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Specific Emitter Identification via Feature Extraction
in Hilbert-Huang Transform Domain

Zhiwen Zhou1, 2, *, Jingke Zhang1, and Taotao Zhang3

Abstract—Aimed at the deficiency of conventional parameter-level methods in radar specific emitter
identification (SEI), which heavily rely on empirical experience and cannot adapt to the waveform
change, a novel algorithm is proposed to extract specific features and identify in Hilbert-Huang
transform domain. Firstly, 2-dimensional physical representation of emitters is formed with Hilbert-
Huang transform (HHT). Based on this, 4 types of multi-view features are constructed, and the
feature space is spanned by elaborating the extraction. Principal components, between-class similarity,
spectrum entropy, and deep architecture are used to describe the subtle features. Finally, support
vector machine (SVM) is selected as the classifier to realize identification to alleviate the small sample
problem. Experimental results show that the proposed algorithm realizes specific identification using
4 intentional modulations of simulated data. The selected 4 types of unintentional representations are
feasible to discriminate identical emitters. Additionally, the proposed algorithm obtains higher accuracy
than typical signal-level methods in the signal-to-noise ratio (SNR) range [0, 20] dB.

1. INTRODUCTION

Specific emitter identification (SEI), also called fingerprint identification, aims at extracting fingerprint
information after interception and deleaving, then determining the identical property of radar emitters
by comparing with prior knowledge in database. The foundation of SEI is the unintentional
modulation caused by manufacturing error and unavoidable device difference. With the complexity
of electromagnetic environment, conventional SEI methods based on pulse parameters, such as radio
frequency (RF), pulse width (PW), pulse recurrence interval (PRI), cannot meet the demands of precise
identification at present [1]. Besides, military requirement of SEI technology is urgently increasing.
To execute SEI, the fingerprint features should satisfy five criteria, namely, generality, uniqueness,
stabilization, measurability, and independence. Based on this, emitters from the identical type of
radars but in different platforms can be distinguished.

According to the literature at present, SEI methods have been researched in two directions,
parameter-level and signal-level. The former focuses on time or frequency domain. They heavily rely
on empirical design, which results in reassessment when platforms or modulations change. Intuitive
systemic model [2] is established to effectively describe and explain the fingerprint features. Generally,
pulse feature [3], frequency-domain distribution [4, 5], and unintentional phase modulation [6] are
selected as unintentional representations. However, parameter-level methods require stringent design
for model establishment and feature selection. Especially, the applicability needs to be validated with
practical data. In comparison, signal-level methods have the advantage of comprehensive description.
Various features and combinations are presented to perform signal-level SEI, although the mechanism
has not been explained theoretically. High-order cumulants [7], wavelet ridge and high order spectra [8],
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bispectrum and its variants [9–11] have demonstrated the effectiveness for the given conditions. Recently,
Hilbert-Huang transform (HHT) has proven the superiority in the unique representation and descriptive
ability for SEI [12–15]. It provides an accurate amplitude distribution with the change of time and
frequency, but does not need the prior information about the analyzed signal. Additionally, empirical
mode decomposition (EMD) as the kernel in HHT is taken to extract meaningful features [16, 17].
Considering the advantages of HHT and aiming at SEI with multiple intentional modulations at low
SNRs, a novel algorithm based on unintentional features in HHT-domain is proposed. First, radar
emitters with unintentional modulations are analyzed with HHT. Then, 4 types of features in HHT
distribution are put forward to describe the subtle discrimination. Finally, SVM is introduced as the
classifier to achieve SEI.

2. SIGNAL MODEL

In general, considering the difference of transmitting devices, stochastic and deterministic distortions
in the receiving channel, the intercepted emitters with unintentional modulation on pulse (UMOP) can
be formulated as [4],

sd (t) = s (t) [1 + Δεa (t)] exp [jΔεp (t)] + n (t) (1)
where s(t) = A(t) exp[j2πfct + jc(t)] is the ideal received emitter without UMOP; A and fc are
the pulse amplitude and carrier frequency, respectively; c(t) and n(t) are the phase modulation and
noise functions; Δεa(t) and Δεp(t) denote the distortion functions of UMOP in amplitude and phase.
Furthermore, Δεa(t) and Δεp(t) are assumed as follows,

Δεa (t) = εa cos
(
2πfat + kaπt2

)
(2)

Δεp (t) ∼ N(μf , kffc) (3)
where εa, fa, ka, μf , and kf are the distortion coefficients of Δεa(t) and Δεp(t), respectively; N denotes
the normal distribution. To further realize identification reliably, the outliers and errors should be
measured to simulate the practical environment.

3. FEATURE EXTRACTION IN HHT DOMAIN

3.1. HHT of Radar Emitter

Generally, HHT includes EMD and Hilbert spectrum analysis [13, 14]. EMD decomposes any signal
into finite intrinsic mode functions (IMFs), and the decomposition bases are adaptively generated
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Figure 1. Comparison between original and reconstruction emitter after EMD. (a) Original and
reconstruction emitter without UMOP. (b) Original and reconstruction emitter with UMOP.
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according to the original signal [16, 17]. The latter part implements Hilbert transform for each IMF.
Due to the unintentional disturbance in amplitude and phase, extreme points in EMD process are
difficult to calculate mathematically. Take linear frequency modulation (LFM) as the typical example
and c(t) = 1/2πμt2, where μ is frequency modulation ratio. Then, Figs. 1(a) and (b) illustrate the
original and reconstruction emitters after EMD with UMOP when SNR = 5dB. SNR is defined as
SNR = 10 log(σ2

sd
/σ2

n), where σ2
sd

and σ2
n are the average signal power and noise variance, respectively.

By comparison, the original emitter can be approximately recovered via EMD. It demonstrates no
information loss in time-domain, which shows excellent decomposition ability.

Figure 2 gives the decomposed IMFs of LFM with UMOP. Seen from c1 ∼ c8, the IMF components
can adaptively track the change of emitter, which demonstrates the frequency properties. To exactly
analyze the emitter, only using IMFs is inadequate to realize identification. Therefore, it is necessary
to obtain HHT distribution H(ω, t) ∈ RT1×T2 to further extract the features. It can be seen from Fig. 3
that HHT time-frequency distribution of LFM has good accumulation ability, which approximately
shows linear trend. However, frequency scatters with time while UMOP or noise exists. Consequently,
it is not advisable to directly use H(ω, t) as the feature input, and further research should be taken to
exploit unique representations.
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Figure 2. Decomposed IMFs of LFM when SNR = 5dB.

3.2. Feature Extraction

Based on the aforementioned H(ω, t), this subsection extracts 4 features from the HHT distribution,
namely principal components (PCs), correlation coefficient (CC), spectrum entropy (SEn), and
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Figure 3. Time-frequency distribution of Hilbert spectrum of LFM.

convolutional neural network (CNN) features. Especially, PCs stand for principal energy of time-
frequency accumulation. CC aims to distinguish emitters by Hilbert spectrum resolution. SEn measures
the distribution information in terms of frequency subband. CNN, or called deep feature, is to construct
deep representations to capture the subtle difference. The proposed 4 features construct a relatively
complete feature space from multi-view descriptions. Before computing the features, H(ω, t) is converted
into a 2-dimensional greyscale image [12].

3.2.1. PCs

On the plane of H(ω, t), there exists subtle difference in instantaneous representation. Hence, it is
advisable to directly process Hilbert spectrum in order to maintain information at utmost. We extract
the principal components of Hilbert spectrum, which represent the principal energy on the plane. Since
UMOP in Eq. (1) is mixed with the intentional signal, as shown in Fig. 3, the unavoidable but unique
feature caused by UMOP is hidden in the distribution. Take singular value decomposition (SVD) on
H(ω, t) [18],

H = UΣVT (4)

where Σ = [ Σ1 0
0 0 ] and Σ1 = diag(σ1, . . . , σr), the order of diagonal elements is σr ≥ σr−1 ≥ . . . ≥ σ1;

r is the rank of H, r = rank(H). Then, xPCs = [σr, σr−1, . . . , σ1] denotes the principal component of
H(ω, t). Since r depends on the rank, and minor components contribute little, we take 90% energy
from principal components. Then, it yields xPCs = [σr, σr−1, . . . , σt], where t is the maximum subscript
when the energy of the counted components is equal to 0.9.

3.2.2. CC

Since the time-frequency distributions of the identical emitters are similar, CC is proposed to measure
the interclass similarity and analyze the difference of spectrum density. Supposing that Hi and Hj are



Progress In Electromagnetics Research M, Vol. 82, 2019 121

the ith and jth Hilbert matrices, CC between Hi and Hj is defined as [12],

ρ(i,j) =
∑

+m
∑

n (Hi,m,n − E[Hi]) (Hj,m,n − E[Hj ])√
(ΣΣ (Hi,m,n − E[Hi])) (ΣΣ (Hj,m,n − E[Hj ]))

(5)

where Hi,m,n(Hj,m,n) is the (m,n) element of Hi(Hj). Eq. (5) measures the relevance between Hi

and Hj, which means that ρ(i,j) is large if Hi and Hj are from identical emitters. Otherwise, ρ(i,j)

approximates 0. Choose C2
n coefficients to form the feature vector xCC = [ρ(1,2), . . . , ρ(n−1,n)].

3.2.3. SEn

SEn aims to describe the homogeneity of Hilbert time-frequency distribution in terms of information,
which only depends on the distribution. First, 2-dimensional H(ω, t) is divided into several subbands
{Hi(ω, t), i = 1, . . . , Nω}, where Nω is the subband number of frequency resolution Δω. Then, SEn of
each subband is PSEn,i =

∫
Hi(ω, t)dt. For Nω subbands, SEn can be calculated as [19],

xSEn = −
[∑Nω

i
PSEn,i ln (PSEn,i)

]/
ln (Nω) (6)

It is worth noting that SEn varies with the certain frequency component. In the extreme circumstance,
xSEn approximates 0 with uniform time-frequency distribution. However, SEn will increase for the
uncertainty and unpredictability caused by unintentional frequency turbulence. The turbulence includes
the aforementioned UMOP.

3.2.4. CNN

Instead of picking out statistical features on H(ω, t), we use the typical deep learning architecture
CNN to automatically extract feature and seek the subtle difference. CNN is composed of four layers,
convolutional, activation, pooling, and full-connected layers. First, H(ω, t) is taken as the input
to be convolved with convolutional layers and mapped with activation function. Down sampling is
implemented to reduce the feature size. Then, the output feature maps are concatenated to form the
feature representation xCNN. Training is conducted by minimizing the loss function with stochastic
gradient descent (SGD). xCNN can be formulated as [20],

xCNN = vec [pool (f(H ⊗ C + b))] (7)
where C and b are the convolutional kernels and biases; f(·) is selected as the sigmoid function
f(x) = 1/(1 + e−x); ⊗ denotes the valid convolution; pool(·) and vec(·) are the pooling and vectorization
operations, respectively. Generally, a series of convolutional layers are connected to produce deeper and
more abstract features.

3.3. Identification

Considering the interception probability and interference, the available training samples are limited. The
small sample problem will lead to under-fitting and degrade the identification performance. Therefore,
SVM classifier is introduced to alleviate the problem. Given N training samples, features are then
extracted as described in the previous subsection {xi,Yi}N

i=1, where xi is the selected feature, Yi the
class label, and C =

∑
Yi the class number. SVM is intended to seek the optimum plane in the feature

space, which can be converted to solve the discriminant as [13],
〈w,Φ (x)〉 + bl = 0 (8)

where w and bl are the weights and offset of SVM; Φ(·) is the nonlinear function; 〈·〉 denotes the
inner product. Once the optimal solution of Eq. (8) is obtained by quadratic programming [21], the
identification for each feature can be implemented as,

Ypre = sign
[∑Ns

i
YiΦ (xi)Φ (xpre) + b∗

l

]
(9)

where xpre and Ypre are testing sample and label, respectively; Ns is the number of support vectors;
sign(·) is the sign function. Notably, the proposed algorithm is supervised, which requires that all the
training samples are labeled with prior information.
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3.4. Discussions

The complexity of the proposed algorithm consists of three parts, the calculations of HHT and four
features, and SVM classifier. The computation complexities of HHT and SVM can refer to [12].
Then, the complexity of PCs lies in Eq. (4), which is O(NT 3

1 ). CC mainly depends on Eq. (5),
which is O(N2T1T2). For SEn, it is O(NNωT1T2). However, the whole complexity of CNN feature
is O(N

∑D
l=1 MlKlCl−1Cl), where D is the depth; Ml and Kl are the size of output feature map and

kernel; Cl is the convolutional kernel number of lth layer.
Currently, the HHT-based methods have gained positive results. [12] uses the statistical

characteristics of HHT spectrum distribution, such as energy entropy and second-order moment. The
proposed features are vulnerable to the outliers and noise. However, the proposed HHT-UF constructs
more diverse descriptions; for example, CNN feature is deep and automatic, and SEn is more practical
via information representation when unintentional turbulence exists. Moreover, the proposed method
provides more detailed features than parameter-level methods.

4. EXPERIMENTAL RESULTS AND ANALYSIS

To testify the effectiveness and robustness, simulated emitters are generated according to Eqs. (1)–(3),
and the parameters are set as follows, εa = 0.2, fa = 1000 MHz, ka = 105 MHz, μf = 0, kf = 0.001,
fc = 10 MHz. To evaluate the adaptability to the modulations, four types of radar emitters are selected,
namely conventional pulse (CON), LFM, binary frequency-shift keying (BFSK), and binary phase-shift
keying (BPSK). Random turbulence is added according to Eqs. (2)–(3), and the explicit parameter
setting is listed. Each type with the turbulence generates 300 samples at SNR = 30dB, which amounts
to 4800 samples. The Hilbert spectrum size is 200 × 250. Radial based function (RBF) is chosen for
SVM classifier, and its toolbox can refer to [21].

4.1. Effectiveness Experiment

To testify the effectiveness, 100 testing samples for each modulation is generated in AWGN channel
with SNR = 6dB. Each feature is input into SVM separately. The performance is measured by the
probability of correct identification Pc. The experimental results in Table 1 show that the average
Pc of all the features is approximately larger than 70%. Meanwhile, the average performance for the
given modulations is around 70%. But they differ from each other, which attributes to the difference of
feature representations. In comparison, CNN is more distinguished than the other features. It shows
that seeking the difference in data structure essentially helps to prompt the performance.

Table 1. SEI probabilities with different features at SNR = 6dB.

���������Type
Feature

PCs CC SEn CNN Pc

CON 74.6 76.5 72.9 75.6 74.9

LFM 71.2 68.8 70.6 72.5 70.8

BFSK 69.3 68.5 71.2 72.6 70.4

BPSK 65.6 64.9 67.9 68.8 66.8

Pc 70.2 69.7 70.7 72.4 70.8

4.2. Robustness Experiment

To investigate the noise robustness, SNR is changed by step ΔSNR = 2 dB while the range is set
SNR ∈ [0, 20] dB. For each step, 400 testing samples for each modulation are generated and fed into
AWGN channel. Notably, all the comparisons are performed with simulation data. Figs. 4(a)–(e)
demonstrate the single and average accuracies of 4 types. It further verifies the effectiveness and shows
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Figure 4. Identification accuracy of different methods and modulations. (a) Identification accuracies
of CON. (b) Identification accuracies of LFM. (c) Identification accuracies of BFSK. (d) Identification
accuracies of BPSK. (e) Average identification accuracies of different methods.
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that the accuracies rise with increasing SNR. In comparison, BPSK with UMOP is less discriminable for
the unintentional phase modulation feature is easily affected and hard to capture. The average does not
show distinct advantage over the single feature. It can be seen that CNN feature in HHT domain shows
relative superiority. Hence, it is not preferable to combine the proposed 4 features in consideration of
computing complexity. When SNR ≥ 2 dB, the identification probabilities of the 4 features are over
50%. Then, Pc rises until SNR is close to 18 dB, when it maintains stable. It indicates that higher SNR
contributes a little to the performance and implies tha tSNR is not the decisive factor now.

Aimed at SEI, typical high-order cumulant [8], bispectrum [9], and SOM [12] all prove to be
effective. Then, the proposed HHT-UF is compared with the listed approaches. Keep all the setting
parameters the same. The aforementioned 4 types of emitters are used, and the average Pc is served
as the performance measurement. HOSA toolbox in Matlab is directly used to analyze bispectrum
and high-order cumulant. Especially, the compared methods all belong to signal-level. The results
in Fig. 5 show that Pc of HHT-UF is higher than the others for the given SNR range. On one hand,
UMOP feature representation in HHT domain is beneficial for the subtle discrimination. On the other
hand, the overall performance of multi-dimensional features show the advantage over the single feature.
However, the computation complexity increases accordingly. Therefore, it is advisable to speed up the
HHT-UF algorithm for further research and use it in ESM and ELINT where real-time demand is not
strict.
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Figure 5. SEI probabilities of different methods with SNR ∈ [0, 20] dB.

5. CONCLUSIONS

Aimed at the deficiency of conventional parameter-level SEI methods, a novel signal-level algorithm
that realizes UMOP feature extraction, and identification in HHT domain is proposed. Radar emitters
are modeled with unintentional frequency and phase modulations. Then, features are described and
extracted via EMD and Hilbert spectrum. SVM is chosen as the classifier to avoid small sample
problem. The validation is testified with the established model and four modulations of simulation data.
Experimental results show that the proposed features are effective and robust to addictive Gaussian
noise. The multiple-dimension features help to promote the identification, but leads to a corresponding
increase in computation burden. Since UMOP phase feature is susceptible to the outliers and noise,
SEI modeling for radar emitter with phase modulation needs further investigation.
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