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Statistical Distribution of the Layered Rough Surface Index (LRSI)

Richard Dusséaux1, * and Saddek Afifi2

Abstract—In this paper we determine the statistical distributions of the co- and cross-polarized Layered
Rough Surface Index (LRSI) for three-dimensional layered structures with an arbitrary number of
slightly rough interfaces illuminated by an electromagnetic plane wave. For infinite surface areas
and Gaussian centered height distributions, we show within the framework of the first-order small
perturbation method that the LRSI under a given observation direction is a random variable, whose
statistical distribution is only function of two parameters. Contrary to the intensity ratio which follows
a heavy-tailed distribution, the LRSI has finite mean and variance. For a structure air/clayey soil/rock,
we analyze the influence of a snow layer upon the probability laws in the cases of Gaussian or exponential
correlation functions.

1. INTRODUCTION

In [1], we established the closed-formulae for the probability density function (PDF) of the co-
and cross-polarized intensity ratio in any observation direction for the field scattered from three-
dimensional layered structures with an arbitrary number of rough interfaces under an illumination
by an electromagnetic plane wave. Calculations were carried out within the framework of the first-
order small perturbation method and assumed slightly rough boundaries with infinite surface areas and
Gaussian centered height distributions [2–7]. The interfaces were correlated or not, isotropic or not, but
the spectra and cross-spectra were Gaussian. We have demonstrated that the PDF is fully defined by
two parameters that depend on the second-order statistical moments of the real and imaginary parts
of scattering amplitudes [8–11]. But, the co- and cross-polarized intensity ratios under an observation
direction are non-negative real-valued random variables which follow heavy-tailed distributions and do
not have a finite mean and a finite variance.

The co- and cross-polarized intensity ratios are important discriminators in the study of polarimetric
and interferometric data. The normalized difference polarization index is defined as the ratio
(I(ba) − I(b′a′))/(I(ba) + I(b′a′)) where the quantities I(ba) and I(b′a′) designate the (b)- and (b′)-polarized
component of the scattered intensity under the (a)- and (a′)-polarized incident wave, respectively. This
descriptor is often used for labelling of different land cover types [12, 13].

In the present paper, we extend the work conducted in [1] and determine the closed-form expression
for the PDF of the Layered Rough Surface Index. The LRSI associated with the components (ba) and
(b′a′) of the scattered wave is defined as the ratio I(b′a′)/(I(ba) + I(b′a′)). For a given direction, this
descriptor is a random variable defined over [0,+1] with a finite mean and a finite variance. We also
establish the analytical expression of the Cumulative Density Function of the LRSI as well as those of
its mean and its variance. To our knowledge, it is the first time that the properties of this indicator are
found.

Received 22 March 2019, Accepted 24 June 2019, Scheduled 13 July 2019
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1 Université de Versailles Saint-Quentin en Yvelines/Paris-Saclay, LATMOS/IPSL/CNRS, 11 Boulevard d’Alembert, Guyancourt
78280, France. 2 Laboratoire de Physique des Lasers, de Spectroscopie Optique et d’Opto-électronique (LAPLASO), Badji Mokhtar-
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The Canopy Structure Index (CSI) extracted from polarimetric data is often used for analysing
the relative presence of vertical scatterers (trunks and stems) of vegetation [14, 15]. This indicator is
defined by the same formula as the LRSI but from the average intensities. In the present paper, for a
structure air/clayey soil/rock, we analyze the influence of a snow layer upon the probability laws for
Gaussian and exponential correlation functions.

This paper is organized as follows. In Section 2, we present the statistical properties of the three-
dimensional layered structure under consideration and define the interface spectra and their cross-spectra
for Gaussian and exponential correlation functions with or without anisotropy. In Section 3, within
the framework of the first-order SPM, we give expressions for the co- and cross-polarized scattering
amplitudes and for the scattered intensities. In Section 4, we establish in any observation plane the
closed-form expressions for the distribution of the LRSI. Section 5 is devoted to the study of probability
laws for a stratification air/clayey soil/rock with or without snow cover.

2. STATISTICAL DESCRIPTION OF INTERFACES

Consider the three-dimensional N -layer homogeneous dielectric structure shown in Fig. 1. The upper
and lower regions are half-spaces. The non-parallel interfaces are randomly deformed over an area L×L.
Two consecutive surfaces are separated by a layer with thickness di = ui − ui−1 (with 2 ≤ i ≤ N − 1).

Figure 1. Structure with several two-dimensional rough interfaces.

The functions ai(x, y) are realizations of second order stationary and centered Gaussian random
processes. They can be obtained from the filtering of white Gaussian noise realizations bj(x, y) [4]:

ai(x, y) = hi(x, y) ∗
N−1∑
j=1

pijbj(x, y) (1)

The star symbol (∗) designates the convolution operation in the spatial domain. The function hi(x, y) is
the impulse response of the filter associated with the interface i and the coefficients pij are the primary
mixing parameters. Knowing that the white noises are uncorrelated, the statistical correlation Rij(x, y)
between the interfaces i and j (with 1 ≤ (i; j) ≤ N − 1) is given by:

Rij(x, y) =
〈
ai(x′, y′)aj(x + x′, y + y′)

〉
= qijCij(x, y) (2)
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The angular brackets stand for statistical averages. The coefficients qij are the secondary mixing

parameters defined by qij =
N−1∑
k=1

pikpjk with |qij | ≤ 1 and qii = 1. The function Cij(x, y) is the

correlation function between hi(x, y) and hj(x, y).
The spectrum R̂ii(α, β) and the cross-spectrum R̂i,j �=i(α, β) are the Fourier transforms of auto- and

cross-correlations Rii(x, y) and Ri,j �=i(x, y) with:

R̂ij(α, β) = qij ĥ
∗
i (α, β)ĥj(α, β) (3)

The function ĥi(α, β) is the transfer function of the filter associated with the interface i. The superscript
asterisk indicates the conjugate complex. For the numerical applications, we consider the statistical
autocorrelations Rii(x, y) under the following form:

Rii(x, y) = σ2
i exp

⎡
⎣−

(√
x2

l2xi

+
y2

l2yi

)2H
⎤
⎦ (4)

The interface i is characterized by the root-mean-square height σi and the correlation lengths lxi and
lyi. The interface is isotropic if lxi = lyi and anisotropic if lxi �= lyi. The autocorrelation function
Rii(x, y) is Gaussian when the roughness exponent H is equal to 1 and it is a bi-exponential function
when H = 0.5. The spectrum R̂ii(α, β) is expressed in the following form:

R̂ii(α, β) = σ2
i lxilyiπ exp

(
−α2l2xi + β2l2yi

4

)
if H = 1 (5)

R̂ii(α, β) =
2πσ2

i lxilyi(
1 + α2l2xi + β2l2yi

)3/2
if H = 0.5 (6)

We determine the filter transfer functions hi(x, y) from the relations in Eqs. (3) and (5) or Eq. (6). The
solution is not unique, and we suppose real-valued transfer functions. In this case, the cross-spectrum
is given in the following forms:

R̂ij(α, β) = qijσiσjπ
√

lxilxj lyilyj exp

⎡
⎣−α2

(
l2xi + l2xj

)
8

− β2

(
l2yi + l2yj

)
8

⎤
⎦ if H = 1 (7)

R̂ij(α, β) = qij
2πσiσj

√
lxilxj lyilyj(

1 + α2l2xi + β2l2yi

)3/4 (
1 + α2l2xj + β2l2yj

)3/4
if H = 0.5 (8)

3. SCATTERED INTENSITY

The structure is illuminated by a horizontal (h) or vertical (v) polarized plane wave with a wavelength
λ. The time dependence is assumed to be in exp(jωt). The top region is assimilated to the vacuum.
Each layer is characterized by a relative permittivity εri and a wave number ki = √

εrik0 where k0 is
the vacuum wave number. The incident wave vector k0(α0, β0,−γ0) is defined by the zenith angle θ0

and the azimuth angle φ0 (Fig. 1) with α0 = k1 sin θ0 cos φ0, β = k1 sin θ0 sin φ0 and γ0 = k1 sin θ0.
The small perturbation method gives the first-order scattering amplitude A

(1)
(ba)(θ, φ) of the field

scattered within the vacuum as follows [3–6]:

A
(1)
(ba)(θ, φ) =

N−1∑
i=1

Ki,(ba)(α, β)âi(α − α0, β − β0) (9)

The subscript (a) denotes the incident wave polarization (h or v) and the subscript (b), the scattered
wave polarization (h or v). The propagation coefficients α and β of the scattered wave are defined from
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the zenith angle θ and the azimuth angle φ with α = k1 sin θ cos φ and β = k1 sin θ sin φ. The function
âi(α, β) is the Fourier transform of the function ai(x, y). The first-order SPM kernels Ki,(ba)(α, β) can
be obtained by an iterative formula as shown in [6] and they depend on the layer thickness values
and the relative permittivity values and on the incidence and scattering angles. We established in [1]
the analytical expressions of the first-order SPM kernels k1,(ba)(α, β) and k2,(ba)(α, β) for a stratified
structure with two rough interfaces. In appendix, we give the analytical expressions in the case of three
interfaces. To our knowledge, it is the first time that these closed-form formulas are presented.

The normalized scattering intensity I(ba)(θ, φ) represents the power scattered in the direction (θ,
φ) per unit of solid angle divided by the incident power,

I(ba)(θ, φ) =
cos2 θ

λ2 cos θ0L2

∣∣∣A(1)
(ba)(θ, φ)

∣∣∣2 (10)

where −π/2 ≤ θ ≤ +π/2 and 0 ≤ φ ≤ π. For a layered structure with randomly rough boundaries, the
normalized scattering intensity I(ba)(θ, φ) depends on rough boundary height profile realizations and for
a given direction, it is a random variable.

Within the framework of the first-order SPM and when L → +∞, the average scattering intensity
〈I(ba)〉 is given by:

〈I(ba)(θ, φ)〉 =
cos2 θ

λ2 cos θ0

N−1∑
i=1

N−1∑
j=1

Re
[
Ki(ba)(α, β)K∗

j(ba)(α, β)R̂ij(α − α0, β − β0)
]

(11)

4. STATISTICAL DISTRIBUTION OF THE LRSI

Let V(ba,b′a′) = Iba/Ib′a′ the intensity ratio associated with the components (ba) and (b′a′) of the wave
scattered in the direction (θ, φ). For infinite surface areas (L → +∞) and centered Gaussian height
distributions, we demonstrated in [8] that the PDF pV(ba,b′a′)(v) of V(ba,b′a′) is given by:

pV(ba,b′a′)(v) = (1 − r2)p0
v + p0

[(v + p0)2 − 4vp0r2]3/2
(12)

The PDF pV(ba,b′a′)(v) is fully determined by the knowledge of the two parameters p0 and r.

p0 =
〈Iba〉
〈Ib′a′〉 (13)

and,

r =

√√√√Γ2
RbaRb′a′

+ Γ2
RbaIb′a′

σ2
Rba

σ2
Rb′a′

(14)

The quantity r designates the correlation coefficient of the two complex random variables A
(1)
(ba)

(θ, φ)

and A
(1)
(b′a′)(θ, φ) [1, 8] and its value lies between 0 and 1. The quantity σ2

Rba
is the variance of the real part

of the scattering amplitude A
(1)
(ba)(θ, φ). The quantity ΓRbaRb′a′ (and ΓRbaIb′a′ ) is the covariance between

the real parts of A
(1)
(ba)(θ, φ) and A

(1)
(b′a′)(θ, φ) (and, between the real and imaginary parts, respectively).

These statistical moments are defined by [9]:

σ2
Rba

=
1
2

N−1∑
i=1

N−1∑
j=1

Re
[
Ki,(ba)K

∗
j,(ba)R̂ij(α − α0, β − β0)

]
(15)

ΓRbaRb′a′ (α, β) =
1
2

N−1∑
i=1

N−1∑
j=1

Re
[
K∗

i,(ba)Kj,(b′a′)R̂ij(α − α0, β − β0)
]

(16)

ΓRbaIb′a′ (α, β) =
1
2

N−1∑
i=1

N−1∑
j=1

Im
[
K∗

i,(ba)Kj,(b′a′)R̂ij(α − α0, β − β0)
]

(17)
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Let S(b′a′,ba) = Ib′a′/(Iba + Ib′a′) be the LRSI associated with the components (b′a′) and (ba) of the
scattered wave in the direction (θ, φ). The random variable S(b′a′,ba) takes values in [0,+1]. Knowing
that S(b′a′,ba) = 1/(V(ba,b′a′) + 1), we determine the PDF of S(b′a′,ba) from the following transformation:

pS(b′a′,ba)
(s) =

∣∣∣∣dv(s)
ds

∣∣∣∣ pV(ba,b′a′) (v(s)) =
1
s2

pV(ba,b′a′) (v(s)) (18)

where s = 1/(v + 1) and v = Iba/Ib′a′ , and we find:

pS(s) =
p0

(
1 − r2

)
[s(p0 − 1) + 1]

{s2 [(p0 − 1)2 + 4p0r2] + 2s [(p0 − 1) − 2p0r2] + 1}3/2
(19)

We show that when p0 > 1 and r2 ∈
]
0, p0−1

3p0

]
or when 0 < p0 < 1 and r2 ∈

]
1−p0

3 , 1
]
, the PDF is

maximum for s = s0 with:

s0 =

[
2(1 − p0)2 + r2p0(7 − p0)

]− rp0

√
r2
(
p2
0 + 34p0 + 1

)
+ 8(1 − p0)2

2(1 − p0) [(1 − p0)2 + 4r2p0]
(20)

When p0 > 1 and r2 ∈
]
0, p0−1

3p0

]
, the PDF is a decreasing function over [0; 1] and s0 = 0. When

0 < p0 < 1 and r2 ∈
]
0, 1−p0

3

]
, the PDF increases over [0; 1] and s0 = 1.

The CDF of the continuous random variable S(b′a′,ba) can be expressed as the integral of its PDF
in Eq. (19), and we find:

FS(s) =
1
2

+
s(p0 + 1) − 1

2 {s2 [(p0 − 1)2 + 4p0r2] + 2s [(p0 − 1) − 2p0r2] + 1}1/2
(21)

We deduce from Eq. (21) that the median Mn of S(b′a′,ba) is equal to 1/(1 + p0). Knowing that

〈I(ba)〉 = p0〈I(b′a′)〉, the median is equal to
〈I(b′a′)〉

〈I(ba)〉+〈I(b′a′)〉 .
As shown by the relations in Eqs. (13) to (17), through the first-order SPM Kernels Ki,(ba)(α, β)

and the co- and cross-spectra R̂ij(α, β), the two parameters p0 and r depend on the layer thickness
values and the relative permittivity values, on the incidence and scattering angles and on the statistical
parameters of all rough boundaries. For a structure with one, two or three slightly rough surfaces, the
analytical expressions for both parameters p0 and r can be derived from the co- and cross-spectrum
formulas (Eqs. (5) to (8)) and from the closed-form formulas given in the appendix for the SPM-Kernels.

For a given observation direction, the random variable V(ba,b′a′) follows a heavy-tailed distribution
and does not have a finite mean and a finite variance [8]. In contrast, the mean and the variance of
S(b′a′,ba) are finite. After some mathematical operations, we find the first- and second-order moments
as follows:

〈S(b′a′,ba)〉 =
2p0r

2 − (p0 − 1)
(p0 − 1)2 + 4p0r2

+
p0(p0 − 1)(1 − r2)

[(p0 − 1)2 + 4p0r2]3/2
ln

(
p0

√
(p0 − 1)2 + 4p0r2 + (p0 − 1) + 2r2√

(p0 − 1)2 + 4p0r2 + (p0 − 1) − 2p0r2

)
(22)

〈S2
(b′a′,ba)〉 =

(p0 + 1)
[
(p0 − 1)2 + p0r

2(3 − p0)
]− 8p2

0r
2(1 − r2)

[(p0 − 1)2 + 4p0r2]2

+
2p0(1−r2)

[
p0r

2(3p0−1)−(p0−1)2
]

[(p0−1)2+4p0r2]5/2
ln

[
p0

√
(p0−1)2+4p0r2+(p0−1)+2r2√

(p0−1)2 + 4p0r2+(p0−1)−2p0r2

]
(23)

We deduce from Eqs. (22) and (23) the variance with σ2
S(b′a′,ba)

= 〈S2
(b′a′,ba)〉 − 〈S(b′a′,ba)〉2.

When r = 1, the LRSI remains unchanged from a stratified structure realization to another, and we
have Prob

{
S(b′a′,ba) = 1/(1 + p0)

}
= 1. When r = 0 and p0 = 1, the PDF does not contain information

about the stratified medium because the random variable S(b′a′,ba) is uniformly distributed between 0
and 1. In this case, we have: 〈S(b′a′,ba)〉 = 1/2 and 〈S2

(b′a′,ba)〉 = 1/3.
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5. NUMERICAL RESULTS

We consider a stratified medium air/clayey soil/rock with or without a snow layer. A h- or v-polarized
plane wave of wavelength λ = 30 cm impinges on the structure under the angles θ0 = 30◦ and
φ0 = 0◦. We consider Gaussian and exponential function correlations with the rms-heights σ1 = 0.015λ,
σ2 = 0.022λ and σ3 = 0.023λ and the correlation lengths lx1 = ly1 = 0.2λ or ly1 = 2lx1 = 0.4λ,
lx2 = ly2 = 0.25λ and lx3 = ly3 = 0.3λ. The average thickness of the snow layer under consideration
is d2 = 0.35λ and that of the clayey layer is d3 = 2λ. The relative permittivity values are εr1 = 1,
εr2 = 3, εr3 = 9.5 − i0.00055 and εr4 = 20.5 − i2.55 [4]. The first configuration (C1) under study has
no snow cover, and the other three configurations (C2, C3 and C4) have one. For configuration C1, the
air/clayey soil and clayey soil/rock boundaries are isotropic and uncorrelated. For configuration C2, all
interfaces are isotropic and uncorrelated. For configuration C3, the air/snow boundary is anisotropic
with ly1 = 2lx1 = 0.4λ, but all interfaces are uncorrelated. For configuration C4, all interfaces are
isotropic. The snow/clayey soil and clayey soil/rock boundaries and the air/snow and clayey-soil/rock
boundaries are not correlated with q23 = q13 = 0. By contrast, the air/snow and snow/clayey soil
interfaces are highly correlated with q12 = 9/10. We have analyzed these configurations in [1] by using
the probability law of the co- and cross-polarized intensity ratios V(bb,aa) and V(ba,aa). Here we analyze
these 4 configurations by using the statistical distribution of the LRSI for which the mean and standard
deviation are defined. Moreover, we consider boundaries with Gaussian and non-Gaussian spectra.

Figure 2 shows the theoretical PDFs of S(vv,hh) = Ivv/(Ihh + Ivv) in the backscattering direction
θ = −30◦ for the four configurations. The theoretical PDFs are given by Eq. (19). For the four
configurations and the two types of correlation functions, the Table 1 gives the two parameters r and p0

obtained from Eqs. (13) and (14), the mean 〈S(vv,hh)〉, obtained from Eq. (22), the standard deviation
σS(vv,hh)

derived from Eqs. (22) and (23) and the maximum position s0 obtained from Eq. (20). The
PDF-curves change weakly from one correlation function to another because the two parameters p0

and r defining the probability law depend very little on the correlation function. For example, for the
configuration C1, we find p0 = 0.576 and r = 0.991 in the Gaussian case and p0 = 0.568 and r = 0.991
in the non-Gaussian case, respectively. In fact, the determining factor upon the properties of the LRSI
is the snow cover. The largest value of the standard deviation σS(vv,hh)

is found for configuration (C1)
without the snow layer. Consequently, for the three structures with the snow layer, the PDF curve
is narrower and the maximum value is therefore higher. The cross-correlation (C4) compared with
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Figure 2. PDF of S(vv,hh) in the backscattering direction for the 4 configurations with Gaussian and
exponential correlation functions.



Progress In Electromagnetics Research C, Vol. 94, 2019 81

Table 1. Values of r, p0, 〈S〉, σS and s0 characterizing the random variable S(vv,hh) in the backscattering
direction for the four configurations.

Correlation C1 C2 C3 C4

r
Gauss. 0.991 0.996 0.994 0.996
Exp. 0.991 0.995 0.993 0.995

p0
Gauss. 0.576 0.768 0.772 0.726
Exp. 0.568 0.767 0.773 0.718

〈S〉 Gauss. 0.631 0.565 0.563 0.578
Exp. 0.634 0.565 0.563 0.580

σS
Gauss. 0.0858 0.0634 0.0755 0.0662
Exp. 0.0852 0.0685 0.0809 0.0689

s0
Gauss. 0.636 0.566 0.565 0.580
Exp. 0.640 0.566 0.565 0.583
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Figure 3. Theoretical PDF of S(vv,hh) and normalized histogram in the backscattering direction for
the 4 configurations with Gaussian correlation functions.

configuration (C2) where the three interfaces are isotropic and uncorrelated causes a little shift in the
peak position and the anisotropy (C3), a slight decrease in the maximum value. We can also note that
the snow layer causes an increase in the value of s0 and as a result, a shift of the maximum to the left.
If we consider the random variable S(hh,vv) in place of S(vv,hh), the shift occurs on the right.

Figure 3 shows the PDFs of S(vv,hh) in a backscattering θ = −30◦ and the normalized histograms
derived from Monte-Carlo simulations for Gaussian correlation functions. The histograms are derived
from 5000 results obtained with the relations in Eqs. (9) and (10) and estimated on areas of 900λ2.
Comparisons are good and confirm the validity of the analytical formulation in the backscattering
direction.

Figure 4 shows the PDF of the cross-polarized S(hv,vv) = Ihv/(Ihv + Ivv) under the observation
direction defined by θ = −50◦ and φ = 40◦. Table 2 gives the parameter values of the random variable
S(hv,vv). We can draw similar conclusions to the previous case. The key factor influencing the probability
law of the LRSI is the snow cover. The PDF weakly changes from one correlation function to another
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Figure 4. PDF of S(hv,vv) under the observation direction defined by θ = −50◦ and φ = 40◦ for the 4
configurations with Gaussian and exponential correlation functions.

Table 2. Values of r, p0, 〈S〉, σS and s0 characterizing the random variable S(hv,vv) in the observation
direction (θ = −50◦; φ = 40◦) for the four configurations.

Correlation C1 C2 C3 C4

r
Gauss. 0.961 0.976 0.968 0.975
Exp. 0.961 0.972 0.967 0.972

p0
Gauss. 4.92 3.11 3.20 3.75
Exp. 5.00 3.17 3.22 3.88

〈S〉 Gauss. 0.188 0.256 0.255 0.225
Exp. 0.186 0.254 0.254 0.220

σS
Gauss. 0.109 0.106 0.117 0.102
Exp. 0.108 0.112 0.118 0.104

s0
Gauss. 0.159 0.237 0.230 0.204
Exp. 0.157 0.233 0.228 0.198

and we can note that for this observation direction, the standard deviation weakly changes from one
configuration to another. But the lowest value of the mean 〈S(hv,vv)〉 is found for configuration (C1)
without the snow layer. When there is a snow layer, the maximum of the PDF of S(hv,vv) is shifted to
the right.

Figure 5 gives the S(hv,vv) PDF curves and the normalized histograms obtained from Monte-Carlo
simulations for the observation direction defined by θ = −50◦ and φ = 40◦ and for the non-Gaussian
spectra. As in the backscattering direction, the comparisons are conclusive and validate the closed-
formulae for the PDF of the cross-polarized LRSI in the case of non-Gaussian correlation functions.

Figure 6 shows the PDF curves of the random variable S(hv,vv) under the observation direction
defined by θ = 60◦ and φ = 90◦. Table 3 gives the values of parameters associated with S(hv,vv). As
shown previously, the PDF weakly changes from one correlation function to another. In contrast, the
influence of snow cover upon the probability law of the LRSI is well marked. The largest value of
the standard deviation σS(vv,hh)

is found for configuration (C1) without the snow layer. For the three
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Figure 5. Theoretical PDF of S(hv,vv) and normalized histogram for the 4 configurations with
exponential correlation functions under θ = −50◦ and φ = 40◦.

Table 3. Values of r, p0, 〈S〉, σS and s0 characterizing the random variable S(hv,vv) in the observation
direction (θ = 60◦; φ = 90◦) for the four configurations.

Correlation C1 C2 C3 C4

r
Gauss. 0.723 0.547 0.565 0.701
Exp. 0.744 0.537 0.589 0.717

p0
Gauss. 0.393 0.102 0.0903 0.167
Exp. 0.423 0.129 0.0880 0.204

〈S〉 Gauss. 0.670 0.839 0.852 0.795
Exp. 0.659 0.814 0.856 0.770

σS
Gauss. 0.228 0.187 0.178 0.195
Exp. 0.227 0.200 0.174 0.202

s0
Gauss. 0.810 1 0.997 0.940
Exp. 0.784 1 0.993 0.917

configurations with the snow cover, the PDF curves are narrower and the standard derivation value are
therefore smaller. For configurations C2, 0 < p0 < 1 and r2 ∈

]
0, 1−p0

3

]
. Consequently, the PDF is an

increasing function and attains its maximum when s = s0 = 1. We can always observe that when there
is a snow layer, the maximum of the PDF of S(hv,vv) is shifted to the right.

Figure 7 shows the PDF of the random variable S(hv,vv) associated with the observation direction
θ = 60◦ and φ = 90◦ in the Gaussian case and the normalized histograms obtained from 5000 Monte-
Carlo simulations. As for both previous observation directions, the comparisons are conclusive and
validate the analytical expressions for the probability law of the LRSI obtained within the framework
of the first-order SPM.

The two parameters p0 and r are defined from the first-order SPM kernels and the co- and cross-
spectra of rough interfaces. Consequently, the values of both parameters change with the snow cover
thickness, but for the configurations under study, the LRSI-PDF allows to differentiate the cases with
and without the snow cover when the snow layer thickness is greater than λ/10.
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Figure 6. PDF of S(hv,vv) in the perpendicular plane for the 4 configurations with Gaussian and
exponential correlation functions.
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Figure 7. Theoretical PDF of S(hv,vv) and normalized histogram in the perpendicular plane for the 4
configurations with Gaussian correlation functions.

6. CONCLUSION

In this paper we look for the statistical properties of the co- and cross-polarized Layered Rough Surface
Index (LRSI) for three-dimensional layered structures with an arbitrary number of slightly rough
boundaries and illuminated by an electromagnetic plane wave. For infinite surface areas and Gaussian
centered height distributions, we have shown within the framework of the first-order small perturbation
method that the probability density function and the cumulative density function of the LRSI are fully
determined by two parameters that depend on the layer thickness values and the relative permittivity
values, on the incidence and scattering angles and on the statistical parameters of all rough boundaries.
Contrary to the intensity ratio which follows a heavy-tailed distribution, the LRSI probability law has
a finite mean and a finite variance whose analytic expressions we have established.
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For a structure air/clayey soil/rock, we have analyzed the influence of a snow layer upon the
probability laws in the cases of Gaussian and exponential correlation functions, and we have shown that
the PDF shape is truly informative and allows to differentiate the cases with and without the snow
cover. For the structure under study, the properties of the LRSI change weakly from one correlation
function to another, and the determining factor upon the properties is the snow cover.

We have also compared the theoretical PDF curves and the normalized histograms derived from
Monte-Carlo simulations. The comparisons are conclusive and validate the analytical expressions
established in this paper. The LRSI statistics are useful tools for studying, characterizing and monitoring
a land snow cover.

APPENDIX A. ANALYTICAL EXPRESSIONS OF THE FIRST-ORDER SPM
KERNELS FOR A STRATIFIED STRUCTURE WITH THREE ROUGH
INTERFACES

The first-order SPM kernels Ki,(ba) can be obtained by an iterative formula as shown in [6]. We have
derived from this formula the analytical expressions of Ki,(ba) for a stack of three rough interfaces. We
denote the mean thicknesses of the second and third layers by d2 and d3. For a h-polarized incident
wave, the factors Ki,(hh)(α, β) and Ki,(vh)(α, β) associated with the progressive plane waves (i.e., for
α = k1 sin θ cos ϕ and β = k1 sin θ sin ϕ) are defined as follows:

K1,(hh) = j(k2
1 − k2

2)
γ10 cos(ϕ − ϕ0)

rh(γ0)rh(γ)

{
γ30 [γ20 cos(γ20d2) cos(γ30d3) − γ30 sin(γ20d2) sin(γ30d3)]
+jγ40 [γ30 sin(γ20d2) cos(γ30d3) + γ20 cos(γ20d2) sin(γ30d3)]

}

×
{

γ3 [γ2 cos(γ2d2) cos(γ3d3) − γ3 sin(γ2d2) sin(γ3d3)]
+jγ4 [γ3 sin(γ2d2) cos(γ3d3) + γ2 cos(γ2d2) sin(γ3d3)]

}
(A1)

K2,(hh) = j(k2
2 − k2

3)
2γ10γ20γ2 cos(ϕ − ϕ0)

r(h)(γ)r(h)(γ0)
[γ30 cos(γ30d3) + jγ40 sin(γ30d3)]

[γ3 cos(γ3d3) + jγ4 sin(γ3d3)] (A2)

K3,(hh) = j(k2
3 − k2

4)
2γ10γ20γ30γ2γ3 cos(ϕ − ϕ0)

r(h)(γ)r(h)(γ0)
(A3)

K1,(vh) = j(k2
1 − k2

2)
2k1γ10γ2 sin(ϕ − ϕ0)

r(v)(γ)r(h)(γ0)

{
γ30 [γ20 cos(γ20d2) cos(γ30d3)−γ30 sin(γ20d2) sin(γ30d3)]
+jγ40 [γ30 sin(γ20d2) cos(γ30d3)+γ20 cos(γ20d2) sin(γ30d3)]

}

×
{

k2
3γ4

[
k2

2γ3 cos(γ2d2) cos(γ3d3) − k2
3γ2 sin(γ2d2) sin(γ3d3)

]
+jk2

4γ3

[
k2

3γ2 sin(γ2d2) cos(γ3d3) + k2
2γ3 cos(γ2d2) sin(γ3d3)

] } (A4)

K2,(vh) = j(k2
2 − k2

3)
2k1k

2
2γ10γ20γ2γ3

r(v)(γ)r(h)(γ0)
sin(ϕ − ϕ0) [γ30 cos(γ30d3) + jγ40 sin(γ30d3)]

× [k2
3γ4 cos(γ3d3) + jk2

4γ3 sin(γ3d3)
]

(A5)

K3,(vh) = j
2γ10γ20γ30γ2γ3γ4k1k

2
2k

2
3k

2
3k

2
4

rh(γ0)rv(γ)
sin(ϕ − ϕ0) (A6)

where
rh(γ) = γ2γ3(γ1 + γ4) cos(γ2d2) cos(γ3d3) −

(
γ2

2γ4 + γ1γ
2
3

)
sin(γ2d2) sin(γ3d3)

+j
[
γ2

(
γ1γ4 + γ2

3

)
cos(γ2d2) sin(γ3d3) + γ3

(
γ2

2 + γ1γ4

)
sin(γ2d2) cos(γ3d3)

]
(A7)

and
rv(γ) = k2

2k
2
3γ2γ3

(
γ1k

2
4 + k2

1γ4

)
cos(γ2d2) cos(γ3d3) −

(
k2

1k
4
3γ

2
2γ4 + k4

2k
2
4γ1γ

2
3

)
sin(γ2d2) sin(γ3d3)

+j

[
k2

3γ3

(
k2

1k
2
4γ

2
2 + k4

2γ1γ4

)
sin(γ2d2) cos(γ3d3)

+k2
2γ2

(
k2

1k
2
4γ

2
3 + k4

3γ1γ4

)
cos(γ2d2) sin(γ3d3)

]
(A8)



86 Dusséaux and Afifi

The quantities r0h and r0v are deduced from Eqs. (A7) and (A8) with r0h = rh(α0, β0) and r0v =

rv(α0, β0). The propagation coefficients γi and γi0 are defined as γi(α, β) =
√

k2
i − α2 − β2 and

γi0 = γi(α0, β0).
For a v-polarized incident wave, the co- and cross-polarized SPM-kernels Ki,vv(α, β) and Ki,hv(α, β)

are given as follows:

K1,(vv) =
j2γ10(k2

1 − k2
2)

rv(γ0)rv(γ)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2
2χχ0

[
k2

4γ3

(
k2

3γ2 cos(γ2d2) cos(γ3d3) − k2
2γ3 sin(γ2d2) sin(γ3d3)))

)
+jk2

3γ4

(
k2

3γ2 cos(γ2d2) sin(γ3d3) + k2
2γ3 sin(γ2d2) cos(γ3d3)

) ]

×
[

k2
4γ30

(
k2

3γ20 cos(γ20d2) cos(γ30d3) − k2
2γ30 sin(γ20d2) sin(γ30d3)

)
+jk2

3γ40

(
k2

2γ30 sin(γ20d2) cos(γ30d3) + k2
3γ20 cos(γ20d2) sin(γ30d3)

) ]

−k2
1γ2γ20cos(ϕ−ϕ0)

[
k2

3γ4

(
k2

2γ3 cos(γ2d2) cos(γ3d3)−k2
3γ2 sin(γ2d2) sin(γ3d3)

)
+jk2

4γ3

(
k2

3γ2 sin(γ2d2) cos(γ3d3)+k2
2γ3 cos(γ2d2) sin(γ3d3)

)]

×
[

k2
3γ40

(
k2

2γ30 cos(γ20d2) cos(γ30d3) − k2
3γ20 sin(γ20d2) sin(γ30d3)

)
+jk2

4γ30

[
k2

2γ30 cos(γ20d2) sin(γ30d3) + k2
3γ20 sin(γ20d2) cos(γ30d3)

] ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

K2,(vv) =
2jk2

1k
2
2γ10γ20γ2(k2

2 − k2
3)

rv(γ0)rv(γ)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
k2

3γ3γ30

(
k4

4χχ0 − k2
2k

2
3γ4γ40 cos(ϕ − ϕ0)

)
cos(γ3d3) cos(γ30d3)

− (k6
3γ4γ40χχ0 − k2

2k
4
4γ

2
3γ2

30 cos(ϕ − ϕ0)
)
sin(γ3d3) sin(γ30d3)

]

+jk2
3k

2
4

[
γ30

(
k2

3γ4χχ0 − k2
2γ40γ

2
3 cos(ϕ − ϕ0)

)
sin(γ3d3) cos(γ30d3)

+γ3

(
k2

3γ40χχ0 − k2
2γ4γ

2
30 cos(ϕ − ϕ0)

)
cos(γ3d3) sin(γ30d3)

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A10)

K3,(vv) =
j2γ10γ20γ30γ2γ3k

2
1k

4
2k

2
3

(
k2

3 − k2
4

) (
k2

4χχ0 − k2
3γ4γ40 cos(ϕ − ϕ0)

)
rv(γ0)rv(γ)

(A11)

K1,(hv) =
2j(k2

1 − k2
2)k1γ10γ20 sin(ϕ − ϕ0)
rv(γ0)rh(γ)[

k2
3γ40

(
k2

2γ30 cos(γ20d2) cos(γ30d3) − k2
3γ20 sin(γ20d2) sin(γ30d3)

)
+jk2

4γ30

(
k2

2γ30 cos(γ20d2) sin(γ30d3) + k2
3γ20 sin(γ20d2) cos(γ30d3)

) ]

×
[

γ3 (γ2 cos(γ2d2) cos(γ3d3) − γ3 sin(γ2d2) sin(γ3d3))
+jγ4 (γ2 cos(γ2d2) sin(γ3d3) + γ3 sin(γ2d2) cos(γ3d3))

]
(A12)

K2,(hv) =
2j(k2

2 − k2
3)k1k

2
2γ10γ20γ30γ2 sin(ϕ − ϕ0)

rv(γ0)rh(γ)
[
k2

3γ40 cos(γ30d3) + jk2
4γ30 sin(γ30d3)

]
× [γ3 cos(γ3d3) + jγ4 sin(γ3d3)] (A13)

K3,(hv) =
2j(k2

3 − k2
4)k1k

2
2k

2
3γ10γ20γ30γ40γ2γ3 sin(ϕ − ϕ0)
rv(γ0)rh(γ)

(A14)

where χ =
√

α2 + β2 and χ0 =
√

α2
0 + β2

0 .
When k2 = k3 = k4 we obtain the first-order SPM Kernels associated with a single rough surface

separating two media [2]. When k3 = k4, we find the first-order SPM Kernels for a stack of two slightly
rough interfaces [5]. In addition, we verified that the SPM-kernel values derived from analytical formulas
presented in this appendix become identified with those derived from recurrence formulas established
in [6].

In the incidence plane (i.e., in the plane ϕ = ϕ0), we find that Ki,(hv) = Ki,(vh) = 0 for 1 ≤ i ≤ 3.
As a result, in the incidence plane, there is no depolarization and the cross scattering amplitudes
A

(1)
(b�=a,a)(α, β) are equal to zero and the cross-polarized LRSI S(ba,aa) is equal to zero.
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In the perpendicular plane (i.e., in the plane ϕ = ϕ0 ± 90◦), Ki,(hh) = 0 and Ki,(vh) �= 0. As a

result, under a horizontal polarized incidence, the scattering amplitude A
(1)
(hh)(α, β) is equal to zero and

the cross-polarized LRSI S(vh,hh) equal to the unity. By contrast, Ki,(vv) �= 0 and Ki,(hv) �= 0. So, we
can analyze the stratified medium by means of the PDF of random variable S(hv,vv) = Ihv/(Ihv + Ivv).
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7. Dusséaux, R., S. Afifi, and M. Dechambre, “Scattering properties of a stratified air/snow/sea ice
medium. Small slope approximation,” Comptes Rendus Physique, Vol. 17, No. 9, 995–1002, Elsevier
Masson, 2016.
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