractal correlation spectra σwidth, (b) asymmetrical index of multifractal
spectra Rσ, (c) the width of correlation moment index τwidth, (d) the area of region II φnum.

features, asymmetrical index of multifractal spectra Rσ, the width of correlation moment index τwidth

and the area of region II φnum, overlap to a certain extent, the overlap range is small, and the probability
of overlap features is small, which also has an ideal classification effect on the three types of aircraft
targets.

In the case of an aircraft flying off the station, we can see from Fig. 9 that the four multifractal
correlation characteristics all have strong ability for target classification. The width of multifractal
correlation spectra σwidth and asymmetrical index of multifractal spectra Rσ can distinguish three
types of aircraft targets easily; compared with other features, the width of correlation moment index
τwidth overlaps more frequently. Intuitively, although the multifractal characteristics overlap within a
certain range, it is hopeful to get a better performance by the comprehensive utilization of the three
features.

The modulation scheme of MCIFD method can be described as follows: Firstly, we use FrFT
to dispose the measured low-resolution radar target echoes; secondly, we search the optimal fractional
Fourier domain of radar target echoes by third-order Renyi information entropy; thirdly, the multifractal
and multifractal correlation characteristics of radar target echoes are analyzed in the optimal fractional
Fourier domain, and then we extract the multifractal correlation features in order to do target
classification; finally, SVM is used to identify different types of aircraft targets. Fig. 10 shows the
complete signal model of the radar system.

4. CLASSIFICATION EXPERIMENTS

In this part, we experimentally study the performance of MCIFD method for aircraft target classification
and recognition with the measured data. The experimental results show that the radar target correct
classification rates (CCRs) based on multifractal features in time domain were higher than that of
dispersion situations of eigenvalue spectra and amplitude modulation feature and frequency domain



Progress In Electromagnetics Research C, Vol. 94, 2019 173

Figure 10. The complete signal model of MCIFD.

entropy [7–10]. Ref. [34] proves that the CCRs based on multifractal features extracted in the optimal
fractional domain are better than that in time domain, and Ref. [30] proposes an identification method
of low-resolution radar targets based on multifractal correlation in time domain. To simplify the
description, the classification method described in [30] is called MFIFD, and the method proposed in [30]
is called MCITD in the following text. MCITD extracts the multifractal correlation characteristics in
time domain; MCIFD reveals the multifractal correlation features in the optimal fractional Fourier
domain; MFIFD extracts the multifractal properties in the optimal fractional Fourier domain. We
compare the classification and recognition performances among MFIFD, MCITD, and MCIFD using
the measured radar target echoes that have been shown in the above experiments.

SVM has the superiorities of strong generalization ability and fast convergence speed for small,
sample, and nonlinear problems, and it is widely used in radar target recognition [36]. The experiments
utilize SVM as a classifier to compare the classification performances among MFIFD, MCITD, and
MCIFD. The SVM classifier adopts Gaussian kernel function K(xi, xj) = exp(−‖xi − xj‖2/σ2), and we
adopt reasonable parameters of Gaussian kernel function to obtain the better CCRs of aircraft targets
classification in the following experiments.

In order to verify the effectiveness of the algorithm, we use the measured radar echoes to carry
out the following experiments. The radar worked in the VHF band with pulse repetition frequency of
100 Hz and pulse width of 25 µs. There are six kinds of aircraft, and each type of aircraft collects 1024
sets of echoes, of which 512 sets of data are used as training data and 512 sets of data used for testing
data.

Experiment 1: Table 1 shows the CCRs of MCIFD and MFITD in the condition of aircraft flying
toward the station. In the case of toward-station situation, we can conclude from Table 1 that the
CCRs of MFIFD method are lower than that of MCITD method, which indicates that the multifractal
correlation theory can better reflect the physical characteristics of aircraft targets than multifractal
theory. Among the three kinds of aircraft target classification and recognition methods, MCIFD has
the highest classification rate.

Experiment 2: Table 2 shows the CCRs of MCIFD and MFITD in the condition of aircraft flying
off the station. We can conclude from Table 2 that the CCRs of MFIFD method are higher than that
MCITD method, which indicates that processing the aircraft target echoes in the optimal fractional
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Table 1. CCRs of MFIFD, MCITD and MCIFD with aircraft flying toward the station.

MFIFD MCITD MCIFD
The first class/% 99.61 100 100

The second class/% 98.65 100 100
The third class/% 99.80 99.61 100
Average CCRs/% 99.35 99.87 100

Table 2. CCRs of MFIFD, MCITD and MCIFD with aircraft flying off the station.

MFIFD MCITD MCIFD
The fourth class/% 96.65 100 100
The fifth class/% 95.18 89.51 99.22
The sixth class/% 99.61 100 100
Average CCRs/% 97.15 96.09 99.74

Fourier domain can effectively suppress the noise and improve the signal-to-noise ratio of aircraft echoes,
contributing to the classification and identification of aircraft targets.

The above experiments show that MCIFD has good performance in classifying low-resolution
radar targets regardless of whether the aircraft targets are in toward-station or off-station flight state.
The classification performance of low-resolution radar targets based on MCIFD is better than that
of MCITD, and method MCIFD analyzes the multifractal correlation characteristics of low-resolution
radar aircraft targets in the optimal fractional Fourier domain. Firstly, the noise energy of radar target
echoes is suppressed improving the signal-to-noise ratio in the optimal FrFT domain, which is beneficial
to the classification and recognition of aircraft targets; secondly, the extracted multifractal features
have strong classification ability for aircraft targets. The reason for MCIFD being superior to MFIFD
is that multifractal only makes statistical analysis of singular index observed at any point on the fractal
geometry support and further determines the multifractal spectra.

Multifractal correlation spectra promote the “single point” statistical characteristics to the “two
points” statistical characteristics of multifractal spectra. Therefore, it can better depict the differences
of physical structure of different types of aircraft targets, so the classification and recognition rates of
aircraft targets are higher.

5. CONCLUSIONS

The multifractal correlation features of aircraft target echoes extracted from the optimal fractional
Fourier domain provide a new method for studying the classification and recognition of low-resolution
radar targets. In this paper, we use third-order Renyi information entropy to calculate the optimal
fractional Fourier domain transform orders and further determine the optimal fractional Fourier domain
of aircraft target echoes, in which we analyze the multifractal correlation characteristics of aircraft target
echoes and further extract the multifractal correlation features to do target classification by using
SVM as classifier. Experimental results show that the measured low-resolution radar target echoes
have multifractal correlation characteristics on the basis of multifractal characteristics in the optimal
fractional Fourier domain; compared with the multifractal correlation characteristics of aircraft target
echoes in time domain, the multifractal correlation properties can be enhanced by FrFT. Regardless
of whether the aircraft targets are in toward-station or off-station flight state, the correct classification
and recognition rates of MCIFD are higher than that of MCITD and MFIFD. In view of the limitations
of low-resolution radar system, it is only applicable to the rough target classification of conventional
radars, although the CCRs have been improved.
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