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Plane Wave Scattering by Patches Periodically Placed
on a Dielectric Rod Surface

Alexander Ye. Svezhentsev1, *, Valeriy A. Kizka2, and Guy A. E. Vandenbosch3

Abstract—Plane wave diffraction by a finite number of metal cylindrical rectangular strips (patches)
periodically placed on a dielectric rod (DR) surface in azimuth direction is considered. The problem is
solved by the Method of Moments (MoM) in the spectral domain using Piece Wise Sinusoidal (PWS)
basis functions. Topologies with a highly resonant behavior of the patch currents in both azimuth and
longitudinal directions are considered. This includes topologies with 1, 2, or 3 patches that are nearly
touching, in which case one can also view the topology as a slotted metal cylinder. For these slotted
cylinders with one and two slots it is shown that 2D approximate analytical solutions based on the
rigorous Riemann-Hilbert approach yield a good agreement with 3D MoM solutions for the natural
frequency of the half wavelength resonance until the slot width reaches 40◦. It is found that in the 3D
case the natural frequency of the half-wavelength resonance for gap coupled patches tends to zero when
the slot is vanishing. The radar cross-section versus frequency, resonant current distributions on the
patches and far fields are presented.

1. INTRODUCTION

The topology with metal cylindrical rectangular strips (patches) on a circular dielectric rod (DR) surface
can be used in different applications. For example, it can serve as a capacitor in different types of sensing
and measurement applications, where it can be used to measure the capacitance between two or more
conductors [1]. When the patches are made of noble metals (silver, gold) the topology can be used
in cylindrically conformal nanoantennas [2]. The energy concentration in restricted areas, so much
required in this research field, can be realized at the resonant frequencies.

In the far past, a similar 2D problem was rigorously solved by the Riemann-Hilbert method. In
this case the patches were infinitely long in z-direction and the structure was excited by an electron
beam moving along the circle [3]. A detailed analysis of the 2D spectral problem for a slotted circular
cylinder with one and two slots, symmetrically located, using above mentioned rigorous approach was
presented in [4, 5].

The goal of this paper is to find the resonant behavior of topologies consisting of a finite number
of patches periodically placed on the DR surface in the azimuth direction. A plane wave is used as
excitation. The problem is solved with the Method of Moments (MoM), using Galerkin’s scheme,
realized in the spectral domain using PWS basis functions. In [6–8] a similar approach was applied to a
cylindrical conformal antenna problem with patches of complex shape. There, the solution efficiency was
improved by extracting the asymptotical behavior of the spectral Green’s function (GF) in the spectral
domain, and adding the spatial equivalent in the spatial domain. A similar approach was followed to
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compensate for the surface wave poles in the spectral GF [6–8]. We adopt these techniques also in this
paper.

This paper presents the numerical investigation of the radar cross section (RCS) versus frequency
for different configurations. Comparisons between 2D and 3D solutions in terms of resonant frequencies
versus slot width are given. Current distributions and far field patterns are plotted at the resonant
frequencies for different plane wave orientations.

2. PROBLEM FORMULATION AND SOLUTION

The structure under investigation is shown in Fig. 1. Consider an infinitely long dielectric cylinder or
rod (DR) of relative permittivity εr with radius r0. A finite number of patches N is conformally placed
on the DR surface in azimuth direction. Their dimension in z-direction is Wz. Note that when the slots
between the patches are small the structure can be seen as a gap-coupled patch configuration.
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Figure 1. DR with patches periodically placed in azimuth direction.

Omitting all time dependencies eiωt, let the plane wave be

�Einc = �E0 exp
(
−ik0(�n�R)

)
(1)

coming from infinity in �n direction, as shown in Fig. 2. In Eq. (1) k0 = 2π/λ0, where λ0 is the free
space wavelength.

The direction �n can be expressed in a spherical coordinate system, yielding the angles α and β. The
angle between the �Einc vector and the z-axis is γ [6, 7]. Since in this paper we only consider normally
incident plane waves with α = 90◦, γ = 0◦ corresponds with an E-polarized wave (Ez �= 0, Hz = 0),
and γ = 90◦ corresponds with an H-polarized wave (Hz �= 0, Ez = 0).

To find the unknown current distribution on the patches we need to solve the integral equation [6, 7]

E0,exc
s (r0, z, ϕ) + EJ

s (r0, z, ϕ) = 0, (2)

where s = (z, ϕ), E0,exc
s (r0, z, ϕ) is the excitation field produced by the plane wave, and EJ

s (r0, z, ϕ) is
the field produced by the patch current Je

z,ϕ(r0, ϕ
′, z′) [9], which can be expressed as

EJ
s (r0, ϕ

′, z′) =
∫
z′

∫
ϕ′

[
Je

z(r0, ϕ
′, z′)

Je
ϕ(r0, ϕ

′, z′)

]
ĜJ (r0, r0, z, z′, ϕ, ϕ′)dS′, (3)

where ĜJ(r0, r0, z, z′, ϕ, ϕ′) is the Green’s function in the spatial domain, and S′ is the total patch
surface. This integral equation can be solved by using the moment method with Galerkin’s scheme
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Figure 2. Plane wave orientation angles.

applied in the spectral domain. In this scheme the surface current is first expanded in basis functions
as [6–8]

Js =
NB∑
q=1

αqJb
qs, (4)

where αq are the unknown amplitudes of the basis functions; Jb
qs are the basis functions (PWS); and

NB is the total number of basis functions. The moment method transforms the integral equation (2)
into a system of linear algebraic equations (SLAE) [6, 7]

Zα = V (5)

where α[i] = αi. Z is the impedance matrix evaluated in the spectral domain as

Zik =
1

4π2

∞∑
n=−∞

∞∫
h=−∞

J̃t
i(r0,−n,−h) ̂̃GJ

(r0, n, h)J̃b
k(r0, n, h)dh, (6)

where ̂̃GJ

(r0, n, h), J̃b(r0, n, h), and J̃t(r0,−n,−h) are the Fourier transforms (FT) of ĜJ , Jb
qs, and Jt

qs,

respectively, with Jt
qs being the test function. The spectral Green’s function ̂̃GJ

(r0, n, h) components
are available in Appendix A (see Eq. (A1)). To speed up the calculations in Eq. (6) the spectral GF
asymptotes were extracted in the spectral domain and added again in the spatial domain, as in [6–8].
Note that the principal terms of these spectral asymptotes are the same as in [6–8]. In Eq. (5) the
elements of the voltage column vector V are calculated in the spatial domain as

V s
i = −

∫∫
Si

ds′Jt
isE

0,exc
s (r0, z, ϕ), (7)

where Si is the surface of the ith basis function. The spectral components of the excitation field are
presented in Appendix A (see Eqs. (A2)–(A3)). The Fourier transforms of the basis functions and the
final formulas for the calculation of the elements V s

i can be found in Appendix C of [6].
Using the solution of Eq. (5) and working out the approximation of the scattered field in Eq. (3)

in the far zone [10], the far field EJ
s (r0, z, ϕ) can be presented as a spherical wave E,J(R, θ, ϕ). Then

the RCS can be evaluated as

σuv =
4π

∣∣EJ (R, θ = π/2, ϕ = β) · v∣∣2
|E0

u|2
, (8)
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where u = (z, ϕ), EJ · v is the v-component (v = (θ, ϕ)) of the scattered field in the direction reverse
to the plane wave arrival, i.e., in the −n direction. In Eq. (8), u and v stand for the vector component
considered for the incident plane wave field and scattered field, respectively.

3. PHYSICAL ASPECTS OF THE HALF-WAVELENGTH RESONANCE OF THE
HELMHOLTZ TYPE IN THE INFINITE SLOTTED CYLINDER

In this section the physical link between the modes in a 2D infinite circular metal cylinder with one or
two slots and the modes in the structure as defined in the previous section is explained. A detailed study
of the 2D infinite circular metal cylinder is given in [3–5]. The cylinder without slots, see Fig. 3(a),
essentially yields a 2D (Neumann) boundary value problem. The solution of this problem yields a
resonant wave number kres (kres = 2π/λres) that starts with kres = 0 for the static case, having a
z-component of the magnetic field Hz = 0. Formally this mode can be introduced as H00.
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Figure 3. Cross-section of the 2D infinite cylinder: (a) without slots, (b) with one longitudinal slot,
(c) with two symmetrically positioned longitudinal slots. The transverse electric field force lines are
shown schematically for the lowest H00 mode.

However, when a slot with a very small angular width 2θs is introduced, see Fig. 3(b), the H00

mode is a real mode, with a resonant field and a wave number that are non-zero, namely [3–5]:

kresr0 ∼ ln− 1
2 (θs) , θs � 1, (9)

In the case of a cylinder with two symmetrical slots, see Fig. 3(c), a polarization degeneration occurs,
and two modes H+

00 and H−
00 appear in the mode spectrum instead of one H00 mode. The lowest one is

the H−
00 mode whose transverse electric field distribution is shown in Fig. 3(c). Note that formula (9)

stays valid also in the case of two slots.
Physically, the emergence of non-zero H00 modes is associated with the appearance of the so-called

half-wave length resonance, which in the case θs � 1 is low frequency and thus quasi-static, that is,
kres → 0 when θs → 0. (10)

Note that the term “half-wave length resonance” was not used in [3–5]. Instead the resonance was called
“slotted resonance”, which is not quite correct, since the resonance is related to the size Wϕ, and not
to the size of the slot.

The infinite metal cylinder with one longitudinal slot has an equivalent in acoustics: a volume cavity
with a hole [3–5, 11]. In acoustics, the so-called Helmholtz resonance is found. It is very instructive to
see that in electromagnetics for a metal sphere with a hole the low-frequency analogue of the Helmholtz
resonance does not exist [4]. One of the goals of this article is to answer the question whether there are
low-frequency half-wave length resonances in the 3D case when the metal cylinder is finite, i.e., formed
by finite patches on the surface of a circular DR.
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4. RESULTS

Consider the situation with one slotted cylinder (N = 1) with dimensions Wz and Wϕ in z- and ϕ-
direction, respectively, and slot width 2θs (see Fig. 4). First we discuss how the RCS depends on
frequency for the structural parameters: r0 = 2.1 cm, Wz = 5.95 cm, Wϕ = 2r0(π − θs), εr = 2.25. The
patch was meshed into 15 × 36 segments, which corresponds to NBz = 504 and NBϕ = 525, where
NBz and NBϕ are the number of z and ϕ-directed basis functions, respectively. We consider normal
incidence along the x-axis, i.e., α = 90◦ and β = 0◦, with γ = 45◦ to observe both polarizations at the
same time. For θs = 10◦ the results of the 3D MoM calculations are presented in Fig. 5(a) in terms of
the σϕϕ (curve 1) and σzθ (curve 2) versus frequency. The peak of the curve 1 in Fig. 5(a) corresponds
to the resonant frequency fres = 0.81 GHz of the principal half wavelength resonance. It is seen that the
σϕϕ dependence has a clear peak whereas the σzθ curve is quite smooth with a resonance occurring at
fres = 1.35 GHz. This corresponds to the case where the half wavelength fits on the patch in z-direction.
The resonant current distributions (modulus) of the Jϕ-component and the Jz-component are shown in
Fig. 5(b) and Fig. 5(c), respectively.

Varying the slot width θs, the resonant frequency versus θs is given as curve 1 in Fig. 6. This 3D
MoM result will be compared with results obtained with the rigorous 2D model given in [4, 5] and with
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Figure 4. (a) DR with patch in the form of a slotted cylinder, (b) cross-sectional view.
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Figure 5. (a) RCS versus frequency, 1 — σϕϕ and 2 — σzθ, for DR with a patch in the form of a slotted
cylinder, (b) the amplitude of the Jϕ current distribution at the resonant frequency fres = 0.81 GHz,
(c) the amplitude of the Jz current distribution at the resonant frequency fres = 1.35 GHz.
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the simple physical model where the half wavelength in the medium is equal to the patch length.
Modifying the rigorous theory of [4] by taking into account the dielectric filling, the resonant wave

number kres of the slotted cylinder obeys the approximate equation for small θs values:

(εr + 1)(kresr0)2
[
1 + iπ(kresr0)2

]
+ ln−1 sin(θs/2) = 0, (11)

which gives an approximate solution for the real part of the resonant frequency

fres =
0.3

2πr0

[− ln−1 sin(θs/2)
(εr + 1)

]1/2

[GHz] (12)

The same result is obtained by applying the transverse resonance technique to the similar wave guiding
problem for the slotted wave as given in [5].

On the other hand, we can apply simple planar patch antenna theory, which tells us that basically
the resonant wavelength in the dielectric medium under the patch is twice the patch length in the
resonant direction, and thus

λg = 2L ⇒ λres√
εr

= 2L ⇒ fres =
0.3√
εr2L

[GHz] (13)

where λg is the wavelength in the medium, and L is the patch size in the resonant direction. In the
considered conformal patch case of Eq. (11) can be rewritten as

fres =
0.3√

εr4r0(π − θs)
[GHz] (14)

The resonant frequencies obtained by formulas (12) and (14) are presented in Fig. 6 as curves 2 and 3,
respectively. All geometrical and material parameters remain the same as for Fig. 5.

A comparison of the curves shown in Fig. 6 yields the following. (1) In the range 1◦ < θs < 20◦
the 3D and 2D solutions demonstrate a good agreement. (2) For the 3D MoM solution with subdomain
basis functions it is difficult (large memory, time consuming) to obtain a good result for very small slot
widths, namely, θs < 1◦, unless we considerably increase the number of basis functions. (3) For very
small θs angles the resonant frequency decreases to zero very fast in accordance with the analytical 2D
formula demonstrating the ln−1(θs) analytical behavior, which, in our opinion, also takes place in 3D
case provided that the number of basis functions is sufficient. (4) The approximation (14) does not
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work at all for small θs because this formula neglects the capacitive coupling between the two almost
touching ends.

It is important to note that all calculations in the paper were done for Wz = 5.95 cm and r0 = 2.1 cm,
namely for the case Wz/r0 = 2.833. A study of the ϕ-directed resonances when the parameter Wz/r0

varies is reported in Fig. 7. The resonant frequency (see curve 1) is given versus Wz normalized by r0

for θs = 2.5◦. All other parameters, namely, Wϕ and εr stay the same as in Fig. 6. The curve 2 is
the constant line which corresponds to the case of the infinite slotted cylinder (see curve 2 in Fig. 6
for θs = 2.5◦). In Fig. 6 the line with the arrow indicates the value Wz/r0 = 2.833, which was used in
the calculations. Note that for this Wz/r0 value the difference between curves 1 and 2 is about 5%. To
the left of this point the difference becomes bigger (when Wz/r0 decreases). On the contrary, to the
right of this point (when Wz/r0 increases) the difference becomes smaller and the curve 1 tends to a
constant value. Also it was checked that for any Wz/r0 point of curve 1 a behavior which qualitatively
is similar to the curve 1 in Fig. 6 occurs. Namely, whatever the value Wz/r0 is, the natural frequency
of the half-wavelength resonance tends to zero when the slot is vanishing. It is important to note that
the resonant frequency behavior discussed in Fig. 7 versus the parameter Wz/r0 will qualitatively take
place for all ϕ-directed resonances further in this paper.

Consider now the slotted cylinder with two slots. A cross sectional view of a DR with a double
slotted cylinder is shown in Fig. 8(a). Modifying the approximation for the natural frequency of a 2D
slotted cylinder with two symmetrically located slots given in [4] by taking into account the internal
dielectric filling, we obtain the lowest resonance frequency as:

fres =
0.3

2πr0

[− ln−1 sin(θs)
(εr + 1)/2

]1/2

[GHz] (15)

The approximate simple physical half wavelength model for the resonant frequency yields:

fres =
0.3√

εr2r0(π − 2θs)
[GHz] (16)

Results for this double slot case are shown in Fig. 8(b). All geometrical and material parameters remain
the same as for the Fig. 5(a), except that now Wϕ = r0(π − 2θs). Curve 1 corresponds to the 3D MoM
calculations, curves 2 and 3 correspond to the 2D analytical approximation by formula (15) and the
simple physical model (16), respectively.

It is seen that the 2D model in Eq. (15) and the 3D (MoM) model give similar results for θs < 20◦.
The simple physical model (16) does not work at all for small angles θs for the same reason as before,
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namely, the capacitive gap coupling is not included. The analytical 2D solution gives a ln−1/2(θs)
behavior for very small θs, which, in our opinion would also be obtained in the limit in the 3D case for
a sufficient number of basis functions in the z direction.

The amplitude and phase of the Jϕ component at resonance are shown in Fig. 9(a) and Fig. 9(b),
respectively. It is seen from Fig. 9(b) that both patches are excited in phase.

The curves in Fig. 6 and Fig. 8(b), respectively, show that the resonant frequency behavior is rather
smooth for all θs, except for θs � 1 where the resonant frequency sharply goes to zero. Physically this
means that for θs � 1 the half wavelength resonance behaves in very special way, namely, fres → 0 when
θs → 0. Thus this resonance becomes extremely low frequency and quasi static. This can be explained
by the fact that due to the almost touching ends the capacitance tends to infinity when θs → 0 [3–5].
That is why the resonant frequency goes to zero. Note that the half wavelength resonance will disappear
in the case θs = 0. In this sense this is a singular behavior. Therefore, physically, the behavior fres → 0
when θs → 0 is a property that the half wavelength resonance additionally acquires in the case of small
slot width.
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The last case considered is the DR with a triple slot cylinder (see Fig. 1 for a full view). The
slots are symmetrically located, as shown in Fig. 10(a) (cross sectional view). All three slots have the
same angular size 2θs. The other geometrical and material parameters are the same as in the previous
cases. The polarization parameter γ is again equal to 45◦. This allows considering both H- and E-
polarization at the same time. The RCS versus frequency is presented in Fig. 10(b) for θs = 10◦ which
corresponds to Wϕ = 3.665 cm. As in previous cases we observe a σϕϕ resonant behavior (see curve 2)
at fres = 1.75 GHz. However, we also see a σzz resonant behavior now (see curve 1) at fres = 1.6 GHz.
This corresponds to a half wave length resonance along z-direction (E-polar case).

The modulus of the Jz and Jϕ current distributions for the mentioned resonances are shown in
Fig. 11(a) and Fig. 11(b), respectively.

In Fig. 11(a) three parts can be observed that correspond to the half wavelength current
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distributions on the patches along z direction with two gaps in between. On the side edges of the
patches you can clearly see jumps which correspond to the Jz current edge singular behavior when the
current is parallel to the edge. Similar singular behavior is observed for the Jϕ current component in
Fig. 11(b). Concerning the phase distributions in Fig. 11, for the Jz current in Fig. 11(a) there is a
phase shift π between the middle patch and the side patches, whereas the phase of the Jϕ current (see
Fig. 11(b)) on all patches remains the same.

Normalized radiation patterns at the σzθ and σϕϕ resonances 1.6 GHz and 1.75 GHz (see Fig. 10(b))
are presented versus ϕ in the case θ = 90◦ in Fig. 12(a) and Fig. 12(b), respectively.

It is seen from Fig. 12 that in the H-polar case the radiation pattern is omnidirectional whereas in
the E-polar case it consists of two unequal beams with maxima at θ = 0◦ and θ = 180◦.

5. CONCLUSIONS

Plane wave diffraction by a finite number of patches periodically placed on a DR surface in the
azimuth direction was discussed. The problem was tackled by solving integral equations with the
moment method, using a Galerkin scheme with subdomain PWS basis functions realized in the spectral
domain. The resonant regimes were found for different structure configurations. The RCS and resonant
frequencies were calculated versus slot width for different plane wave orientations.

We have shown that the resonant behaviors of the structure can be found based on the half
wavelength resonances excited in ϕ direction in a metal cylinder (finite and infinite) with one or two slots.
In these cases the presented 3D MoM solution is in good agreement with the approximate analytical 2D
Riemann Hilbert method solution for slot widths up to 40◦. The difference does not exceed 5% provided
that the ratio between patch size in z-direction and DR radius is bigger than 2.833. It was shown that
the half wavelength resonance simple model does not work at all in the case of small slot size.

It was found that there is the special behavior of the half wavelength resonance excited in ϕ-direction
for the gap-coupled patches on the DR surface when the gap is vanishing: the resonant frequency also
tends to zero. It is crucial to see that in this paper we confirmed the existence of the so-called Helmholtz
resonance, as observed in acoustics in a cavity with a hole, also in the 3D electromagnetic case. The half
wavelength resonances in both phi-direction (transverse) and z-direction (longitudinal) were observed
in the structure with three patches. Resonant current (amplitude and phase) distributions and far field
patterns were presented.

APPENDIX A.

A.1. The Spectral Green Functions

The DR with electric sheet currents on its surface can be modeled in a similar way as in [6–8]. The

components of the Green function ̂̃GJ

(r0, n, h) in the spectral domain, needed in Eq. (6), take the
following form: ̂̃GJ

(r0, n, h) =
[

χnzz(r0, h̄) χnzϕ(r0, h̄)
χnϕz(r0, h̄) χnϕϕ(r0, h̄)

]
(A1)

where χn(zz)(r0, h̄), χn(zϕ)(r0, h̄), χn(ϕz)(r0, h̄), χn(ϕϕ)(r0, h̄) are available in [6] (see Appendix A),
provided that we put Γ1 = Γ1 = 0 and as a consequence we come to Fn(h̄) = F̄n(h̄) and
γn1(r, h̄) = γ̄n1(r, h̄) in formula (A1) in [6].

A.2. Evaluation of Excitation Field

The excitation field E0,exc
s derived as a diffraction problem solution for the plane wave of Eq. (1) incident

on the circular dielectric rod, see also [6, 7], takes the form:

E0,exc
z (r, ϕ, z) =

∞∑
n=−∞

dn z(h̄, z)e−i n(ϕ−β) (A2)
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E0,exc
ϕ (r, ϕ, z) =

∞∑
n=−∞

dnϕ(h̄, z)e−i n(ϕ−β) (A3)

where dnz(h̄, z) and dnϕ(h̄, z) are available in [6] (see Appendix B), taking into account that now
Fn(h̄) = F̄n(h̄).
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