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Flexible Compact High-Order FD-FD Algorithm for Computing
Mode Fields of Microwave Waveguides with Regular

and Reentrant Corners

Sin-Yuan Mu and Hung-Wen Chang*

Abstract—We present a highly accurate frequency-domain finite-difference algorithm for computing
mode field solutions of microwave waveguides with regular and reentrant corners. Based on FBS
(Fourier-Bessel series)-derived 3-by-3 compact coefficients, our method allows for a flexible layout of
the 2-D uniform grids so that distance from the waveguide boundaries to the adjacent unknowns can be
arbitrary. Fourth to sixth-order convergent rates of the proposed coefficients are verified by resonance-
frequency error analysis for rectangular microwave waveguides for both TE/TM polarizations. We also
study the first four Neumann/Dirichlet eigenvalues of the L-shaped MW-WGs calculated by the flexible
scheme, and the Neumann results are reported for the first time. Although our results achieve sixth-
order accuracy for analytic modes, the order of accuracy is about one and a third for both fundamental
TE and TM modes due to singularity around the reentrant corner.

1. INTRODUCTION

In the past seventy years, researchers had tried various specific techniques to increase the numerical
accuracy for modeling a physical waveguide structure with sharp boundary corners, such as H-shaped
waveguides, L-shaped waveguides, and waveguides with fin line like a metal knife. Tracing the history,
the concept of particular treatment for domain around those corners can be dated back to Motz’s work
in 1947 [1]. Motz applied circular harmonics (like-FBS) expansion to obtain better finite-difference
(FD) coefficients near the vertices of a reentrant corner and those of a metal knife edge. Around these
points, mild and strong singularities occur. Such electromagnetic (EM) fields are related to meromorphic
functions [2, 3]. It is strange that most researches focused just on vertices of PEC wedges and had missed
possible improvement over the classical 5-point and 9-point FD coefficients for Helmholtz equation in
uniform region. In authors’ own view, there are two possible reasons for this. On one hand, conventional
frequency-domain finite-difference (FD-FD) methods cannot handle structures with complex geometry,
so more people worked on finite element method (FEM) to better treat arbitrary PEC boundaries. On
the other hand, finite-difference time-domain (FD-TD) algorithms, unlike FD-FD methods, without
having to invert huge sparse matrices, had enjoyed much popularity for complex and large physical
problems. As the memory size gets larger and the CPU became faster in the late twentieth century,
frequency-domain methods become plausible as they are better suited for high-Q structures and for those
frequency-domain phenomena. It was until Hadley’s work (2002) [4] (and independently by Chang and
Mu (2010) [5]) that FBS-based technique for grids inside a 2-D uniform region were available. Hadley
also derived coefficients for points near dielectric interface, and even for points near dielectric corner
through tedious algebraic manipulation [6]. However, rates of convergence for Hadley’s numerical modal
indices were less than he had expected, and the reasons were not given in his papers. We will discuss this
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point in detail in subsequent paragraphs. The remedy for solving problems with Dirichlet/Neumann
singular boundary by FD-FD and FEM has been proposed by Magura et al. (2017) [7], but it requires
much additional computational effort to subtract the singular field from the whole modal fields.

In this paper we take a deep look into the FD-FD method for analyzing microwave waveguide
(MW-WG) with regular and reentrant corners made of perfect electric conductors (PEC). Fig. 1 shows
an H-shaped MW-WG with the FD-FD grid layout where the FD-mesh lines are represented by dashed
lines. EM fields are sampled on mesh line intersections. Some mesh lines meet with the PEC boundary,
but others may not. For example, when the width to height ratio of a rectangular MW-WG is not an
integral ratio, the bordering field points are not located exactly on or half-a-grid spacing from the PEC
boundary. Hence we need high-order customized FD coefficients for these special nodes near boundary
edges and corners. Otherwise, it will lead to less accurate simulation results. Four types of such 3-by-3
stencils are also shown in Fig. 1. All FD formulations in this paper adopt the variable order illustrated
in the right part of Fig. 1. We will systematically discuss effects of mesh offsets (distance of border
grids from the nearby PEC walls) on the simulation accuracy. Our goals are to maintain, under the
compact-coefficient framework, high-order accuracy in discretizing Helmholtz equation for both interior
grids and those near PEC boundaries with a flexible grid layout.
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Figure 1. (a) FD-FD mesh layout for an H-shaped MW-WG. (b) A compact 3-by-3, 9-point stencil
with numbered nodal fields is given. The grid size for the uniform stencil is Δ.

We will discuss our proposed FBSE-based flexible compact coefficients in FD-FD methods for
points near boundary edges, regular corners, and reentrant corners. The effectiveness of the proposed
coefficients is verified by local field error analysis and TE/TM modal index computation of a rectangular
MW-WG. And for the reentrant corner, it is verified by examining first four Dirichlet/Neumann
eigenvalues of an L-shaped WG. Final numerical results of our algorithm demonstrate sixth-order
accuracy for analytic modes, but the order of convergence is lowered to about one and a third/two
and two third for modes with mild singularity around the reentrant corner.

2. EM FIELDS NEAR LOCAL WEDGES

To compute mode field solutions we may choose Hz component for transverse electric (TE) modes
(Ez ≡ 0) or Ez for transverse magnetic (TM) modes (Hz ≡ 0) [8]. Both Hz and Ez satisfy the
Helmholtz equation given by Eq. (1), where ∇2

t is the transverse Laplacian, and ξ is the transverse
wavenumber. Let the operating angular frequency be ω, and let the mode propagation constant be β.
Then ξ2 = k2−β2, where k = ω

√
μ0ε, with ε and μ0 being the permittivity and free-space permeability,

respectively. Note that the waveguide cutoff frequency fc is proportional to the cutoff wavenumber ξ
(since β ≡ 0).

(∇2
t + ξ2

)
u = 0, fc =

ξc

2π
, u ≡

{
Hz, TE
Ez, TM . (1)

According to Hadley [4], Chang and Mu [5], 2-D EM field solutions in the interior uniform region
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can be well approximated by a truncated Fourier-Bessel series (FBS) for both TE and TM cases.

u (ρ, φ) = a0J0 (ξρ) +
M∑

m=1

Jm (ξρ) [am cos (mφ) + bm sin (mφ)] . (FBS) (2)

On the surface of the perfect electric conductor (PEC) all tangential electric field components should
be zero. In the mathematical setup, the scalar function u (ρ, φ, z) representing Hz/Ez satisfies the
Neumann boundary condition (NBC) for a TE case and the Dirichlet boundary condition (DBC) for a
TM case. Hence, the particular solutions of Eq. (1) near a PEC wedge shown in Fig. 2 are expressed
as Eqs. (3a)–(3b) [9].

u (ρ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0J0 (ξρ) +
∞∑

m=1

aνmf
c
νm

(ρ, φ) , TE

∞∑
m=1

bνmf
s
νm

(ρ, φ) , TM

, 0 ≤ φ ≤ θ0. (3a)

{
f c

νm
(ρ, φ) = Jνm (ξρ) cos (νmφ)

f s
νm

(ρ, φ) = Jνm (ξρ) sin (νmφ)
, νm =

mπ

θ0
, m ∈ N. (3b)

In Eq. (3b), N indicates the set of natural numbers. Boundary conditions and asymptotic behaviors of
all EM components near a PEC wedge of an MW-WG are summarized in Table 1, where all expressions
are in terms of local cylindrical coordinates defined in Fig. 2. In Table 1, ∂ρu and ∂φu represent partial
derivatives of function u with respect to ρ and φ. Note that EM field characteristics near the wedge are
dominated by its included angle θ0. When θ0 ≤ π, all EM components are continuous and finite at the
vertex. However, mild singularity may still exist at that point unless θ0 takes the form of π/n, n ∈ N [9].
For example, considering the case θ0 = 2π/3, the first TM asymptotic term of u (ρ, φ) is proportional
to ρ3/2, and thus the field itself (Ez) and its first derivative (Eρ and Hφ) are continuous and finite at
the vertex, but its second derivative diverges.

PEC

 
φ

ρ

0φ =

0φ θ=

Figure 2. Illustration of a boundary wedge made of perfect electric conductor (PEC) with the included
angle denoted by θ0. The cylindrical coordinate system is centered at the wedge vertex.

Table 1. Boundary conditions and asymptotic behaviors of EM components near a PEC wedge of a
MW-WG (as shown in Fig. 2).

Transverse Expressions Asymptotic Form Comments on the Limit Value

Components TE ( u ≡ Hz , Ez ≡ 0) TM ( u ≡ Ez, Hz ≡ 0) (as ρ → 0) (as ρ → 0)

Eφ ξ−2 (−z̄ ∂ρu) ξ−2
(−jβ ρ−1 ∂φu

)
A ρπ/θ0−1 cos (πφ/θ0)

Divergent if

θ0 > π.

Singular when

θ0 �= π/n,

n ∈ N.

Hρ ξ−2 (−jβ ∂ρu) ξ−2
(
σ̄ ρ−1 ∂φu

)
B ρπ/θ0−1 cos (πφ/θ0)

Eρ ξ−2
(
z̄ ρ−1 ∂φu

)
ξ−2 (−jβ ∂ρu) C ρπ/θ0−1 sin (πφ/θ0)

Hφ ξ−2
(−jβ ρ−1 ∂φu

)
ξ−2 (−σ̄ ∂ρu) D ρπ/θ0−1 sin (πφ/θ0)

B.C.s*

Ez = 0 Automatically satisfying
u (ρ, φ = 0) = 0

u (ρ, φ = θ0) = 0

*B.C.s: boundary conditions.

Eρ = 0 ρ−1∂φu (ρ, φ = 0) = 0

ρ−1∂φu (ρ, φ = θ0) = 0

*Parameter definitions:

Hφ = 0 z̄ � −jωμ0, σ̄ � jωε, and thus k2 = z̄σ̄.
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3. COMPACT FD-FD ALGORITHMS

Although high-order FD-FD solver may be obtained using non-compact coefficients, they lead to
matrices with wider bandwidth which is undesirable due to increased storage and computational costs.
A compact 9-point stencil with numbered nodal fields is shown in Fig. 2. The general expression of
FD-like algebraic relation for such a stencil is given by Eq. (4), where the interested central field u5 is
related to the weighted sum of the immediate surrounding nodal fields.

u5 =
9∑

m=1, m�=5

Wmum = wu,

w =[ W1 W2 W3 W4 W6 W7 W8 W9 ] ,

u =[ u1 u2 u3 u4 u6 u7 u8 u9 ]T .

(4)

If the nodal field um is located outside the computation domain, the associated coefficient Wm is set
to be zero. Compact 3-by-3 stencils enclosing a horizontal or a vertical boundary PEC are discussed in
the subsequent sections.

3.1. Coefficients for Uniform Region (UR)

Based on [4] and [5], the sixth-order accurate coefficients for uniform region are given by Eq. (5) (LFE-9).
The acronym LFE represents local field expansion.

u5 =W−1
0 W+ (u2 + u4 + u6 + u8) +W−1

0 W× (u1 + u3 + u7 + u9) ,

W0 =4 (J0W+ + Js
0 W×) , W+ = Js

4 , W× = J4. (LFE − 9)
(5)

In Eq. (5), Ji = Ji (Vt), and Js
i = Ji

(√
2Vt

)
(i = 0, 4), where Vt = ξΔ, which is the normalized

transverse wavenumber.

3.2. Coefficients for Boundary Edge (θ0 = π)

In Figs. 3(a)–3(d) we show four 9-point stencil grid layouts near PEC boundaries. The black squares
indicate interior nodes. The green squares and blue ones indicate nodes near edges and near regular
corners, respectively. The red squares indicate nodes near reentrant corners. The black crosses indicate
nodes outside computation domain. The red circles are vertices of reentrant corners. The offset for the
(a) case is d (= tΔ) whereas dx (= txΔ) and dy (= tyΔ) are horizontal and vertical offsets for the other
three cases. When 0 ≤ t < 1, PEC edges alter the uniform-region coefficients for both TM and TE cases.
When t = 0, the case for TM polarization is trivial, and the 4th-order accurate coefficients and the
6th-order accurate ones for Neumann boundary conditions have been proposed in Eq. (40) of [10] and
in Eq. (53) of [11], respectively. Evaluating ui (� (ρi, φi), i = 1, 2, 4, 5, 7, 8) by Eq. (6), the truncated
version of Eqs. (3a)–(3b) for the case θ0 = π leads to Eqs. (7a)–(7b) for TE modes and to Eqs. (8a)–(8b)
for TM modes. In Eqs. (7a)–(7b), subscripts e of ue, ae, and be stand for edge. The subscripts N/D
indicate Neumann/Dirichlet BCs. ue = [ u1 u2 u4 u5 u7 u8 ]T , which is the nodal field vector
near edge. wTE

e and wTM
e are the weighted coefficient vector to relate u5 to ue for TE and TM modes.

Note that wTE
e and wTM

e are functions of the offset d.

u (ρ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0J0 (ξρ) +
M∑

m=1

amJm (ξρ) cos (mφ), TE

M∑
m=1

bmJm (ξρ) sin (mφ) , TM

, 0 ≤ φ ≤ π. (6)

[
PN

FN

]
ae =

[
ue

u5

]
⇒ u5 = wTE

e ue, wTE
e = FNP−1

N . (EGLFE − TE) (7a)
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Figure 3. Illustration of 9-point stencils near PEC boundaries. (a) Stencil for edge (0 < φ < π). (b)
Stencil for a regular corner (0 < φ < π/2). (c) Stencil for a reentrant corner (Type I with one node
removed) (0 < φ < 3π/2). (d) Stencil for reentrant corner (Type II with two nodes removed).

PN =
[
cijJ

i
j

]
, cijJ

i
j � Jj (ξρi) cos (jφi) , i = 1, 2, 4, 7, 8, j = 0, 1, 2, . . . ,M,

FN =
[
c5jJ

5
j

]
, ae = [ a0 a1 a2 · · · aM ]T .

(7b)

[
PD

FD

]
be =

[
ue

u5

]
⇒ u5 = wTM

e ue, wTM
e = FDP−1

D . (EGLFE − TM) (8a)

PD =
[
si
jJ

i
j

]
, si

jJ
i
jJj (ξρi) sin (jφi) , i = 1, 2, 4, 7, 8, j = 1, 2, . . . ,M ,

FD =
[
s51J

5
1 s52J

5
2 s53J

5
3 · · · s5MJ

5
M

]
, be = [ b1 b2 b3 · · · bM ]T .

. (8b)

Considering the simplest case that t = 0, we may simplify Eqs. (7a)–(7b) (EG LFE-TE formulation)
as Eq. (9), where W0, W+, and W× are given by Eq. (5). The coefficients given by Eq. (9) can be
equivalently obtained by imposing even symmetry condition (along y = 0) on those coefficients defined
in Eq. (5) for uniform region.

u5 = W−1
0 W+ (u2 + 2u4 + u8) +W−1

0 W× (2u1 + 2u7) . (EG LFE-TE for t = 0) (9)

In principle we need all, up to the eighth order, FBS terms to maintain the accuracy of compact
coefficients. The local field formulation achieves 8th-order accuracy, and hence FD-discretized Helmholtz
equation may enjoy a 6th-order global accuracy (since discretized Helmholtz equation is divided by Δ2).
Once in a while we may use fewer terms to achieve same level of accuracy because of structure symmetries
as in the case of the uniform region where we only need FBS terms with orders lower than 5 [5].

3.2.1. Local Error Analysis for Edge Grids

Near a PEC edge (denoted as EG) an exact solution of Eq. (1) for the settings given by Fig. 3(a) is
expressed as:

ψEG (x, y) =
{

cos (qy) e−jpx, TE
sin (qy) e−jpx, TM

, p = γξ, and q =
(
1 − γ2

)1/2
ξ . (10)

In Eq. (10), γ is defined as the ratio of p (tangential wavenumber component) to ξ. ψEG is viewed as the
superposition of two opposite evanescent waves in y direction when |γ| > 1. The analytic value of the
central field ua

5 is ψEG evaluated at x = 0 and y = tΔ. The corresponding numerical value un
5 is defined

as the weighted sum of ψEG evaluated at the coordinates of surrounding nodal fields according to Eq. (4).
The weighting factors wTE

e and wTM
e are given by Eqs. (7a)–(7b) and Eqs. (8a)–(8b). The local relative

error (LRE) is defined by Eq. (11), which is function of γ, t, and the transverse sampling density
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Nλ (= 2π/Vt). Similar techniques for local error analysis have been proposed in previous researches
[12, 13]. Corresponding curves are shown in Figs. 4(a)–4(c) and Figs. 5(a)–5(c).

LRE (Nλ, γ, t) �
∣∣∣∣u

n
5 − ua

5

ua
5

∣∣∣∣ . (11)

Considering those figures, observations based on LRE analysis are summarized here.

3.2.2. I. Offset Effects

We are surprised to learn that LRE is quite sensitive to the normalized offset. The differences between
the minimum and maximum LREs are from 2 to 5 orders for both TE cases (Figs. 4(a)–4(b)) and TM
cases (Figs. 5(a)–5(b)). For TE cases, the optimized points are near t = 0.5 and t = 0, but for TM cases,
the optimal choices are around t = 0.5 and t = 1. The convergent rate is about 8th-order when t = 0.5
and lower for other offsets. Hence, the optimal choice of offset may be around half-a-grid spacing.

       
(a) (b) (c) 

Figure 4. Local relative errors (LRE) of edge grids using EG LFE-TE (Eqs. (7a)–(7b)) stencils as
functions of (a) transverse sampling density (Nλ) (b) normalized offset (t), and (c) normalized tangential
wavenumber (γ = p/ξ). (Neumann boundary conditions are imposed.).

     
(a) (b) (c)

Figure 5. Local relative errors (LRE) of edge grids using EG LFE-TM formulation (Eqs. (8a)–(8b))
as functions of (a) transverse sampling density (Nλ), (b) normalized offset (t), and (c) normalized
tangential wavenumber (γ = p/ξ). (Dirichlet boundary conditions are imposed.).

3.2.3. II. Angular Spectrum Effects

Effects on spatial angular spectrum dependency are shown in Fig. 4(c) and Fig. 5(c). We see that
the overall LREs remain small for propagating plane waves (when γ < 1) and increase rapidly when
γ > 1 where the fields are evanescent normal to the PEC surfaces. This may explain why the global
mode indices converge with lower order of accuracy when weak singularities fields are presented, hence
producing evanescent waves, as will be discussed further in later sections.
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3.3. Coefficients for Regular Corner (θ0 = π/2)

A compact stencil near regular (right-angled) PEC corner is shown in Fig. 3(b). Between the vertex
and central node, an offset dx(= txΔ) and dy(= tyΔ) lie in the horizontal and vertical directions. When
0 ≤ tx < 1 and 0 ≤ ty < 1, PEC corner coefficients are adjusted for both TM and TE cases. For TE
case, when tx = 1 or ty = 1, the situation is reduced to the edge case discussed in Section 3.2. For TM
case, if tx = 0 or ty = 0, then the situation can be ignored as the unknowns on the PEC corner/edge
are zeros. Local fields near a regular PEC corner (denoted as PEC-CR) are given by:

u (ρ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0J0 (ξρ) +
M∑

m=1

a2mJ2m (ξρ) cos (2mφ) , TE

M∑
m=1

b2mJ2m (ξρ) sin (2mφ) , TM

, 0 ≤ φ ≤ π/2. (12)

Referring to Fig. 3(b) we may obtain the PEC-CR compact coefficients wTE
c and wTM

c with following:[
RN

GN

]
ac =

[
uc

u5

]
⇒ u5 = wTE

c ue, wTE
c = GNR−1

N . (CRLFE − TE) (13a)

[
RD

GD

]
bc =

[
uc

u5

]
⇒ u5 = wTM

c uc, wTM
c = GDR−1

D . (CRLFE − TM) (13b)

Submatrices are defined in Eq. (14a) and Eq. (14b).

RN =
[
ci2jJ

i
2j

]
, ci2jJ

i
2j � J2j (ξρi) cos (2jφi) , i = 4, 7, 8, j = 0, 1, 2, . . . ,M,

GN =
[
J5

0 c52J
5
2 c54J

5
4 · · · c52MJ5

2M

]
, ac = [ a0 a2 a4 · · · a2M ] ,

(14a)

RD =
[
si
2jJ

i
2j

]
, si

2jJ
i
2j � J2j (ξρi) sin (2jφi) , i = 4, 7, 8, j = 1, 2, . . . ,M.

GD =
[
s52J

5
2 s54J

5
4 s56J

5
6 · · · s52MJ

5
2M

]
, bc = [ b2 b4 b6 · · · b2M ] .

(14b)

3.3.1. Local Error Analysis for Regular Corner

Exact solutions of local field near a PEC-CR (Fig. 3(b)) can be expressed as products of standing plane
waves as shown below:

ψCR (x, y) =
{

cos (px) cos (qy) , TE
sin (px) sin (qy) , TM

, p = γξ, and q =
(
1 − γ2

)1/2
ξ . (15)

The analytic ua
5 is ψCR evaluated at x = txΔ and y = tyΔ. Numerical value un

5 is just the weighted sum
of ψCR evaluated at u4, u7, u8. The weighting factors wTE

c and wTM
c are given by Eqs. (13a)–(13b).

For simplicity, we only consider the case when tx = ty. Computed local relative errors for PEC-CR
are presented in Figs. 6(a)–6(c) for the TE cases and in Figs. 7(a)–7(c) for the TM cases. As we can
see from Figs. 6–7, local errors behave quite distinctively between the two polarizations. As shown in
Fig. 6(c) and in Fig. 7(c), minimum LREs occur when the ratio ty/tx is around 1.

3.4. Coefficients for Reentrant Corner

There are two distinct grid layouts near a PEC reentrant corner (denoted as PEC-RC) which are
shown in Figs. 3(c)–3(d). For the first type only one nodal field, i.e., u3, is outside the computation
domain whereas the second type has two outside nodes u3 and u6. The offset parameters are denoted
by dx(= txΔ) and dy(= tyΔ). When tx = 1 and ty = 1, as illustrated in Fig. 3(c), uniform region
coefficients are to be used for u5. When 0 ≤ tx < 1 and 0 ≤ ty < 1, we must seek adjusted PEC-RC
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(a) (b) (c) 

Figure 6. Plots of local relative errors (LRE) of CR LFE-TE against (a) transverse sampling density
(Nλ), (b) normalized offset (t) and (c) offset ratio (tx/ty). (Neumann boundary condition).

        
(a) (b) (c)

Figure 7. Local relative errors (LRE) of CR LFE-TM as functions of (a) transverse sampling density
(Nλ), (b) normalized offset (t) and (c) offset ratio (tx/ty). (Dirichlet boundary condition).

coefficients. Exact FBS-based solutions of the local field near a PEC reentrant corner as illustrated in
Figs. 3(c)–3(d), for both TE and TM cases, are given by [9]:

u (ρ, φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0J0 (ξρ) +
M∑

m=1

a2m/3J2m/3 (ξρ) cos (2mφ/3), TE

M∑
m=1

b2m/3J2m/3 (ξρ) sin (2mφ/3) , TM

, 0 ≤ φ ≤ 3π/2. (16)

Here PEC-RC compact coefficients wTE
RCI, wTM

RCI, wTE
RCII and wTM

RCII are computed by following
expressions:

[
QN,I

VN

]
ar =

[
uRCI

u5

]
⇒ u5 = wTE

RCIuRCI, wTE
RCI = VNQ−1

N, I, (RCLFE − TE − I) (17a)

[
QD,I

VD

]
br =

[
uRCI

u5

]
⇒ u5 = wTM

RCIuRCI, wTM
RCI = VNQ−1

N.I, (RCLFE − TM − I) (17b)

[
QN, II

VN

]
ar =

[
uRC II

u5

]
⇒ u5 = wTE

RCIIuRCII, wTE
RCII = VNQ−1

N, II, (RCLFE − TE − II) (17c)

[
QD,II

VD

]
br =

[
uRCII

u5

]
⇒ u5 = wTM

RCIIuRCII, wTM
RCII = VNQ−1

N,II, (RCLFE − TM − II) (17d)



Progress In Electromagnetics Research C, Vol. 92, 2019 159

where

QN,I =
[
cijJ

i
j

]
, cij � J i

jJj (ξρi) cos (jφi) , i = 1, 2, 4, 5, 6, 7, 8, j = 0, 1, 2, . . . ,M,

VN =
[
J5

0 c52/3J
5
2/3 c54/3J

5
4/3 · · · c52M/3J

5
2M/3

]
, ar =

[
a0 a2/3 a4/3 · · · a2M/3

]T
,

(18a)

QD,I =
[
si
jJ

i
j

]
, si

jJ
i
j � Jj (ξρi) sin (jφi) , i = 1, 2, 4, 5, 6, 7, 8, j = 1, 2, . . . ,M,

VD =
[
s52/3J

5
2/3 s54/3J

5
4/3 s52J

5
2 · · · s52M/3J

5
2M/3

]
, br =

[
b2/3 b4/3 b2 · · · b2M/3

]T
.

(18b)

Note that stencil matrices QD,I and matrix QN,I in Eqs. (18a) and (18b) are for PEC-RC type I
configuration. Type II PEC-RC matrix QD,II is obtained from QD,I with the last row removed. The
same rule applies to QN,II.

3.4.1. Local Error Analysis for Reentrant Corner

PEC-EG and PEC-CR structures support (standing) plane wave solutions given by Eq. (10) and
Eq. (15), but such solutions do not always exist for PEC-RC shown in Fig. 3(c) and Fig. 3(d). For
local error analysis, an exact solution near a PEC-RC, ψRC (x, y), is defined in Eq. (19) by truncating
Eq. (16) at the thirtieth term, and all weighting factors are set to be one.

ψRC (ρ, φ) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

29∑
m=0

J2m/3 (ξρ) cos (2mφ/3), TE

30∑
m=1

J2m/3 (ξρ) sin (2mφ/3), TM

. (19)

The analytic ua
5 is ψRC evaluated at x = txΔ, y = tyΔ. Numerical value un

5 is just the weighted sum of
ψRC evaluated at u4, u7, u8 for Type I-II reentrant corners. For simplicity, we only consider the case
when tx = ty. In Figs. 8(a)–8(d) LREs of RC LFE-TM and RC LFE-TE are plotted against transverse
sampling density (Nλ) . In Figs. 8(e)–8(h) they are plotted against the normalized offset (tx/ty). Type
II errors are in general somewhat larger, and the orders of convergent rate are less than those of Type I.

       
(a) (b) (c) (d)

       
(e) (f) (g) (k)

Figure 8. Plots of local relative errors of type I and type II of RC-LFE-TM/TE versus transverse
sampling density (Nλ) and normalized offset (tx) (tx = ty).
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4. NUMERICAL SIMULATION OF MW-WG MODES

4.1. Simulation of a Rectangular Waveguide

We now turn to the global error study of our proposed LFE-base compact stencils. First, we look at the
rectangular waveguide with a flexible mesh layout as illustrated in Fig. 9. Boundary field points next
to the left, right, and top PEC walls are fixed at half-a-grid spacing leaving varying grid spacing at the
bottom PEC. The normalized bottom offset is denoted by tB. With a fixed waveguide dimension we
continuously change the number of sampling points, Nx, in the x-direction. Computed global relative
errors (RErr) of numerical cutoff frequencies versus Nx are plotted in Figs. 10(a)–10(c) for TE10, TE01,
and TE11 modes. The results for TM11, TM21, and TM12 modes are shown in Figs. 11(a)–11(c). From
these plots we see that relative TE mode errors are more sensitive to the normalized bottom offset
parameter tB than those of TM cases. Overall we observed that the minimum error (with a 6-th order
accurate convergent rate) occurs when tB equals 0 or 0.5. Convergent rates for the other two cases,
tB = 0.25 and tB = 0.75, are only at 5th-order.

 

Figure 9. Flexible FD-mesh layout for the rectangular MW-WG.
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Figure 10. (Rectangular MW-WG) Global relative errors (RErr) of numerical cutoff frequencies for
(a) TE10, (b) TE01, and (c) TE11 modes as functions of the x-directional sampling points Nx.

4.2. Simulation of an L-Shaped Waveguide

Finally we test our LFE compact stencils by computing the L-shaped WG made of three unit squares
as shown in Fig. 12. In our simulation, the three normalized offsets tL, tR1, and tU3 are set to be 0.5.
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(a) TM   Mode11 (b) TM   Mode21 (c) TM   Mode12

Figure 11. (Rectangular MW-WG) Global relative errors of numerical cutoff frequencies for (a) TM11,
(b) TM21, and (c) TM12 modes as functions of the x-directional sampling points.

Waveguide boundary (PEC) 

Grid line 

Interior node for uniform stencil 

Node near boundary edge 

Node near regular corner 

Node near reentrant corner (type I) 

Node near reentrant corner (type II) 

1Ut Δ  

1Rt Δ

3Rt Δ

3Ut Δ

Bt Δ  

Lt Δ

Figure 12. Flexible FD-mesh layout for the L-shaped (made of three unit squares) MW-WG. The
number of sampling points in x direction for the upper left square Nx1 = 5.

Setting L = 1, the number of x-directional sampling points of the upper-left square (Nx1) is related to
the grid spacing Δ as Nx1 + tL + tR1 − 1 = L/Δ. Once Nx1 is given, the grid size Δ and the other three
parameters tU1, tB, and tR3 are determined from it. In Fig. 12, LFE-9 formulation is applied to the
nodes marked as black squares. Compact stencils for green and blue nodes are respectively EG LFE
stencils (Eqs. (7a)–7(b) and Eqs. (8a)–(8b)) and CR LFE stencils (Eqs. (13a)–(13b) and Eqs. (14a)–
(14b)). Stencils for the red and yellow nodes, which are the immediate neighboring grids of the reentrant
corner, are adjusted based on Eqs. (17a)–(17d) and Eqs. (18a)–(18b). First ten Dirichlet eigenvalues of
Eq. (1) for L-shaped domain can be found in [14], and their square roots serve as the reference values
of TM-polarized cutoff frequencies. Later on, a whopping 1001 significant digits of the first Dirichlet
eigenvalue for L-shaped domain was given by Jones (2017) [15], where he obtained the result by combing
the FHM algorithm [16] with infinite precision floating point arithmetic.

We noted that there were few published eigenvalue results for TE modes of an L-shaped WG. We
calculate reference Neumann eigenvalues (not found in previous literatures) using up to 750 thousand
unknowns with our in-house band matrix eigenvalue solver. Our LEF-based FD-FD calculations of the
first four eigenvalues are listed in Table 2 for TM polarization and in Table 3 for TE polarization. The
convergent orders (CO) are still 6 for those modes with analytic eigenfunctions. Global relative errors
(RErr) of numerical cutoff frequencies for TE modes and TM modes are shown in Figs. 13. Singularity
of higher order modes is weaker than that of the fundamental mode, and hence they have a higher
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(a) (b) 

Figure 13. (L-shaped MW-WG) Global relative errors (RErr) of numerical cutoff frequencies for (a)
TE modes (left) and for (b) TM modes (right).

convergent rate (about 2.7). Resonant transverse wavelengths of higher order modes are shorter than
those of lower order modes, so the singularity field of a higher-order mode attenuates much more as it
propagates away from the reentrant corner. Thus, the relative errors of higher order modes are smaller
than those of lower ones except for analytic cases as listed in Table 2 and Table 3. When Nx1 = 95
(about 27 thousands variables), our results give 5 significant digits for the fundamental TE/TM modes,
and 7 to 8 digits for higher-order singular modes. Nevertheless, the overall convergence orders for the
proposed LFE-based FD algorithm are still better than the results reported in [17] where the modified
FEM is applied. Since the singularity field spreads out from the reentrant corner, the effect is globalized
instead of being localized [7]. This intrinsic limitation impedes numerical performance of solving mode
field problems with incoming PEC wedges, or with dielectric corners with high index contrasts, by all
FD-FD and FEM algorithms.

Table 2. Numerical TM results (DBC) of the L-shaped MW-WG by LFE-based FD-FD solver.

No. Exact Value of ξ [22] ξ (Nx1 = 95) RErr* CO* Comments

1 3.1047904 3.1047620280375 9E-06 1.33 This mode is dominated by ρ2/3 term. This is the strongest
singular mode.

2 3.8983652 3.8983653775956 2E-08 2.66 This mode is dominated by ρ4/3 term and suffers from less
singularity.

3 Exact
√

2π 4.4428829381582 3E-14 6 No singularity. u (x, y) = A sin (πx) sin (πy).

4 5.4333673 5.4333674078062 4E-09 2.64 High-order singular mode suffers from less singularity.

*RErr: relative error; CO: convergent order

Table 3. Numerical TE results (NBC) of the L-shaped MW-WG by LFE-based FD-FD solver.

No. Reference Value of ξ (Nx1 = 500) ξ (Nx1 = 95) RErr CO Comments

1 1.21475 1.2147403776183 8E-06 1.33 This mode is dominated by a ρ2/3 term and
suffers from the strongest singularity.

2 1.8799019 1.8799019744744 2E-08 2.71 This mode is dominated by a ρ4/3 term.

3 Exact π 3.1415926539879 1.3E-10 6 No singularity. u (x, y) = A cos (πx) +
B cos (πy).

4 3.374830277 3.3748302910759 4E-09 2.66 A high-order singular mode converges faster
due to a weaker singularity.
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5. CONCLUSIONS

Traditional FD schemes are limited in two ways. First, the mesh pattern is rectangular and thus is
unsuitable for problems with curved boundaries. Second, the accuracy of FD-FD is optimized when
square uniform mesh is implemented resulting in arbitrary grid offsets near PEC walls for general
waveguide structures. In this paper, we present a flexible LFE-based FD-FD algorithm for simulating
complex microwave waveguides with regular and reentrant corners. We maintain the highest possible
orders of accuracy for all customized compact stencils near the PEC borders. The cutoff frequency
convergence rates for various rectangular waveguides are always 5th- to 6th-order accurate for both
types of polarizations.

In the simulation of a typical L-shaped MW-WG, the resonant Neumann frequencies are reported
for the first time. We also demonstrate: (a) The local errors of FBSE-based coefficients for these
specialized stencils are at least of 5th order; (b) The order of accuracy of the fundamental WG cutoff
frequency is one and a third for both the TE mode and TM mode; (c) Numerical results for higher-order
singular modes converge faster than those for the fundamental modes; and (d) The convergent rate for
analytic modes achieves sixth-order as expected. Compared with the 8-th order accuracy of the uniform
cell (local-error), the loss of accuracy for those customized cells near a PEC wall/corner is due to the
loss of grid symmetry in the presence nearby PEC boundary. The overall resonant frequencies are not
calculated with expected performance of our proposed LFE-based compact stencils. The loss of global
accuracy in these cases is entirely due to the singular field emanating from the reentrant corner.
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