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Retrieval Approach for Determining Surface Susceptibilities

and Surface Porosities of a Symmetric Metascreen from Reflection
and Transmission Coefficients

Christopher L. Holloway1, *, Edward F. Kuester2, and Abdulaziz H. Haddab2

Abstract—Recently we derived generalized sheet transition conditions (GSTCs) for electromagnetic
fields at the surface of a metascreen (a metasurface with a “fishnet” structure, i.e., a periodic array
of arbitrary spaced apertures in a relatively impenetrable surface). The parameters in these GSTCs
are interpreted as effective surface susceptibilities and surface porosities, which themselves are related
to the geometry of the apertures that constitute the metascreen. In this paper, we use these GSTCs
to derive the plane-wave reflection (R) and transmission (T ) coefficients of a symmetric metascreen,
expressed in terms of these surface parameters. From these equations, we develop a retrieval approach for
determining the uniquely defined effective surface susceptibilities and surface porosities that characterize
the metascreen from measured or simulated data for the R and T coefficients. We present the retrieved
surface parameters for metascreens composed of five different types of apertures (circular holes, square
holes, crosses, slots, and a square aperture filled with a high-contrast dielectric). The last example
exhibits interesting resonances at frequencies where no resonances exist when the aperture is not filled,
which opens up the possibility of designing metasurfaces with unique filtering properties. The retrieved
surface parameters are validated by comparing them to other approaches.

1. INTRODUCTION

A metasurface [1] is the surface (or two-dimensional) version of a three-dimensional metamaterial [3–
9]. The simplicity and relative ease of fabrication of metasurfaces make them attractive alternatives
to metamaterials [1] and [2]. We call any periodic two-dimensional structure whose thickness and
periodicity are small compared to a wavelength in the surrounding media a metasurface. We can
identify two important subclasses of metasurfaces, characterized by the type of topology possessed by
the metasurface. Metasurfaces that have a “cermet” topology, which refers to an array of isolated (non-
touching) scatterers, are called metafilms (see Fig. 1(a)), a term coined in [10]. Metasurfaces with a
“fishnet” structure are called metascreens [11], see Fig. 1(b). In general, metascreens are characterized
by periodically spaced apertures in an otherwise relatively impenetrable surface. There are other types
of metasurfaces that exist somewhere between these two extremes; for example, a grating of arbitrarily-
shaped coated parallel conducting wires is called a metagrating. Metagratings behave like a metafilm
to electric fields perpendicular to the wire axes and like a metascreen for electric fields parallel to the
wire axis [12]. Metafilms have been studied extensively in recent years, but although metascreens have
been widely used, relatively less attention has been given to them from an electromagnetic modeling
and analysis point of view.

Like that of a metamaterial, the behavior of a metasurface can be understood in terms of the
electric and magnetic polarizabilities of its constituent scatterers (for a metafilm) or apertures (for a
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(a) metafilm: special case for an array of spherical particles

(b) metascreen: special case for an array of square apertures

Figure 1. Illustration of types of metasurfaces; (a) metafilm which consists of arbitrarily shaped
scatterers placed on the xz-plane and (b) metascreen which consists of arbitrarily shaped apertures in
a conducting screen located in the xz-plane.

metascreen). The traditional and most convenient method by which to model metamaterials is with
effective-medium theory, using the bulk electromagnetic parameters μeff and εeff . Attempts to use a
similar bulk-parameter model for metasurfaces have been less successful, because of ambiguities that
arise [1, 13–15]. In the indicated references, it is shown that the surface susceptibilities of a metafilm
are the properties that uniquely characterize a metafilm, and as such, serve as its most appropriate
descriptive parameters. As a result, scattering by a metafilm is best characterized by generalized sheet-
transition conditions (GSTCs) [10, 13–15] in contrast to the effective-medium description used for a
metamaterial, and the coefficients appearing therein are all that are required to model the macroscopic
interaction of a metafilm with an electromagnetic field. In [1], we stated (without proof) that GSTCs
could also be used to model metascreens, and a detailed derivation was given recently in [11] using
the method of multiple-scale homogenization. Alternatively, a dipole-interaction model can be used to
obtain the GSTCs [16] and [17]. However they are obtained, the GSTCs for a metascreen take on a
different form than those required for the metafilm, and their features are discussed in [11, 16] and [17].
The issue with a metascreen is that there is the possibility of having tangential surface currents (flowing
on the surface of the screen along the z and x directions) that do not vanish as the lattice constant
of the metascreen approaches zero; as such, a GSTC that constrains the tangential H cannot be used,
see [11] for details.

The GSTCs allow the surface distribution of apertures to be replaced with a boundary condition
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(a)

(b)

Figure 2. (a) Metascreen (array of apertures in conducting screen) and (b) the reference plane at
which the GSTCs are applied.

on the averaged fields that is applied across an infinitely thin equivalent surface (hence the name
metascreen), as indicated in Fig. 2. In [11], the GSTCs relating the electromagnetic fields on both
sides of the metascreen shown in Fig. 1 and Fig. 2 were derived. The size, shape and spacing of the
apertures as well as the material properties on both sides of the metascreen make their presence known
through effective surface susceptibilities and surface porosities at the interface. It is worth noting that
the GSTCs for a metafilm impose conditions on the jumps in the tangential electric and magnetic fields,
which depend only on electric and magnetic effective surface susceptibilities. On the other hand, the
GSTCs for a metascreen involve one condition for the jump in the tangential electric field, and another
for the average of the tangential electric field, the latter of which involves surface porosities. These
parameters are uniquely defined and thus represent the physical quantities that uniquely characterize
the metascreen. These GSTCs, along with Maxwell’s equations, are all that are needed to determine
macroscopic scattering, transmission, and reflection from the metascreen.

In this paper, we use the GSTCs to derive the plane-wave reflection (R) and transmission (T )
coefficients for a metascreen. The derivation presented in [11] laid out the framework for calculating the
required surface susceptibilities and surface porosities, which require the solution of a set of static field
problems — this can be computationally challenging for generally shaped apertures. Thus, we will also
derive expressions allowing the surface parameters to be retrieved from measured or simulated values of
R and T . This is analogous to the modified Nicolson-Ross-Weir (NRW) approach used for retrieving the
effective permeability and permittivity of a metamaterial [18–24], and to the method used to retrieve
the surface susceptibilities for a metafilm [13] and [14]. Note that the standard NRW approach for
metamaterials must be modified when negative material properties exist; typically, the choice of the
sign of a square-root is made unambiguous by ensuring an appropriate direction of power flow. The
GSTCs given in [11] will be used here to develop retrieval techniques for a metascreen. We demonstrate
this retrieval approach by showing results for metascreen composed of an array of five different types of
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apertures (circular holes, square holes, crosses, slots, and a square aperture filled with a high-contrast
dielectric). Finally, we discuss the behavior of the surface parameters (and discuss how to physically
interpret them) at the two extreme limits of the aperture fill-factor.

It is worth noting that, while there has been a lot of work on the derivation and use of equivalent
boundary conditions (EBC), notably that of Weinstein [25, 26] and of Senior and Volakis [27], only the
EBCs of Sakurai [28] and of Kontorovich and his colleagues (e.g., [29]) were applicable for metascreen
type structures, and these were limited to grids of the thin wire type. Only in [11] have generally
applicable GSTCs for a metascreen of fairly general geometry been derived. Of the EBCs discussed in
Weinstein [25], Eqs. (56.44) and (56.45) therein have the same functional form as those required for a
metafilm [10, 13–15], while the other set of EBCs [(56.46) and (56.47) therein] are valid for metagrating
(wire grating) type structures. However, none of these is valid for a metascreen (the structure analyzed
in [11] and the present paper). Only in the particular limit of a metagrating (as discussed in Section 4.4
of this paper) does one of our surface parameters reduce to one of Weinstein’s surface parameters.
There are hints in the book by Senior and Volakis [27], as well as in some papers by Volakis and his
colleagues [30, 31], that a “universal” GSTC might exist for an arbitrary thin metasurface, but nowhere
does such a condition seem to appear explicitly, and at present we must content ourselves with the
observation that topologically distinct metasurfaces (e.g., metafilms, metagratings and metascreens)
have distinct GSTCs, none of which is applicable to any of the others, however similar they might
appear at a superficial glance. Thus, in order to model and analyze metascreens, the GSTCs presented
in this paper are required, on which the techniques for the retrieval of the surface parameters of the
metascreen are based.

2. REFLECTION AND TRANSMISSION COEFFICIENTS FOR AN OBLIQUELY
INCIDENT PLANE WAVE ONTO A SYMMETRIC METASCREEN

As seen from the GSTCs derived in [11] for the general case, the dyadic magnetic surface parameters may
have off-diagonal terms such that coupling between transverse electric (TE) and transverse magnetic
(TM) fields can occur [32]. To keep the analysis relatively simple, in this paper we will assume that the
apertures are sufficiently symmetric that these off-diagonal terms are zero. We will also assume that
regions A and B are both free space, and that the screen possesses mirror symmetry about the reference
plane y = 0. These assumptions apply to many metascreens that are encountered in practice; the more
general case is treated in [32].

Under these conditions, the GSTCs obtained in [11] reduce to:

ay ×
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EA(ro)−EB(ro)

]
= −jωμ0 [axχ
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Hx,av(ro) =
1
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]
, etc. (3)

represent the average of the fields on the two sides of the reference plane at y = 0. The superscripts A
and B correspond to the fields in regions A and B, and ro corresponds to a point in y = 0, see Fig. 2.
In the foregoing, the surface parameters χMS and χES are interpreted as effective magnetic and electric
surface susceptibilities of the metascreen, while the surface parameters πMS and πES are interpreted as
its effective magnetic and electric surface porosities [11]. With respect to the general result obtained
in [11], the symmetry of the apertures has resulted in:

πxz
MS = πzx

MS = χxz
MS = χzx

MS ≡ 0, (4)
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while the symmetry with respect to either side of the metascreen has given:

πAyy
ES = πByy

ES ≡ 2πyy
ES ; χAyy

ES = χByy
ES ≡ 1

2
χyy
ES

πAxx
MS = πBxx

MS ≡ 2πxx
MS ; χAxx

MS = χBxx
MS ≡ 1

2
χxx
MS

πAzz
MS = πBzz

MS ≡ 2πzz
MS ; χAzz

MS = χBzz
MS ≡ 1

2
χzz
MS

. (5)

Conditions (1)–(2) have the same form as those derived in [16] using the dipole-interaction
approximation. In that paper, the reaction of the metascreen to an electromagnetic field was determined
from the symmetric and asymmetric polarizabilities of a single aperture in a thick PEC screen. The
derivation shows that the surface porosities are essentially the symmetric polarizabilities of the apertures
per unit area on the metascreen surface, while the surface susceptibilities are essentially the asymmetric
polarizabilities of the apertures per unit area on the metascreen surface.

2.1. TE Plane Wave Incident on a Metascreen

Let a metascreen be located in the plane y = 0 in free space. Assume that a TE polarized plane wave
is incident onto the metascreen as shown in Fig. 3(a), such that the total E-field in region A (y > 0) is
given by E = Ei +Er, where the incident and reflected fields are

Ei = azE0e
−jki·r

Er = azRTEE0e
−jkr·r. (6)

The transmitted field in region B (y < 0) is given by

Et = azTTEE0e
−jkt·r, (7)

where

kt = ki = {ax sin θ − ay cos θ} k0
kr = {ax sin θ + ay cos θ} k0 , (8)

r = xax + yay ++zaz, (9)

(a) (b)

Figure 3. Plane wave incident onto a metascreen: (a) TE polarization and (b) TM polarization.
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and k0 = ω
√
μ0ε0 is the wavenumber of free space. In Eqs. (6) and (7), RTE and TTE are the

reflection and transmission coefficients, respectively. From Maxwell’s equations, the incident, reflected
and transmitted H-fields are given by:

Hi =

(
k0E0

ωμ

)
{−ax cos θ − ay sin θ} e−jki·r

Hr =

(
k0E0RTE

ωμ

)
{ax cos θ − ay sin θ} e−jkr·r

Ht = −
(
k0E0TTE

ωμ

)
{ax cos θ + ay sin θ} e−jkt·r

. (10)

Substituting the electric and magnetic field components given in Eqs. (6), (7), and (10), into the
GSTCs in Eqs. (1) and (2) results in

RTE(θ) =
1 + k20 χ

xx
MS πxx

MS cos2 θ

k2oχ
xx
MS πxx

MS cos2 θ − ik02
(
χxx
MS + 4πxx

MS

)
cos θ − 1

(11)

and

TTE(θ) =
i ko cos θ

2 [χxx
MS − 4πxx

MS ]

k2oχ
xx
MS πxx

MS cos2 θ − ik02
(
χxx
MS + 4πxx

MS

)
cos θ − 1

(12)

Note that for this polarization only two surface parameters (χxx
MS and πxx

MS) are needed to determine
RTE(θ) and TTE(θ). This is in contrast to a metafilm, where three different surface parameters are
needed to determine RTE(θ) and TTE(θ), see [1, 13, 14, 33]. The reason for this is that the two GSTCs
for a metafilm are essentially duals of each other — one constraining the jump in tangential E, the
other tangential H. The normal component of surface magnetic susceptibility enters into the equations
in the TE case. For a metascreen, we constrain the jump and average of the tangential E field, but
tangential H appears only on the right side of the GSTCs multiplied by small factors. Thus, no normal
component of surface susceptibility or porosity appears, and one less parameter affects the reflection
and transmission.

2.2. TM Plane Wave Incident on a Metascreen

Assume that a TM polarized H-field plane wave is incident onto the metascreen shown in Fig. 3(b),
such that the H-field components of the incident, reflected, and transmitted plane waves are given by

Hi = az
E0

ζ0
e−jki·r

Hr = −azRTM
E0

ζ0
e−jkr ·r

Ht = azTTM
E0

ζ0
e−jkt·r

. (13)

where ζ0 =
√

μ0/ε0 is the wave impedance of free space. From Maxwell’s equations, the incident,
reflected, and transmitted E-fields are given by:

Ei = E0 (ax cos θ + ay sin θ) e
−jki·r

Er = E0 (ax cos θ − ay sin θ)RTM e−jkr·r

Et = E0 (ax cos θ + ay sin θ)TTM e−jkt·r
. (14)

Substituting these sets of expressions into the GSTCs given in Eq. (1) and (2) we obtain:

RTM (θ) =
− cos2 θ − k20AB

cos2 θ − k20AB + jk0
2 cos θ (A+ 4B) , (15)
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and

TTM (θ) = − jk0 cos θ [A− 4B]
cos2 θ − k20AB +

jk0
2

cos θ (A+ 4B)
, (16)

where

A = χzz
MS + χyy

ES sin2 θ

B = πzz
MS + πyy

ES sin2 θ
. (17)

Note that for this polarization four surface parameters (χzz
MS , πzz

MS, χyy
ES, and πyy

ES) are needed to
determine RTM (θ) and TTM (θ). This is in contrast to a metafilm, where only three different surface
parameters are needed to determine RTM (θ) and TTM (θ), see [1, 13, 14, 33].

3. RETRIEVAL ALGORITHMS FOR THE SURFACE PARAMETERS

It is useful to be able to determine the surface parameters that characterize a metascreen by a method
other than direct numerical computation as discussed in [11]. Such a retrieval approach for metafilms
is presented in [1, 13, 14]. Here we will derive a retrieval approach applicable to metascreens.

3.1. TE Polarization

From Eqs. (11) and (12) it is seen that only two surface parameters (χxx
MSS and πxx

MS) determine RTE(θ)
and TTE(θ). Using these two expressions, the two unknown surface parameters are determined from:

πxx
MS =

j

2k0

RTE(0) + TTE(0) + 1

RTE(0) + TTE(0) − 1
, (18)

and

χxx
MS =

2j

k0

RTE(0)− TTE(0) + 1

RTE(0)− TTE(0)− 1
(19)

where RTE(0) and TTE(0) are the reflection and transmission coefficients at normal incidence (θ = 0◦).
Any angle for RTE(θ) and TTE(θ) in Eqs. (18) and (19) could have been used, but θ = 0◦ is a convenient
choice. If RTE(0) and TTE(0) are known, either from experimental measurements or from a numerical
simulation of the metascreen, then Eqs. (18) and (19) can be used to retrieve the values of χxx

MS and
πxx
MS. However, if experimental data is used in these retrieval expressions, an angle other than θ = 0

may be required because measuring the reflection coefficients at θ = 0 can be difficult. Once these
surface parameters are obtained, they can be used to determine R and T for any angle of incidence,
which is demonstrated below.

3.2. TM Polarization

From Eqs. (15) and (16) we see that RTM (θ) and TTM (θ) depend on four of the surface parameters.
Thus, unlike the TE polarization case, two sets of RTM (θ) and TTM (θ) data are required to determine
all four unknowns for the TM polarized wave:

πzz
MS =

j

2k0

RTM (0) + TTM (0) + 1

RTM (0) + TTM (0)− 1
(20)

χzz
MS =

2j

k0

RTM (0)− TTM (0) + 1

RTM (0)− TTM (0) − 1
(21)

πyy
ES = − πzz

MS

sin2 θ
+

j cos θ

2k0 sin2 θ

RTM (θ) + TTM (θ) + 1

RTM (θ) + TTM (θ)− 1
, (22)

and

χyy
ES = − χzz

MS

sin2 θ
+

2j cos θ

k0 sin2 θ

RTM (θ)− TTM (θ) + 1

RTM (θ)− TTM (θ)− 1
(23)
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where RTM (0) and TTM (0) are the reflection and transmission coefficients at normal incidence (θ = 0◦);
RTM (θ) and TTM (θ) are the reflection and transmission coefficients at some oblique incidence angle,
sufficiently different from θ = 0◦. With RTM (0), TTM (0), RTM (θ) and TTM (θ) available from either
simulation or experiment, Eqs. (20)–(23) can be used to retrieve the four unknown surface parameters
(χzz

MS , π
zz
MS , χ

yy
ES, and πyy

ES). Here again, once these surface parameters are obtained, they can be used
to determine R and T for any angle of incidence.

In the retrieval approaches for both polarizations, it is important to realize that the reference
plane for RTE,TM(0), TTE,TM(0), RTM (θ), and TTM (θ) is required to be located at y = 0. This is a
consequence of how the GSTCs were derived in [11]. The GSTCs (and the surface parameters) would
need to be modified for different choices of reference plane location [26, 27, 34].

It is interesting to observe that the expressions for three of the retrieved surface susceptibilities
for a metascreen [χxx

MS , χ
zz
MS, and χyy

ES, see Eqs. (19), (21), and (23] are the same expressions as those
for three of the surface parameters for a metafilm (see Eqs. (10) and (11) in [14]). There is no reason
a priori to think that this should be the case, and we have only been able to prove this by going
through the analysis presented in this paper. The underlying reason for this is most likely that both
the metascreen and metafilm have as one of their GSTCs a condition of the same form for the jump in
the E-field. We emphasize that a metascreen (treated in this paper) is a very different structure than
a metafilm, which was addressed in [14]). However, the second of the GSTCs the metascreen requires
a set of conditions on the “average” E-fields, while the metafilm has a condition on the “jump” in the
H-field (the metagrating has GSTCs that are a sort of hybrid of these two conditions). It is worth
emphasizing again that the GSTCs required for a metascreen cannot be reduced to those required for
a metafilm simply by taking some kind of limit or special case.

Although in this paper we have considered only the case of a PEC screen, a similar but more
involved derivation can be carried out to derive GSTCs and retrieval algorithms for the case of a screen
that is merely a good conductor. This requires the use of “stiff” homogenization techniques, such as
those used in [35–39]. It can be shown that the final desired GSTCs will have the same functional form
as for the PEC screen, and the retrieval algorithms will have similar forms to those given above. If the
screen is not highly conducting (as will be the case for metals at optical frequencies), GSTCs of a rather
more complicated form are to be expected — this question is beyond the scope of this paper and will
be the topic of a future publication.

4. RETRIEVED SURFACE PARAMETERS FOR FIVE TYPES OF APERTURE
ARRAYS

In order to illustrate the validity of these expressions for retrieving the surface susceptibilities and
porosities of a metascreen, we will consider five examples.

4.1. Metascreen Composed of an Array of Circular Apertures

We first consider an array of circular apertures in a perfect conductor of thickness h as shown in Fig. 4(a).
For this metascreen, p = 100mm, and a is the radius of the apertures (which will be varied). We show
results for three different h (h = 10mm, h = 5mm, and h = 0.1mm). The reflection and transmission
coefficients for the metascreen were determined numerically from the finite-element software HFSS
(mentioning this product does not imply an endorsement, but serves to clarify the numerical program
used) for both θ = 0◦ and θ = 30◦ at a frequency of 500MHz and a/p ranging from 0 to 0.5. The
numerical values for RTM (0), TTM (0), RTM (θ) and TTM (θ) at the reference plane y = 0 for h = 5mm
are shown in Fig. 5, and were used in (20)–(23) to determine the four unknown surface parameters (χzz

MS ,
πzz
MS, χ

yy
ES, and πyy

ES). Note that since the apertures in the array are symmetric, we have πxx
MS = πzz

MS
and χxx

MS = χzz
MS .

Figures 6 and 7 show the retrieved magnetic and electrical surface parameters for h = 10mm,
h = 5mm, and h = 0.1mm. Using dipole-interaction approximations, closed-form results for these
surface porosities and susceptibilities have been obtained in [16] for an array of circular apertures
(Eqs. (21), (23), (30), (59)–(62) therein). These approximations are also shown in Figs. 6 and 7. From
the comparison in these two figures, we see that the retrieved surface electric and magnetic susceptibility
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(a) array of circular apertures (b) array for square apertures

Figure 4. Metascreen composed of (a) circular apertures and (b) square apertures.

Figure 5. Numerical values for |RTM | and |TTM | for a metascreen composed of circular apertures with
p = 100mm, h = 5mm, and frequency of 500MHz.

and surface magnetic porosity correlate very well with the dipole-interaction approximation for the whole
range of a/p = 0 to a/p = 0.49. While it is expected that the dipole-interaction approximation may not
be valid for closely packed apertures (large a/p), it is interesting that good correlation is observed over
the entire a/p range for the array of circular apertures. The surface parameters can also be determined
from a static field solution obtained from an homogenization approach [11]. For further verification that
the retrieval approach is valid, we compare to the homogenization approach given in [11], see Fig. 8.

4.2. Metascreen Composed of an Array of Square Apertures

Next, we consider an array of square apertures in a perfectly conducting plate as shown in Fig. 4(b). For
this array, p = 100mm and l is the length of the side of the square (which will be varied). The reflection
and transmission coefficients for the metascreen were again determined numerically with HFSS for both
θ = 0◦ and θ = 30◦ at 500MHz and for l/p ranging from 0 to 1.0. The numerical values for RTM(0),
TTM (0), RTM (θ) and TTM (θ) at the reference plane y = 0 are shown in Fig. 9 for h = 5mm, and were
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Figure 6. Magnetic surface susceptibility and
surface porosity for an array of circular apertures:
p = 100mm and for h = 10mm, h = 5mm, and
h = 0.1mm.

Figure 7. Electric surface susceptibility and
surface porosity for an array of circular apertures:
p = 100mm and for h = 10mm, h = 5mm, and
h = 0.1mm.

Figure 8. Comparison of the retrieved
surface parameters to those obtained from the
homogenization approach and to the dipole-
approximations.

Figure 9. Numerical values for |RTM | and |TTM |
for a metascreen composed of square apertures
with p = 100mm, h = 5mm, and frequency of
500MHz.
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used in Eqs. (20)–(23) to determine the four unknown surface parameters (χzz
MS , π

zz
MS , χ

yy
ES, and πyy

ES).
Here again, since the apertures in the array are symmetric, πxx

MS = πzz
MS and χxx

MS = χzz
MS. Figs. 10

and 11 show the retrieved magnetic and electrical surface parameters for h = 0.1mm, h = 5mm and
h = 10mm. Approximate closed-form expressions for these surface parameters for an array of square
apertures are given in [16] (Eqs. (21), (23), (30), (63)–(66) therein). These dipole-approximations are
also shown in Figs. 10 and 11. From this comparison, the retrieved values for the surface parameters

Figure 10. Magnetic surface susceptibility and
surface porosity for an array of square apertures:
p = 100mm and for h = 10mm, h = 5mm, and
h = 0.1mm.

Figure 11. Electric surface susceptibility and
surface porosity for an array of square apertures:
p = 100mm and for h = 10mm, h = 5mm, and
h = 0.1mm.

(a) (b)
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(e)

(c) (d)

Figure 12. Retrieved surface parameters for an array of cross-shaped apertures as a function of s/l
for a thickness h = 5mm and p = 100mm: (a) periodic cell of the slot, (b) πzz

MS , (c) χ
zz
MS, (d) π

yy
ES, and

(e) χyy
ES.

correlated very well to those from the dipole-approximation for l/p < 0.7. As discussed below, as
l/p → 1, πES and πMS should approach ∞. While the retrieved values approach this limit, we see that
the dipole-model does not approach this limit. The discrepancy in the dipole-model is most likely due
to the fact that some of parameters used in the dipole-approximation for the square aperture give in [16]
are known to be in error by as much as 20% [16]. For further verification that the retrieval approach is
valid, we compare to the homogenization approach given in [11], see Fig. 8. This comparison illustrates
some of the limitations in the dipole-approximations and indicate that the surface parameters are better
determined either from the homogenization-based approach or from the retrieval approach.
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4.3. Metascreen Composed of an Array of Cross-Shaped Apertures

In this example we consider a metascreen composed of the cross-shaped apertures shown in Fig. 12(a).
Here we show results for the surface parameters for various values of the slot length (l) and the slot
width (s). In doing such, we consider the following two cases, (1) we set the length of the crosses to a
constant and vary the slot width, and (2) we set the width of the crosses to a constant and vary the slot
length. In all these cases the thickness of the apertures is 5mm. Using HFSS we calculate the the R(θ)
and T (θ) for both 0◦ and 30◦ incident angles for both the TE and TM polarizations. The reflection and
transmission coefficient were used in Eqs. (20)–(23) to obtain the surface parameters. Figs. 12(b)–12(e)
show results for the surface parameters as a function s for different values for l. Note that πxx

MS = πzz
MS

and χxx
MS = χzz

MS. Once s = l, the aperture reduces to a square aperture, therefore, for a reference, we

(a) (b)

(c) (d)

Figure 13. Retrieved surface parameters for an array of cross-shaped apertures as a function of l/p
for a thickness h = 5mm and p = 100mm: (a) πzz

MS, (c) χ
zz
MS, (c) π

yy
ES, and (d) χyy

ES.
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also show the results of the square aperture. Figs. 13(a)–13(d) show results for the surface parameters
as a function of l for different values of s. Again, when l = s, the aperture reduces to a square aperture,
therefore, for a reference, we also show the results of the square aperture.

It is interesting to observe that when l/p = 1, the metascreen converts to a metafilm (i.e., the
array of crosses converts to an array of square plates). When this occurs, one must use the GSTCs for
a metafilm [1, 10, 13–15] to analyze the metasurface.

4.4. Metascreen Composed of an Array of Slot Apertures

Next, we consider a metascreen composed of the slot apertures shown in Fig. 14. Here we show results
for the surface parameters for various values of the slot length (l) and the slot width (s). In all these
cases the length of the slot (l) is along the x-axis and the thickness of the apertures is 0.1mm. In
the limit as l/p → 1 this structure reduces to an array of metallic strips, which will allow us to make
comparisons to analytical values for πxx

MS as both l/p → 1 and as h → 0. The HFSS calculated
reflection and transmission coefficients for this structure were used in Eqs. (18)–(23) to obtained the

(a)

(b) (c)
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(e)

(f) (g)

(d)

Figure 14. Retrieved surface parameters for an array of slots as a function of l/p for a thickness
h = 0.1mm: (a) period cell, (b) πzz

MS, (c) χ
zz
MS , (d) π

xx
MS, (e) χ

xx
MS , (f) π

yy
ES, and (g) χyy

ES.

surface parameters. Figs. 14(b)–14(g) show results for the surface parameters as a function of l for
different s. Note that πxx

MS �= πzz
MS and χxx

MS �= χzz
MS for this structure. As l/p → 1 this structure

reduces to the flat metal strip grating analyzed in [26]. In [26] Weinstein used five surface parameters
in his boundary conditions and labeled them as l0, l1, l2, l3, and l4 and obtained approximate analytical
expressions for them when the strip is infinitely thin. Weinstein’s parameter l0/2 (see Eq. (2.96) in [26])
is equivalent to our πzz

MS when l/p → 1 in our slot case (or more precisely πzz
MS → l0/2 as l/p → 1 and

h → 0). In Fig. 14(b) we also show l0/2, and we see that πzz
MS approaches l0/2 as l/p → 1. Also, for

a thin strip grating χzz
MS → l2 χxx

MS → l3, and χyy
ES → l4 as l/p → 1 and h → 0, Weinstein shows that

l2 = l3 = l4 ≡ 0 when h = 0. From Fig. 14, we also see that the surface parameters χxx
MS, χ

xx
MS , and

χyy
ES are very small and all approach zero as l/p → 1 and h → 0 (i.e., the thin slot array approaches a

strip grating).
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4.5. Metascreen Composed of an Array of Square Apertures Filled with a High-Contrast
Dielectric

In the last example, we consider a metascreen composed of an array of square apertures filled with
a dielectric with εr = 108.2 and a loss tangent of tan δ = 4.9 × 10−5 (these material properties
represent a commercially available material). This example illustrates three important points. First we
show that the retrieval approach can also be used on a metascreen composed of lossy materials such
that χ(ES,MS) and π(ES,MS) have both “real” and “imaginary” parts. Secondly, we illustrate that the
retrieved surface parameters can be used to determine the transmission (or reflection) coefficient for any
arbitrary angle of incidence. Thirdly, we show that by filling the apertures with a high-contrast magneto-
dielectric material (material with high-contrast electric and/or magnetic properties), it is possible to
obtain interesting resonances at frequencies where no resonances exist when the aperture is not filled.
Such behavior is not unexpected (after all, the apertures are filled with what are essentially dielectric
resonators). Nevertheless, the retrieval technique developed in the present paper can obtain values
for the surface susceptibilities and porosities, which in turn can be used to predict the behavior of a
resonant metascreen under more general conditions (e.g., off-axis reflection and transmission coefficients,
as shown below). This can lead to the possibility of designing metascreens with unique transmission
and reflection properties (e.g., narrow-band filters as well as other applications).

Figure 15 shows the normal-incidence transmission coefficient as a function of frequency for an
array of square apertures filled with a dielectric material (εr = 108.2 and tan δ = 4.9 × 10−5). These
results were obtained with HFSS for p = 26mm, h = 10mm, and l = 10mm, see Fig. 4(b). In Fig. 15,
we also show results for the case when no material is in the apertures. Comparing the two results
in this figure, we see that the presence of the material filling the aperture caused two resonances (at
1.63GHz and 2.33GHz) which are not present when no material is used. We see that at 1.63GHz and
2.33GHz, the surface allows almost 100% transmission (the losses cause this to be < 100%) over two
narrow frequency bands. These two high-transmission regions are a result of internal resonances in the
high-contrast material filling the apertures.

Figure 15. HFSS results for the transmission coefficient for an array of square apertures: p = 26mm,
h = 10mm, and l = 10mm.

By retrieving the various surface parameters, we can get an indication as to which of the surface
parameters give rise to the resonances in the transmission coefficient. Using the HFSS results for RTE(0)
and TTE(0) for this metascreen, we used Eqs. (18) and (19) to determine πxx

MS and χxx
MS . These retrieved

values are shown in Fig. 16. Shown here are the real and imaginary parts of the surface parameters
(where the imaginary parts arise due to the loss tangent of the material). Note that in these figures
we have only shown results zoomed in around the two resonant frequencies. From the figure, we see
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(a) (b)

Figure 16. Retrieved surface parameters (πxx
MS and χxx

MS) for an array of square aperture filled with a
high-contrast material (εr = 108.2 and tan δ = 4.9 × 10−5) for p = 26mm, h = 10mm, and l = 10mm:
(a) 1.63GHz and (c) 2.33GHz.

that πxx
MS exhibits a resonance at 1.63GHz, while χxx

MS has a flat response (and is about two orders
of magnitude smaller) in this same frequency range. The resonance in πxx

MS is what gives rise to the
enhanced transmission at 1.63GHz. On the other hand, χxx

MS exhibits a resonance at 2.33GHz (πxx
MS

does not and is about three orders of magnitude smaller) and χxx
MS is what gives rise to the enhanced

transmission at 2.33GHz.
Using these retrieved values for πxx

MS and χxx
MS , along with Eq. (12), the transmission coefficient for

various angles of incidence can be determined (recall that only two surface parameters are needed to
determine the transmission coefficient for a TE wave). The values for TTE(θ) calculated from Eq. (12)
and the results given in Fig. 16 are shown in Fig. 17 for 30◦, 45◦, and 60◦. For a comparison, also in this
figure, we show numerical results obtained from HFSS. These comparisons show that the transmission
coefficient obtained from surface parameters retrieved from normal incidence data are indistinguishable
from the HFSS results, even for angles as high as 60◦.

As shown in Eq. (16), TTM (θ) for an arbitrary angle of incidence requires four surface parameters
(πzz

MS , χ
zz
MS, π

yy
ES, and χyy

ES). Since this metascreen is symmetric, πzz
MS = πxx

MS and χzz
MS = χxx

MS (which
are given in Fig. 16). To obtain πyy

ES and χyy
ES, we used Eqs. (22) and (23) along with HFSS numerical

values for TTM (θ) at 30◦ (the values for |TTM (30◦)| are shown in Fig. 18). Although not shown here, πyy
ES

also has a resonance at 1.63GHz, and χyy
ES also has a resonance at 2.33GHz. Using these four retrieved

surface parameters, along with Eq. (16), the transmission coefficient for various angles of incidence can
be determined. The calculated values for TTM (θ) from Eq. (16) for 30◦, 45◦, and 60◦ are shown in
Fig. 18. For a comparison, we also show numerical results obtained from HFSS. This comparison shows
that the transmission coefficients obtained from the retrieved surface parameters are indistinguishable
from the HFSS results, even for angles as high as 60◦. In fact, the “Fano” type resonances that occur
around 2.4GHz, 2.5GHz, and 2.8GHz are also captured using the retrieved surface parameters (Fig. 19
shows results zoomed in near these resonances). The differences in these very narrow Fano resonant
frequencies do not exceed 0.05%.

4.6. Limit as the Surface-Area of the Apertures Diminishes

It is interesting to observe the surface parameters’ behavior when the surface area of the apertures go to
zero, or when the fill-factor (either l/p or a/p) approaches zero. Referring to the results in the various
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Figure 17. Comparison of TTE(θ) for an array
of square apertures filled with a high-contrast
material (εr = 108.2 and tan δ = 4.9 × 10−5) for
p = 26mm, h = 10mm, and l = 10mm.

Figure 18. Comparison of TTM (θ) for an array
of square apertures filled with a high-contrast
material (εr = 108.2 and tan δ = 4.9 × 10−5) for
p = 26mm, h = 10mm, and l = 10mm.

Figures, we see that as l/p → 0 (or as a/p → 0),

πAyy
ES = πByy

ES ≡ 2πyy
ES → h/2

πAxx
MS = πBxx

MS ≡ 2πxx
MS → −h/2

πAzz
MS = πBzz

MS ≡ 2πzz
MS → −h/2

, (24)

and

χAyy
ES = χByy

ES ≡ 1

2
χyy
ES → h/2

χAxx
MS = χBxx

MS ≡ 1

2
χxx
MS → −h/2

χAzz
MS = χBzz

MS ≡ 1

2
χzz
MS → −h/2

. (25)

These zero fill-factor limits are also obtained by observing how the surface parameters are defined in [11]
(see Eqs. (73), (78) and (80) therein). The integrals involving the static field given in [11] are zero for
l/p = 0 (or for a/p = 0), and hence the surface parameters reduce to ±h/2. The physical reason for this
is because of the choice of the reference plane location. This is made clear by looking at the reflection
and transmission coefficients under the zero fill-factor condition. Using Eqs. (24) and (25) it can be
shown that in this limit, Eqs. (11) and (12) reduce to:

RTE(θ) = −e−jφ; TTE(θ) = 0 (26)

where

φ = tan−1

⎛
⎜⎝ hk0 cos θ

1−
(
hk0 cos θ

2

)2

⎞
⎟⎠ ∼ hk0 cos θ +O

(
(hk0)

3
)
. (27)

From Fig. 2 and [11], the reference plane is at y = 0 (i.e., half way between the top and bottom surfaces
of the conducting plane). This reference plane represents the location where the GSTCs are applied.
When no apertures are present in the plane, this would correspond to a phase shift of hk0 cos θ for a
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Figure 19. Zoomed-in region of Fano type resonances in TTM (θ) at 45◦ and 60◦.

reflected field relative to a position on the top side of the plane. This would correspond to the phase
shift of a wave propagated from the top surface of the metascreen to y = 0 and back. If we had
chosen a reference plane at some other location, the surface parameters for zero fill-factor would change
accordingly. In any event, as h → 0, this phase shift would also approach zero, and we would obtain
the result for the reflection from a conducting plane as if a reference plane was on the surface (i.e., no
phase shift).

4.7. Limit as the Apertures Touch

The other extreme limit of interest is when l/p → 1 or a/p → 1/2. For the square aperture, l/p → 1
corresponds to the square apertures touching and as a result the screen disappearing (i.e., no conducting
screen is present). From Figs. 10, and 11, we see that for this limit, χES and χMS approach zero, and
πES and πMS approach ∞. This same behavior is observed for the metagrating analyzed in [12] (see
Fig. 7 therein), where it is shown that as the radii of the wires composing the metagrating vanish,
πMS → ∞ and χ(ES,MS) → 0. Note that for circular apertures, the maximum possible fill-factor is
a/p = 1/2. Although in this limit the circular apertures do touch, the conducting screen does not
vanish. As a result, χ(ES,MS) do not approach zero and and χMS and π(ES,MS) do not approach ∞. In
the a/p → 1/2 limit for circular apertures, all the surface parameters approach finite, non-zero, values.
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5. DISCUSSION AND CONCLUSION

We have investigated the interaction of electromagnetic fields with a symmetric metascreen. The surface
parameters (the effective electrical and magnetic surface susceptibilities and surface porosities) that
appear explicitly in the GSTCs are uniquely defined, and as such serve as the physical quantities
that most appropriately characterize the metascreen. The effective surface parameters for any given
metascreen together with the GSTCs given in Eqs. (1) and (2) are all that are required to model its
interaction with an EM field.

In this paper, we use the GSTCs to derive the reflection and transmission coefficients for a
metascreen, which are expressed in terms of the electrical and magnetic surface parameters (surface
susceptibilities and surface porosities). It is interesting to note that for TE-polarization, only two
surface parameters (χxx

MS and πxx
MS) are needed to fully characterize a metascreen which is in contrast to

a metafilm, where three different surface parameters are needed to characterize a metafilm [1, 13, 14, 33].
On the other hand, for TM-polarization, four surface parameters (χzz

MS , π
zz
MS, χ

yy
ES, and πyy

ES) are need
to fully characterize a metascreen which is in contrast to a metafilm, where three different surface
parameters are needed to characterize a metafilm for this polarization [1, 13, 14, 33].

We show that knowing the reflection and transmission coefficients (obtained either from
measurements or numerical simulations) of a metascreen, we can develop retrieval techniques for
determining the surface susceptibilities and surface porosities, and hence a method for uniquely
characterizing the metascreen. We demonstrate this retrieval approach by showing results for
metascreens composed of five different apertures (circular holes, square holes, crosses, and slots, and
square apertures filled with a high-contrast dielectric). We show that internal resonances associated
with the material filling the apertures can give rise to interesting reflection and transmission behavior,
i.e., enhanced transmission when compared to apertures with no filling. We also discuss behavior of the
surface parameters in the two extreme limits of the fill-factor.

We have considered only the case where the apertures and the array lattice have sufficient symmetry
such that the magnetic surface susceptibilities and surface porosities of the resultant metascreen
are diagonal (i.e., no cross-polarization terms). The presence of these more general GSTCs (cross-
polarization or off-diagonal magnetic surface parameters) results in coupling between a TE and TM fields
(i.e., a TE polarized field will generate TM fields and vice-versa), and the reflection and transmission
coefficients for this more general case is the topic of a separate publication [32].
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