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A Novel Dual-Band Microstrip Bandstop Filter Based on Stepped
Impedance Hairpin Resonators
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Abstract—In this paper, design of a novel dual-band microstrip bandstop filter is presented. The
designed filter is constructed by loading two stepped impedance hairpin resonators to a simple straight
transmission line, which also connects to the input and output ports. By virtue of the proposed
resonator, the ratio of the first and second resonance frequencies can be obtained as approximately
4.4. Two stopbands centered at 2.34 GHz and 7.81 GHz with the fractional bandwidths of 33.2%
and 7.9% can be obtained, respectively. Rejection levels inside the stopbands are better than 20 dB.
Total electrical length of the proposed filter is 0.317λg × 0.136λg , where λg is the guided wavelength
at the lowest resonance frequency. The designed filter was also fabricated and tested for experimental
verification. The measured results are in an excellent agreement with the simulated ones.

1. INTRODUCTION

Bandstop filters are often used in many types of communication systems in order to suppress unwanted
signals. Due to the rapid progress in modern communication systems, microwave filters having more
than one passband or stopband have come into prominence. Therefore, there is an increasing demand
for multi-band bandstop filter designs. For this purpose, several circuit types including microstrip,
coplanar waveguides, and striplines can be utilized to obtain the desired frequency response. Among
them, microstrip structures are used more than the others since they can provide design flexibility, low
loss, low cost, etc. Using this information and approach, researchers try to design new microwave filters
according to the different demands of different communication systems. Integration of the designed
filter into any system is one of the important problems in the utilization of microwave filters. Therefore,
simple structures are more preferred by users in order to integrate it to their system easily.

To date, multiband microstrip bandstop filters have been introduced in many approaches including
composite resonators [1], open loop resonators [2], dual-mode loop resonators [3], stub loaded
resonators [4], etc.. Additionally, hairpin resonators are not only used for microstrip bandstop filter
design, but also used for any kind of microstrip filter design. Stepped impedance hairpin resonators
are used to design compact and high performance lowpass filters in [5, 6]. In [5], the lowpass filter was
formed by connecting a hairpin resonator to the input and output ports directly. This approach has also
been developed by using cascaded stepped impedance hairpin resonators in order to increase the order
of the lowpass filter [6]. Thus, selectivity of the filter could be increased. Hairpin resonators are mostly
used in bandpass filter designs [7–12]. In [7], hairpin resonators have been introduced to the literature
and a microstrip bandpass filter was designed. A narrow band bandpass filter with two transmission
poles and multiple transmission zeros has been presented in [8]. Different kinds of hairpin resonators
such as interdigital, short circuited and utilization in multiple layers have also been investigated to
design various bandpass filters [9–11]. They have also been used to design ultra wideband microstrip
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bandpass filters as introduced in [11] and [12]. In addition, hairpin resonators have been utilized in a
microstrip bandstop filter in a similar approach with this paper. In [13], hairpin coupling structures
have been used to satisfy compactness in a bandstop filter. On the other hand, a coupled line hairpin
unit has been constructed by connecting two coupled lines with a high impedance transmission line [14].
Here, filter performance has also been improved by means of a defected ground structure located at the
parallel coupled line section. Besides, a modified stepped impedance hairpin resonator has been used
to design a dual-band bandstop filter [15]. Among hairpin resonators based bandstop filters, only one
stopband can be obtained in [13] and [14]. In [15], although there were two stopbands, the measured
results were poor.

In this paper, a novel dual-band bandstop filter is designed. For this purpose, firstly, a single
stepped impedance hairpin resonator located to a simple straight transmission line is investigated.
This transmission line also connects the input and output ports to each other. The proposed
configuration allows two resonance frequencies, and the ratio of the resonance frequencies can be
obtained approximately 4.4. In order to increase the filter order, one more identical hairpin resonator
is added by increasing the length of the straight transmission line, and two stopbands can be obtained.
Center frequencies of the stopbands are adjusted at 2.34 GHz and 7.81 GHz with fractional bandwidths of
33.2% and 7.9%, respectively. The designed filter was also fabricated and measured for the experimental
verification. The measured results show an excellent agreement with the predicted ones. In the measured
results, rejection levels have been obtained better than 20 dB for both stopbands. The designed dual-
band bandstop filter allows a high center frequency ratio between the stopbands.

2. STEPPED IMPEDANCE HAIRPIN RESONATOR

The proposed stepped impedance hairpin resonator is depicted in Fig. 1(a). As can be seen from the
figure, in order to emphasize the characteristics of the proposed resonator, it is connected to a simple
straight transmission line which connects the input and output ports. Therefore, the proposed circuit
can also be considered as a bandstop filter with a single pole. It should be noted that the transmission
lines of the resonator are far away from each other so as to prevent extra coupling.

The equivalent half circuit models of the proposed resonator are illustrated in Figs. 1(b) and 1(c)
for even and odd mode excitations, respectively. In Fig. 1(b), the even mode excitation is applied to

(a)

(b) (c)

Figure 1. (a) Configuration of the proposed stepped impedance hairpin resonator, (b) even mode
excitation, (c) odd mode excitation.
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the circuit and the resonator is open-circuited at the symmetry axis. For the odd mode excitation, the
resonator is short-circuited at the symmetry axis, as depicted in Fig. 1(c). According to Fig. 1(a), there
are five transmission lines in the even mode half circuit model given in Fig. 1(b). Also, for the odd
mode half circuit model, there is only one transmission line since the symmetry axis is short-circuited.
The input impedances of transmission lines illustrated in Fig. 1(b) can be expressed as,

Zn = Z0n
ZL + jZ0ntan(θn)
Z0n + jZLtan(θn)

n = 2, 3, 4, 5 (1)

where the impedance ZL is the load impedance, and impedances Zn and Z0n are the input impedance and
characteristic impedance of nth transmission line, respectively. In Eq. (1), for instance, the impedance
Z4 can be found by taking Z5 instead of the load impedance ZL. Also, the impedance Z5 is the input
impedance of an open-circuited line and it can be expressed as,

Z5 = −jZ05cot(θ5) (2)

Thus, the even mode input impedance can be obtained by taking n = 1 and the impedance Z2 as the
load impedance in Eq. (1). So, it can be expressed as

Zeven = Z01
Z2 + jZ01tan(θ2)
Z01 + jZ2tan(θ2)

(3)

The even mode resonance condition can be obtained by equating Eq. (3) to zero. From Fig. 1(c), the
odd mode input impedance can be expressed as,

Zodd = jZ01tan(θ1) (4)

In the odd mode excitation, since the electrical length of the transmission line having the width of w3 is
too small, it can be neglected. Again, the odd mode resonance condition can be obtained by equating
Eq. (4) to zero.

The proposed resonator is simulated by a Full-Wave Electromagnetic Simulator [16]. In the design,
an RT/Duroid substrate with a relative dielectric constant of 6.15 and a thickness of 1.27 mm was
used. Dimensions shown in Fig. 1 are; a = 2.6 mm, b = 3.0 mm, w1 = 0.4 mm, w2 = 0.9 mm,
w3 = w4 = 0.2 mm, wf = 1.9 mm, d = 3.1 mm, t = 1.3 mm, g1 = 0.4 mm and g2 = 0.8 mm. Effects of w1

and w4 on the frequency response are depicted in Figs. 2(a) and 2(b). It is obvious that the increase in
these widths decrease the total electrical length of the resonator. Thus, the second resonance frequency
can be increased. In Fig. 2(a), w1 varies between 0.2 mm and 1.0 mm. It is clear that only the second
resonance frequency can be changed, while the first one is fixed. From Fig. 2(a), ratio of the first
and second resonance frequencies can be as high as approximately 4.4, while w1 is 1.0 mm. Fig. 2(b)
shows the effects of w4 on the frequency response. The second resonance frequency can be controlled
dramatically as compared to the first one. As a result of both of these figures, the second resonance
frequency can be independently controlled. In addition, effects of w3 on the frequency response are also
demonstrated in Fig. 2(c). In here, the first resonance frequency can be increased while w3 is increased,
whereas the second resonance frequency exhibits opposite behaviour. Hence, the resonance frequencies
of the stopbands are getting closer to each other depending on the increment in w3. Those physical
parameter investigations are useful to obtain the final circuit. According to Fig. 2, it should also be
noted that there are three resonance frequencies. Thus, the proposed resonator can be considered for
triple band bandstop filter design. However, the third resonance frequency cannot be independently
controlled. Therefore, the proposed resonator should be considered more suitable for dual band bandstop
filter designs, as explained here.

The ratio b/a has also remarkable effects on the frequency response as represented in Fig. 3. As
can be seen from the figure, while the ratio b/a is increased, the first resonance frequency is decreased,
but the second resonance frequency exhibits more different behaviour. Depending on the increment in
the ratio b/a, the second resonance frequency firstly decreases and then begins increasing.

3. DUAL-BAND BANDSTOP FILTER DESIGN

Based on the above approaches, the design of a dual-band bandstop filter was achieved by using two
stepped impedance hairpin resonators as shown in Fig. 4. Initial physical dimensions are adjusted at
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Figure 2. Effects of the changes in resonator widths on the frequency responses, (a) w1, (b) w4, (c)
w3 (All in mm).

Figure 3. Investigation of resonance frequencies with respect to the change in b/a.

a = 2.8 mm, b = 3.0 mm, w1 = 0.4 mm, w2 = 0.9 mm, w3 = w4 = 0.2 mm, wf = 1.9 mm, t = 0.7 mm,
g1 = 0.4 mm and g2 = 0.2 mm, d1 = 3.1 mm and d2 = 10.6 mm. It should be noted that the gaps
between the arms of the hairpin resonators are smaller than the single resonator shown in Fig. 1(a).
Thus, there is a coupling between the transmission lines having widths of w2 and w3. This is required
for obtaining better performance in the second stopband. The coupling effect is demonstrated in Fig. 5.
As can be seen from the figure, the return loss level can be dramatically improved by means of the
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Figure 4. Dual-band bandstop filter structure.

Figure 5. Effect of coupling between the arms of
the hairpin resonator on the frequency response.

Figure 6. Effects of d2 on the frequency response
(All in mm).

coupling effect. In Fig. 5, the frequency response called as no coupling can be obtained by increasing
the gaps between the transmission lines having the widths of w2 and w3, without changing the filter
dimensions.

The distance between the resonators, d2, is also effective on the frequency response as depicted in
Fig. 6. As shown, bandwidths of the stopbands can be simultaneously controlled. During this change,
return loss levels near the stopbands can be varied. At the same time, reflection zeros except the middle
one can be moved. In addition, the reflection pole (transmission zero) of the first stopband is almost
fixed, while the reflection poles in the second stopband move more. It is clear that the second stopband
begins to deteriorate when d2 is greater than 9.3 mm.

Effects of the changes in a and b lengths of the hairpin resonators on the frequency response are
represented in Figs. 7(a) and 7(b) for wideband and narrowband views, respectively. It should be noted
that while a increases, b must be decreased. While a varies from 1.2 mm to 4.4 mm, b can be changed
from 4.6 mm to 1.4 mm, respectively. These changes exhibit similar behaviour to the single resonator
filter shown in Fig. 3. It is clear that only the second stopband can be controlled, while the first
stopband is fixed. Control operation can only be achieved over the center frequency. Bandwidth and
return loss levels inside the stopbands are almost unchanged. On the other hand, if only a is varied,
both stopbands can be simultaneously controlled since the total electrical length of the filter is also
changed. As can be seen from Fig. 8, while a increases, center frequencies of both stopbands can be
decreased. However, some degradation also appears, especially in the passband return loss levels.

It should be noted that the filter design frequency is determined by the resonator dimensions. For a
simple design procedure, firstly, the stopband frequencies must be decided and the resonator dimensions
should be determined. The stopband frequencies can be adjusted by means of the approach described in
the previous section. Figs. 2 and 3 can also be used for frequency assignment. In order to increase the
selectivity of the stopbands, the second stepped impedance hairpin resonator is located at a distance of
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(a) (b)

Figure 7. Effects of a and b changes on the frequency response, (a) wideband, (b) narrow band.

Figure 8. Effects of a on the frequency response.

d2 along the main line. The distance d2 can be adjusted to obtain the desired bandwidth and insertion
loss levels outside of the stopbands by an optimization. The effect of d2 on the frequency response
is also demonstrated in Fig. 6. The final sensitive frequency adjustment can be realized according to
Figs. 7 and 8.

4. EXPERIMENTAL STUDIES

The proposed dual-band bandstop filter has been fabricated for the experimental verification of the
predicted results. A photograph of the fabricated filter is shown in the inset of Fig. 9. 50 Ω SMA
connectors were used to measure the fabricated filter. Measurements have been performed by a Vector
Network Analyzer HP8720C. Comparisons of the measured and simulated results are illustrated in Fig. 9.
As can be seen from the figure, measured results exhibit an excellent agreement with the simulated
results. Small differences between the simulated and measured results are due to the tolerances in the
substrate, losses of SMA connectors and fabrication. In simulations, two stopbands centered at 2.34 GHz
and 7.81 GHz with the fractional bandwidths of 33.2% and 7.9% have been obtained, respectively. In
measurements, center frequencies of the stopbands have been obtained as 2.39 GHz and 7.82 GHz with
the fractional bandwidths of 34.8% and 7.3%, respectively. The bandwidth of the passband between
the stopbands is 5.47 GHz. So, the second stopband occurs at the center frequency of 3.34f1 where
f1 is the center frequency of the first stopband. However, the center frequency of the second band
can be increased to approximately 4.4f1 for the proposed filter, as shown in Fig. 2(a). This is the
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Figure 9. Comparison of the measured and simulated results (inset figure: Photograph of the fabricated
filter).

most significant property of the filter proposed without using any harmonic suppression method such
as defected ground structure, multilayer structure. Moreover, the simulated and measured return losses
inside the stopbands are 0.07/1.16 dB and 0.41/2.36 dB for the first and second stopbands, respectively.
In-band rejection levels have been measured as better than 45 dB and 18 dB for the first and second
stopbands, respectively.

5. CONCLUSION

A new type of dual-band microstrip bandstop filter has been designed, fabricated, and tested. The
designed filter has been formed by locating stepped impedance hairpin resonators to a simple straight
transmission line. Detailed analyses of the filter have been achieved by investigating the circuit
parameters. Measured results of the fabricated filter have exhibited an excellent agreement with the
simulated ones.

The designed filter has promising advantages in terms of compact size, acceptable rejection
levels, and measurement results. Since the designed filter provides two stopbands, it may be utilized
in multifunction communication systems which require suppression of unwanted signals. The most
significant advantage of the proposed structure is to allow a wide passband between the stopbands
by means of a very simple and understandable topology. For the proposed bandstop filter, the center
frequency of the second stopband can be increased up to approximately 4.4 times that of the first band.
It is obvious that any harmonic suppression method such as defected ground structure, multilayer
structure has not been used.
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