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An Artificial Neural Network Approach to DoA Estimation and
Switched Beamforming in Rectangular Array Based Smart Antennas

Robert Macharia1, *, Phillip Kibet1, and Peter Kihato2

Abstract—Switched beamforming using electronic phase shifters is commonplace. Digital switched
beamformers offer a premise of better performance than electronic phase shift switched beamformers.
It is also worth noting that current unknown signal Direction of Arrival (DoA) estimation methods
(commonly MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT)) are generally computationally intensive. In this paper, signal DoA
estimation and digital switched beamforming using aptly designed Artificial Neural Network (ANN)
classifiers are looked into. Initially, signals detected at a rectangular receiving array are mapped onto
a DoA through an ANN classifier. A second ANN classifier maps the selected DoA onto an optimal
set of beamforming weights leading to an optimal switched beamforming reception pattern. The ANN
classifiers’ performance in DoA estimation and beamforming is tested over a variety of trials, yielding
good results. The designed ANN beamformer premises to yield high-speed and accurate switched
beamforming performance, most notably in large array systems. The ANN DoA estimator/beamformer
can be easily adapted to nonuniform arrays wherein closed form DoA estimation/beamforming solutions
are impractical. MATLAB software environment has been used as the main analysis tool.

1. INTRODUCTION

A smart antenna is basically an antenna array with a signal processing back-end aimed at altering the
respective reception (or radiation) pattern to fit desired spatial signal signatures (DoA or Direction of
Departure (DoD)) [1–3]. Ideally, maximal reception (or radiation) ought to be directed towards the
DoA (or DoD) of the desired signal; minimal reception (or radiation) ought to be directed towards the
DoA (or DoD) of interfering signals.

Figure 1 illustrates a typical 2-dimension radiation pattern in polar form. Maximal radiation is
oriented towards the direction 3π

2 , minimal radiation towards the direction π
2 .

Smart antennas broadly take the form of either adaptive or switched beam antenna array categories.
An adaptive antenna array adapts the corresponding reception (or radiation) pattern ideally in real time
to optimally fit prevailing spatial signal signatures (in the perspective of desired/interferer signal DoA).
A switched beam antenna array selects a reception (or radiation) pattern from a variety of available (pre-
defined) patterns to best-fit prevailing spatial signal signatures (in the perspective of desired/interferer
signal DoA). This study involves the switched beam antenna array case.

The action of a switched beam antenna array is depicted in Fig. 2 (a simplistic illustration without
indication of side-lobes).

A typical electronic switched-beam antenna array implementation is illustrated in Fig. 3.
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Figure 1. A typical radiation pattern plot in
polar form.
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Figure 3. Switched-beam antenna array
in reception mode: LNA implies low noise
amplifier; DC implies down-conversion; ADC
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Figure 4. Structure of a typical ANN (ANN
classifier).

In Fig. 3, reception patterns are synthesized using an aptly designed phase-shift network (Butler
matrix); an action carried out at radio frequency level. A radio frequency switch selects the Butler
matrix output that yields the highest Signal to Interference and Noise Ratio (SINR). A low noise
amplification stage follows and consequently down-conversion to baseband/digitization to yield the
desired output. A case in point utilizing a Butler matrix approach is given in [4]. In [4], a 60-GHz
switched-beam patch antenna array utilizing a Butler matrix network is designed, implemented and
analyzed yielding a viable and cost effective beamformer.

In [5], an electronic switched beam antenna array featuring an interleaving array architecture is
presented. The corresponding analysis pinpoints viable performance.

In [6], an electronic switched beam antenna array for use in millimeter-wave communications is
presented.
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The work presented in [4–6] clearly cements the place of switched beam antenna array technology
in modern wireless communication systems. Although switched beam antenna array technology is
commonly achieved through electronic phase shifters at radio frequency level, it would be wise to
research into digitally implemented switched beam antenna array technology. This is a focus of this
paper: Digital switched beamforming using an ANN. Studies involving digital beam/null steering can
be found in [7–9].

Procedures aimed at obtaining signal DoA in a reception array have been variably researched into,
most notably MUSIC and ESPRIT algorithms. Studies involving the MUSIC signal DoA estimation
method can be found in [10–12]. Studies involving the ESPRIT signal DoA estimation method can be
found in [13–15]. The aforementioned signal DoA estimation procedures are typically computationally
intensive. In this paper, a computationally light and real-time ANN procedure aimed at signal DoA
estimation is presented.

A review of ANNs and Ant Colony Optimization (ACO) algorithm follows.

2. ARTIFICIAL NEURAL NETWORKS

2.1. Overview

In a variety of classification problems, traditional methods utilizing classical algorithms do not always
give satisfactory results. Such methods are typically ineffective in situations featuring nonlinearly
distributed data. The problem under consideration in this paper features nonlinearly distributed data
(matching observed signals at an array to DoA and matching signal DoA to beamforming weights).
ANN would be a “panacea” to the aforementioned classification problems.

2.2. Theory of ANNs

ANNs were initially developed from the perspective of the functionality of biological neural systems.
ANN systems typically “learn” solutions to problems by working through presented “examples”. An
ANN is primarily a network of nodes by the moniker artificial neurons. An artificial neuron is basically
modelled on the basis of a biological neuron. Neurons in an ANN are typically organized in layers
(input, hidden and output layers) [16–18]. In Fig. 4 is an illustration of a typical ANN.

In Fig. 4, the input layer comprises 4 neurons representative of some 4 independent inputs. The
hidden layer is made up of 5 neurons. The output layer comprises of 3 neurons representative of some 3
classifications. There is full connection between input-hidden layer neurons and between hidden-output
layer neurons. Each and every connection between neurons bears some weight factor. The weight factors
are usually modified in an ANN training process in accordance to some presented data.

Figure 5 illustrates the structure of an artificial neuron. The neuron features some 3 weighted
inputs. The output observed from the neuron can be expressed as per Eq. (1), where f is the
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Figure 5. The operation and structure of a single neuron.
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representative of the activation function.

y = f

(
3∑

k=1

xkwk

)
(1)

3. ANT COLONY OPTIMIZATION ALGORITHM

In this paper, the ACO algorithm has been utilized in a step geared towards creating ANN beamformer
training data as well as in ANN beamformer performance validation. The ACO algorithm is based on
the behavior of ants in a natural environment.

In a natural environment, ants foraging for food initially roam randomly from their colonies. Upon
obtaining a food source, an ant finds its way back to its colony whilst laying down a pheromone trail.
Any other ant that encounters the pheromone laden path follows it rather than taking a random path
resulting in pheromone reinforcement if it successfully obtains the expected food. With time, pheromone
evaporates from paths reducing their attractiveness, more so in long paths. Short paths end up being
more and more attractive/pheromone laden. From an artificial optimization perspective, pheromone
evaporation inherently prevents premature convergence. Reference can be made to [19–21].

The ACO algorithm mimics the aforementioned natural ant behavior. In the ACO algorithm, an
ant plays the role of the chief computation agent. Associated with an ant is a solution to the optimization
problem under consideration. An ant can be framed as having moved from some solution state x to
some other solution state y over a single iteration. In each and every iteration, an ant k computes
a set of viable solution states; A probabilistic selection of the subsequent state is made from the set.
Generally, the kth ant moves from some solution state x to some subsequent solution state y with the
probability defined in Eq. (2).

pk
xy =

(τα
xy)(η

β
xy)∑

z∈allowedy
(τα

xz)(η
β
xz)

(2)

In Eq. (2),

• τxy is the representative of the amount of pheromone deposited in a transition from solution state
x to solution state y

• α is a control on the impact of τxy

• ηxy is the representative of the desirability of state transition xy (typically obtained from 1/dxy ,
where d is the representative of distance)

• β is a control on the impact of of ηxy

• τxz and ηxz are the representatives of the attractiveness and trail levels respectively of the other
potential state transitions.

Consequently, pheromone trails are updated as per Eq. (3).

τxy ← (1− ρ)τxy +
∑

k

Δτk
xy (3)

In Eq. (3),

• τxy is the representative of the amount of pheromone deposited for a transition from solution state
x to solution state y

• ρ is the representative of a pheromone evaporation coefficient
• Δτk

xy is the representative of the amount of pheromone deposited by the kth ant

Figure 6 is representative of an ACO algorithm flowchart.
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Figure 6. ACO algorithm flowchart.

4. METHODOLOGY

4.1. Beamformer Structure Design

Figure 7 illustrates the designed beamformer structure (implemented in a MATLAB software
environment).

In Fig. 7:

• s denotes the desired signal.
• (θ, φ) denotes the signal DoA.
• w denotes the beamformer weight.
• x denotes the signal observed at some array element.
• y denotes the beamformer output.
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Figure 7. Designed beamformer structure.
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Figure 8. Adopted DoA subdivision scheme.
Each grid intersection point represents a selected
elevation/azimuth angle pair. Total count = 36
points.

The array is modeled as a planar 4 by 4 arrangement of isotropic receivers. The corresponding
array response vector ā(θ, φ) is as per Eq. (4).

ā(θ, φ) = [a11(θ, φ) a12(θ, φ) a13(θ, φ) ... a44(θ, φ)]T (4)

amn(θ, φ) is as per Eq. (5).

amn(θ, φ) = ej((m−1)(kdx sin(θ) cos(φ))+(n−1)(kdy sin(θ) sin(φ))) (5)

In Eq. (5), k denotes the wave number (2π
λ ), where λ implies the wavelength. The array element

separation distances dx and dy are fixed at λ
2 .

The signals observed at all array channels at some time instance k (x11(k) to x44(k) as per Fig. 7)
can be written succinctly as per vector x̄(k) presented in Eq. (6).

x̄(k) = [ā] · [s(k)] (6)

In Eq. (6):

• ā denotes the array response vector corresponding to the desired signal DoA.
• s(k) denotes the desired signal at instance k.

Consequently, the beamformer output can be expressed as per Eq. (7).

y(k) = w̄H(k) · x̄(k) (7)

In Eq. (7), w̄ = [w11 w12 .... w44] and x̄(k) are the beamformer weight and signal vectors,
respectively.

In this paper, the desired signal has been framed as a 4-Quadrature Amplitude Modulation (QAM)
signal.
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4.2. DoA Estimator Design

The design process of the ANN based DoA estimator is herein described. The DoA estimator is expected
to match signals observed at array terminals to appropriate DoA. This is founded on the fact that a
signal emanating from a given direction yields a unique DoA based signature on some receiving array
structure (Eq. (6)).

4.2.1. ANN Training Data Generation

The ANN DoA estimator training data is created from a pool of data corresponding to the signals
observed at the receiving array over a variety of DoA (Eq. (6)). The selected DoA are as per Fig. 8
(given precisely in Table 1).

Table 1. Adopted DoA subdivision scheme.

El. = 15 Az. El. = 45 Az. El. = 75 Az.

15 15 45 15 75 15

15 45 45 45 75 45

15 75 45 75 75 75

15 105 45 105 75 105

15 135 45 135 75 135

15 165 45 165 75 165

15 195 45 195 75 195

15 225 45 225 75 225

15 255 45 255 75 255

15 285 45 285 75 285

15 315 45 315 75 315

15 345 45 345 75 345

The signal (essentially a vector of 16 elements) observed at the receiving array is complex in nature.
To allow for usage of a scalar ANN, the complex data is framed from the perspective of the real and
imaginary components (yielding a vector of 32 elements).

4.2.2. ANN Design

Figure 9 illustrates the designed neural network. The network features 32 input layer neurons, 100
hidden layer neurons, and 36 output layer neurons. The input layer neurons correspond to observed
array signal. The output layer neurons correspond to DoA classes as per the subdivisions highlighted
in Fig. 8/Table 1.

A total of 2592 data samples are utilized (using data framed as per Section 4.2.1). 90 percent of the
samples (2332) are utilized in the ANN training stage, 5 percent of the samples (130) in the validation
stage and 5 percent of the samples (130) in the testing stage.

The ANN is trained using the scaled conjugate gradient back-propagation method.

4.3. Beamformer Design

The design process of the ANN based beamformer is herein described. The beamformer is expected to
match DoA to appropriate beamformer weights yielding optimal reception patterns.
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4.3.1. ANN Training Data Generation

Initially, beamformer weights are generated on the basis of an ACO algorithm solution to a reference
signal beamforming problem (8).

y(k) = d(k)− w̄H(k) · x̄(k) (8)

where d(k) is some training (reference) signal of convenient length.
The ACO algorithm is invoked to minimize Eq. (8) with beamformer weights w as variables.

Optimal weights generate an optimal reception pattern. Essentially, beamformer weights corresponding
to a set of pre-selected DoA are inherently obtained. The selected DoA are as per Fig. 8 (given precisely
in Table 1). The DoAs are at 30 degrees intervals in both elevation and azimuth directions within the
elevation range [15–75 degrees] and azimuth range [15–345 degrees].

I 1

I 32
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H100

O1

O36

Figure 9. Designed ANN structure.
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Figure 10. Designed ANN structure.

4.3.2. ANN Design

Figure 10 illustrates the designed neural network. The network features 2 input layer neurons, 100
hidden layer neurons, and 36 output layer neurons. The input layer neurons correspond to elevation
and azimuth angle pairs. The output layer neurons correspond to beamforming weights classes as per
the subdivisions highlighted in Fig. 8/Table 1.

A total of 2592 data samples are utilized (using data framed as per Section 4.3.1). 90 percent of the
samples (2332) are utilized in the ANN training stage, 5 percent of the samples (130) in the validation
stage and 5 percent of the samples (130) in the testing stage.

The ANN is trained using the scaled conjugate gradient back-propagation method.

5. RESULTS

The performance of the designed ANN DoA estimator and ANN beamformer is tested in a variety of
trials. The results obtained are presented herein.

5.1. DoA Estimation

The desired signal is assigned a variety of randomly selected DoA (as per column Exact DoA in Table 2).
The designed ANN DoA estimator yields the results depicted in column ANN obtained DoA in Table 2.
It is worth noting that the ANN DoA estimator yields accurate results in real-time. Exact DoA implies
the actual DoA associated with the desired signal. The ANN obtained DoA is an approximate DoA
value (ideally as close as possible to the Exact DoA).
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Table 2. Select DoA estimation results.

Exact DoA ANN obtained DoA
Azimuth Elevation Azimuth Elevation

Trial 1 40 15 45 15
Trial 2 180 10 165 15
Trial 3 300 15 285 15
Trial 4 50 45 45 45
Trial 5 190 50 195 45
Trial 6 320 55 315 45
Trial 7 43 70 45 75
Trial 8 187 75 195 75
Trial 9 290 80 285 75
Trial 10 180 45 195 45

5.2. Switched Beamforming

The results obtained upon utilizing the designed ANN in switched beamforming are herein presented.
In the first trial, the desired signal features the DoA (40, 15). An ANN DoA estimator yields a

DoA (45, 15). The subsequent ANN beamforming process yields the results depicted in Fig. 11. The
resultant relative reception strength in the DoA (40, 15) is −2.31 dB. In comparison to an ACO based
reference signal beamformer (as per Eq. (8)) relative reception strength in the DoA (40, 15) (−0.25 dB),
the −2.31 dB figure is 2.06 dB off. The small loss in reception strength is allowable in low noise channels
if at all gains are to be made from the high speed action of the ANN beamformer.
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Figure 11. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (45, 15) degrees.

In the second trial, the desired signal features the DoA (180, 10). An ANN DoA estimator yields
a DoA (165, 15). The subsequent ANN beamforming process yields the results depicted in Fig. 12.
The resultant relative reception strength in the DoA (180, 10) is −4.35 dB. In comparison to an ACO
based reference signal beamformer (as per Eq. (8)) relative reception strength in the DoA (180, 10)
(−0.93 dB), the −4.35 dB figure is 3.42 dB off. The small loss in reception strength is allowable in low
noise channels if at all gains are to be made from the high speed action of the ANN beamformer.

In the third trial, the desired signal features the DoA (300, 15). An ANN DoA estimator yields
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Figure 12. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (165, 15) degrees.
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Figure 13. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (285, 15) degrees.
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Figure 14. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (45, 45) degrees.



Progress In Electromagnetics Research C, Vol. 93, 2019 89

0 60 120 180 240 300 360
0

15

30

45

60

75

90

-20

-15

-10

-5

0

360
300

240
180

120
60

00
15

30
45

60
75

0

0.5

1

90

AzimuthElevation

D
ir

ec
ti

vi
ty

D
ir

ec
ti

vi
ty

 (
dB

)

Azimuth DoA (deg.)

E
le

va
tio

n 
D

oA
 (

de
g.

)

Figure 15. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (195, 45) degrees.
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Figure 16. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (315, 45) degrees.
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Figure 17. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (45, 75) degrees.
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Figure 18. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (295, 75) degrees.
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Figure 19. Reception pattern in the form of contour and mesh plots. The main beam is oriented
ideally towards the DoA (180, 45) degrees.

Table 3. Relative reception strength data (in dB) over a variety of DoAs.

Exact DoA ANN DoA Reception strength
Az. El. Az. El. ACO Ref. Sig. ANN Deviation

Trial 1 40 15 45 15 −0.25 −2.31 2.06
Trial 2 180 10 165 15 −0.93 −4.35 3.42
Trial 3 300 15 285 15 −0.72 −4.16 3.44
Trial 4 50 45 45 45 −1.57 −4.22 2.65
Trial 5 190 50 195 45 −1.72 −3.79 2.07
Trial 6 320 55 315 45 −0.54 −4.51 3.97
Trial 7 43 70 45 75 −1.09 −4.64 3.55
Trial 8 187 75 195 75 −1.16 −4.2 3.04
Trial 9 290 80 285 75 −2.33 −4.2 1.87
Trial 10 180 45 195 45 −1.64 −4.23 2.59
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a DoA (285, 15). The subsequent ANN beamforming process yields the results depicted in Fig. 13.
The resultant relative reception strength in the DoA (300, 15) is −4.16 dB. In comparison to an ACO
based reference signal beamformer (as per Eq. (8)) relative reception strength in the DoA (300, 15)
(−0.72 dB), the −4.16 dB figure is 3.44 dB off. The small loss in reception strength is allowable in low
noise channels if at all gains are to be made from the high speed action of the ANN beamformer.

Results corresponding to other trials are captured in Figs. 14 to 19 and in Table 3.
In summary, relative reception strength data (in dB) is given in Table 3. ANN DoA

estimation/beamforming is compared to an ACO algorithm aided reference signal beamforming
procedure. It is worth noting that ANN DoA estimation and the subsequent ANN beamforming results
in slight reception strength variation (negatively) in comparison to the ACO algorithm aided reference
signal beamforming procedure. This can be attributed to the inherent ANN DoA estimation process
approximations (for instance the DoA (40, 15) being classified as (45, 15) in Trial 1 as per Table 3.).

6. CONCLUSION

In this paper, ANN based DoA estimation and beamforming is proposed. The performance of the
designed ANN DoA estimator and beamformer is tested in a variety of trials involving a rectangular
array, yielding appreciably good results. The ANN solutions offer a high speed and appreciably accurate
solution to switched beamforming.

The proposed solution inherently takes care of DoA estimation and beamforming on the basis of
irregularly shaped nonuniform arrays wherein closed form solutions to beam steering are impossible.
Usage of the proposed ANN based DoA estimator/beamformer would ideally be limited to propagation
environments bearing minimal multi-path propagation changes. Retraining would be necessary in
environments bearing an appreciable degree of multi-path propagation changes.
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