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Embedded Resonances for Discrimination of Multiple Passive
Nonlinear Targets Applicable to DORT

Sun K. Hong* and Hong Soo Park

Abstract—This paper presents a method to distinguish multiple passive nonlinear targets, which can
be applied to detection and selective wave focusing based on the decomposition of the time-reversal
operator (DORT). A recent demonstration of DORT applied to harmonic scattering has shown that
passive nonlinear targets (scatterers) can be detected in the presence of linear scatterers and separated
into discrete eigenvalues. While DORT is effective in detecting multiple nonlinear targets, it could
be difficult to discriminate these nonlinear scatters as their harmonic responses would look similar
to each other. Our proposed approach to overcoming this difficulty is based on simply embedding a
unique resonant notch in the second harmonic band for each nonlinear scatter, so as to make the notch
appear in the associated eigenvalue, permitting identification and discrimination of the scatterer. We
numerically demonstrate the basic feasibility of the proposed idea by considering various configurations
in a two-dimensional model. The results show that a uniquely embedded resonant notch in a nonlinear
target consistently appears in the corresponding eigenvalue of the time reversal operator, allowing it to
be a reliable identifying feature. Further investigation into this technique holds promise towards smart
wireless power transfer, biomedical, and IoT applications.

1. INTRODUCTION

For detection of multiple scatterers (or targets), utilizing an array-based system can be advantageous as
it can provide a complete set of multistatic responses, allowing one to acquire the information necessary
for separating the detected scatterers and determining their locations. Our interest here is with the
decomposition of the time-reversal operator (DORT), a time-reversal based technique that processes
multistatic scattered responses by means of eigendecomposition. With DORT, the detected targets
are separated into a set of discrete eigenvalues and their corresponding eigenvectors containing the
information related to their locations [1, 2]. Therefore, by feeding the array using the eigenvectors
associated with a given eigenvalue, it is possible to selectively transmit waves onto a detected target of
interest, either physically for focusing electromagnetic energy at the scatterer or virtually for imaging
purposes. For this reason, DORT has been studied for various applications [1–11].

A recent demonstration has shown that DORT can also be applied to detection of passive nonlinear
scatterers in the presence of linear scatterers [10, 11]. Nonlinear scatterers refer to electronic devices
containing semiconductor junctions which can generate harmonic responses upon excitation. Hence,
exploiting the harmonic content in the received signal allows for nonlinear targets to be detected and
separated from linear scatters which are considered clutter. Nonlinear detection has been studied
for applications such as detection of RF electronics, insect tracking, RFID, temperature sensing, and
monitoring of human activities [12–17]. As for DORT applied to nonlinear scatterers, due to its
ability to selectively focus electromagnetic energy at a scatter in addition to detection, it could find
applications in wireless power transfer where harmonic responses from passive rectifiers can be exploited
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for detection and subsequent selective focusing (beamforming) to concentrate wireless power at a desired
device [10, 11]. Additionally, harmonic detection and selective focusing via DORT may also be used to
adaptively send power or information to passive biomedical implants or small sensors for potential IoT
applications.

When DORT is applied to nonlinear targets, the eigenvalues appearing in the harmonic bands
indicate the presence of nonlinear scatterers in the probed environment. Furthermore, applying pulse
inversion (PI) in addition to DORT suppresses the fundamental and odd-ordered harmonics while
retaining the even ordered harmonics, thereby rejecting clutter from linear scatterers [11, 18]. PI can be
particularly useful when using wideband signals as there may exist some overlap between the harmonic
bands. An additional advantage of using PI in a multistatic system is the removal of inter-element
coupling which only occurs in the fundamental band, especially at short detection range.

While PI-DORT is effective in detecting nonlinear scatterers and separating them into discrete
eigenvalues, discrimination of multiple detected nonlinear scatterers could be challenging. That is, the
eigenvalues obtained for two passive nonlinear targets via PI-DORT may look identical in the second
harmonic band (even though their eigenvectors differ), rendering it difficult to identify and discriminate
one from the other. The ability to identify detected nonlinear targets could be essential for applications
where one needs to ensure that the waves are selectively transmitted onto the intended target. An
example scenario would be PI-DORT applied to selective wireless power transfer in an environment
where multiple passive devices are present, in which case the detected devices must be identified and
discriminated from one another to ensure that power is selectively transmitted to the device of interest.
In this paper, we propose embedding a unique resonant signature in the second harmonic band for
each nonlinear scatter, such that a distinct resonant notch appears in the eigenvalue of each detected
nonlinear scatter. Therefore, a given nonlinear target can distinctively be identified and discriminated
from other detected nonlinear scatterers. The proposed approach is numerically validated by considering
various configurations.

2. PI-DORT

A general scenario considered here consists of an environment with multiple scatterers (linear and
nonlinear) probed by a multistatic array system (Figure 1). For an N -element array and P individual
well-resolved scatterers (negligible multiple scattering between scatterers), the time-domain multistatic
responses can be represented with an N ×N matrix R(t), where each matrix element ri,j(t) represents

Figure 1. Illustration of a general scenario of multistatic array-based detection of multiple scatterers.
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the response between the ith (receive) and jth (transmit) antenna elements. Assuming point scatterers
for simplicity of derivation, ri,j(t) is expressed as

ri,j(t) =
P∑

p=1

qp,j(t) ∗ gi,p(t), (1)

where ∗ denotes temporal convolution; qp,j(t) represents the response of the pth scatterer due to a pulse
transmitted from the jth antenna; and gi,p(t) represents the Green’s function between the pth scatterer
and ith antenna element. Here qp,j(t) can be expanded in a power series to account for both linear and
nonlinear targets in general, i.e.,

qp,j(t) =
∞∑

k=1

αk (f(t) ∗ gp,j(t))
k, (2)

where f(t) is the transmit pulse. For nonlinear targets, and αk is ideally nonzero for all values of k,
generating scattered responses in the harmonic bands of f(t). For linear targets, αk is nonzero only for
k = 1, thereby producing scattered responses only in the fundamental band of f(t). In Eq. (2), gp,j(t)
represents the Green’s function between the pth scatterer and jth antenna element.

For detection of nonlinear responses, pulse inversion (PI) can be utilized to suppress fundamental
and odd-ordered harmonic responses, while enhancing even-ordered harmonic responses by twofold. PI
is particularly useful in the case of a wideband transmit pulse, where there may exist some overlap
between the fundamental and harmonic bands, causing a difficulty in extracting the harmonic responses
using a filter. Additionally, PI inherently eliminates any coupling between antenna elements which only
occurs in the fundamental band and may be a significant problem particularly at short detection range,
since they could inundate scattered responses. PI can be applied by separately transmitting two pulses
that are opposite in phase (polarity), but otherwise identical, that is, f−(t) = −f+(t). As a result, the
multistatic responses are obtained as two sets, i.e., R+(t) and R−(t). By taking the sum of these two
sets, we obtain Rs(t) = R+(t) + R−(t), and each matrix element in Rs(t) is expressed as

rs
i,j(t) = r+

i,j(t) + r−i,j(t) =
P∑

p=1

[ ∞∑
k=0

2α2(k+1)

(
f+(t) ∗ gp,j(t)

)2(k+1)

]
∗gi,p(t). (3)

where only the even-ordered harmonics are retained and enhanced by a factor of two, while the
fundamental and odd-ordered harmonics are eliminated.

DORT is then applied to detect and separate targets in terms of discrete eigenvalues. Since the
DORT process is done in the frequency domain, the Fourier transform of the multistatic responses,
Rs(ω), is used. The time-reversal operator (TRO) of Rs(ω) is defined as

T(ω) = Rs†(ω)Rs(ω) (4)

where † denotes the conjugate transpose representing time-reversal in the frequency domain. The
eigendecomposition of T(ω) should yield

T(ω) = V(ω)Λ(ω)V†(ω), (5)

with Λ(ω) being a diagonal matrix representing the eigenvalues of T(ω). Since T(ω) is an Hermitian
matrix, its eigendecomposition can be done through the singular value decomposition of Rs†(ω) and
Rs(ω), that is,

Rs†(ω) = V(ω)Σ†(ω)U†(ω)

Rs(ω) = U(ω)Σ(ω)V†(ω)
(6)

where V(ω) and U(ω) are unitary matrices representing the singular vectors, and Σ(ω) is a diagonal
matrix containing the singular values. Substituting (6) into (4), (5) becomes

T(ω) = V(ω)
[
Σ†(ω)Σ(ω)

]
V†(ω), (7)
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where Λ(ω) = Σ†(ω)Σ(ω) and therefore λi(ω) = σ2
i (ω). Since DORT is applied to Rs(ω) after PI in

this case, λi(ω) should in principle only be associated with nonlinear targets with nonzero values only
in the even-ordered harmonic bands. Therefore it should be noted that the content of λi(ω) is not
linearly scalable and should represent the scattered responses of the corresponding nonlinear target for
a particular case of transmit pulse (amplitude, pulsewidth and shape). Each column vi(ω) in V(ω)
contains the eigenvectors of the corresponding eigenvalue, representing the phase conjugated Green’s
functions between the array elements and the associated scatterer. One can then use vi(ω) to generate a
set of signals for selective focusing (or beamforming) to concentrate electromagnetic waves at a desired
target. Such a set of signals is expressed as

xi(ω) = kσi(ω)vi(ω), (8)
where k is a scalar constant representing signal amplification. The amplitude and phase of xi(ω) at a
particular frequency can be used for phasing the array, or a set of time-domain pulses can be generated
by means of the inverse Fourier transform of xi(ω) over a specified bandwidth, i.e.,

xi(t) = F−1 {kσi(ω)vi(ω)} . (9)
As shown above, PI-DORT can separate detected nonlinear scatterers into discrete λi(ω) and the

corresponding vi(ω) to provide the information regarding the location of each detected nonlinear target
to allow selective focusing. However, apart from the target locations, identification and discrimination
of one target from another remains a challenge as the spectral shape of λi(ω) (or σi(ω)) would look
similar between the targets exhibiting similar passive nonlinear characteristics.

3. EMBEDDED RESONANT NOTCH AS A DISTINGUISHING FEATURE

Here we describe the basic concept of the proposed idea of embedding resonances for nonlinear target
discrimination using a circuit model consisting of a simple diode (Figure 2) to represent a passive
nonlinear scatterer. It is to be noted that the diode model and circuit parameters used here may
not represent an actual nonlinear device used in practice, but are chosen for simplicity of describing
the concept without loss of generality. Such a circuit in the figure may roughly represent an antenna
terminated with a nonlinear circuit (e.g., rectifier to be used in wireless power transfer applications),
where vs(t) corresponds to the induced voltage at the antenna terminal due to an incident field and Rs

corresponds to the antenna impedance. The nonlinear (exponential) relation between the voltage and
current across the diode can also be represented by means of power series expansion [19, 20], allowing
for vo(t) from the model to represent the nonlinear scatterer response qp,j(t) in Eq. (2).

Figure 2. Simple circuit model for a passive nonlinear target.

The circuit model in Figure 2 is simulated to obtain vo(t) for different amplitude levels of vs(t),
which are arbitrarily chosen to represent a transmit signal incident on three identical passive nonlinear
targets at different distances from the antenna array. For the input voltage vs(t), a Gaussian modulated
pulse with a center frequency of 3GHz and pulsewidth of 1 ns is used. Rs and RL is arbitrarily chosen
as 377 Ω. Figures 3(a) and 3(b) show the simulated vo(t) and its Fourier transform magnitude |Vo(ω)|,
respectively, for three different amplitude levels of vs(t). As shown in Figure 3(a), the amount of rectified
voltage in vo(t) varies due to the difference in the relative signal amplitude with respect to the diode
voltage, resulting in different amount of harmonics generate for each case as shown in Figure 3(b). The
values that appear in the lower frequency region (below 2 GHz) are due to the “beat” frequencies.
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(a) (b)

Figure 3. (a) Response vo(t) and (b) its fourier transform |Vo(ω)| of the diode circuit model in Figure 2
to various amplitude levels of vs(t).

(a) (b)

Figure 4. (a) Pulse inversion sum vs
o(t) = v+

o (t) + v−o (t) and (b) its fourier transform |V s
o (ω)| of the

diode circuit model in Figure 2 to various amplitude levels of vs(t).

The amount of harmonics (even-ordered) generated in vo(t) can be seen more vividly in Figure 4(a),
where the pulse inversion sum vs

o(t) = v+
o (t) + v−o (t) is plotted. Figure 4(b) shows the corresponding

|V s
o (ω)| with their values normalized to the peak around the second harmonic frequency of 6 GHz for

a better comparison. While there is a slight difference in bandwidth due to the difference in effective
pulse width as observed in Figure 4(a), the frequency content (shape) of the harmonic responses remain
generally the same since the level of rectification primarily determines the amount, not the shape, of
harmonics generated. This implies that it would be very difficult to distinguish multiple identical or
similar passive nonlinear targets.

Now we embed a resonant notch by adding a pair of LC elements to the same nonlinear circuit
from Figure 2, where a parallel LC connection is added in series with the source and the branches
containing the diode and load as shown in Figure 5. One way to embed such an LC resonance in a
practical nonlinear target (e.g., rectenna) is by integrating split-ring resonator-type structures in the
target antenna itself [21–23]. The LC configuration in Figure 5 allows for zero current at resonance, i.e.,
I(ωo) = 0 where ωo = 1/

√
LC, resulting in Vo(ωo) = 0 thereby creating a notch in the frequency band.

Since the goal here is to embed unique resonant features for nonlinear circuits, the notch frequencies
are chosen to be in the second harmonic band of the transmit signal. Figures 6(a)and 6(b), respectively,
show vs

o(t) and the corresponding |V s
o (ω)| for the circuit in Figure 5 when the LC element values are
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Figure 5. Simple circuit model for a passive nonlinear target with embedded resonant notch.

(a) (b)

Figure 6. (a) Pulse inversion sum vs
o(t) and (b) its fourier transform |V s

o (ω)| of the diode circuit model
in Figure 5 designed to have a notch frequency at 6.15 GHz to various amplitude levels of vs(t).

chosen to resonate at fo = 6.15 GHz for the three amplitude levels of vs(t) considered previously. In
the time-domain plot (Figure 6(a)), a ringing with the same period is observed for all three cases. In
the frequency domain plot (Figure 6(b)), a notch appears at the expected frequency of 6.15 GHz for
all three amplitude levels. Since the resonance occurs due to the linear interaction of LC elements,
the notch frequency is independent of the amplitude level of vs(t) and nonlinear rectification process,
allowing for the embedded notch to be a reliable distinguishing feature for nonlinear targets regardless
of their position or distance from the antenna array.

By assigning different sets of LC element values to circuits (targets) considered, a resonant notch
unique to each associated circuit can be generated. Figures 7(a) and 7(b) show, respectively, vs

o(t)
and the corresponding |V s

o (ω)| for the circuit in Figure 5 designed for three different notch frequencies,
namely f1 = 5.7 GHz, f2 = 6.15 GHz and f3 = 6.5 GHz. The period of the ringing in the responses
in Figure 7(a) is different from one another, resulting in different notch positions occuring at the
aforementioned resonance frequencies as expected (Figure 7(b)). Due to these uniquely assigned notches,
the harmonic responses can now be distinguished from one another with relative ease. It is expected that
once each nonlinear scatter is uniquely assigned with a resonant notch, the corresponding eigenvalue
λi(ω) obtained via PI-DORT in the second harmonic band can be distinguishable.

4. NUMERICAL SIMULATION

To validate the utility of embedded resonances for nonlinear target discrimination using PI-DORT, a
2D model is created and simulated with SEMCAD X, an FDTD-based electromagnetics solver [24].
With reduced complexity and computation time, a 2D model can provide a qualitative insight into the
proposed approach without loss of generality. The model consists of a lossless homogeneous medium
(free-space) with 10-element linear array and three scatterers (one linear and two nonlinear) as shown
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(a) (b)

Figure 7. (a) Pulse inversion sum vs
o(t) and (b) its fourier transform |V s

o (ω)| of the diode circuit model
in Figure 5 designed to have a notch frequency at three different frequencies, i.e., 5.7, 6.15 and 6.5 GHz.

Figure 8. Numerical model used for simulation which consists of a 10-element array and three targets
including one linear and two nonlinear targets.

in Figure 8. The elements in the array are modeled as point sources that radiate and receive z-polarized
(TMz) electric fields. The targets are modeled as point scatterers in the EM solver, but linked with
a SPICE port so that their responses can be calculated via circuit co-simulation using the models
introduced in the previous section. For the transmit signal f(t), a Gaussian modulated pulse with a
center frequency of 3 GHz and pulse width of 1 ns is used. The frequency band and dimensions of the
model are arbitrarily chosen as the purpose of this paper is to demonstrate the basic feasibility of the
concept. The frequency band and dimensions can be scaled depending on the intended application. A
few representative target configurations are simulated and the results are discussed below.

The first target configuration is when both nonlinear targets (Target 1 and Target 2) are simple
passive nonlinear targets represented with the circuit model from Figure 2. The linear target is modeled
as a conducting point target. The simulation is run discretely using f+(t) and f−(t) in order to
perform PI to obtain Rs†(ω). In Figure 9, the first four singular values of Rs†(ω) are plotted. Since
Rs†(ω) is the pulse inversion sum of the multistatic responses, the singular values appear only in
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Figure 9. Singular values obtained from Rs†(ω)
of two simple passive nonlinear targets and one
linear target.

Figure 10. Singular values obtained from Rs†(ω)
of one simple passive nonlinear targets, one notch-
embedded nonlinear target and one linear target.

the second harmonic band (around 6 GHz), which means that the responses from Target 3 (linear
target) in the fundamental band is suppressed, allowing for detection of nonlinear targets only. As a
result, there are only two significant singular values in the plot, namely σ1(ω) and σ2(ω), respectively
associated with Target 1 and Target 2. It is also observed that σ1(ω) and σ2(ω) are nearly identical
in shape as expected. This configuration may represent the case where all nonlinear targets in the
probed environment are “unknown” with similar characteristics. One can still use the corresponding
eigenvectors vi(ω) to generate signals for selective focusing on either of the two targets, but without
identifying and distinguishing them.

The second target configuration consists of Target 1 as a simple passive nonlinear target (circuit
model from Figure 2), Target 2 as a notch-embedded nonlinear target (circuit model from Figure 5),
and Target 3 as a conducting linear target. The target locations remain the same as in Figure 8. For
Target 2, the LC elements are designed to resonate at 5.7 GHz. In Figure 10, the first four singular

(a) (b)

Figure 11. Spatial plots of the electric field (power level) resulting from: (a) transmitting x1(t) and (b)
transmitting x2(t), for the case of one simple passive nonlinear target, one notch-embedded nonlinear
target and one linear target.
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Figure 12. Singular values obtained from Rs†(ω) of one simple passive nonlinear targets, one notch-
embedded nonlinear target and one linear target.

(a) (b)

Figure 13. Spatial plots of the electric field (power level) resulting from: (a) transmitting x1(t) and
(b) transmitting x2(t), for the case of two notch-embedded nonlinear targets and one linear target.

values of Rs†(ω) are plotted. Just as in the previous case, only two significant singular values associated
with Target 1 and Target 2 are observed in the plot as a result of PI. However, in this case the shape
of σ2(ω) is distinctively different from that of σ1(ω), with a frequency notch observed at the expected
frequency of 5.7 GHz, allowing identification of Target 2 and discriminating it from Target 1. Note
that the values of σ2(ω) are generally smaller than that of σ1(ω), since the notch occurs near the peak
frequency. Nevertheless, it does not affect the shape of the singular values, and therefore identification
of Target 2. This configuration may represent the case of a notch-embedded nonlinear target in the
presence of an unknown nonlinear target. Selective focusing can then be done by generating x2(t) for
Target 2, which is now “identified”. Figure 11(b) shows the spatial distribution of the electric fields
(in power level, i.e., |Ez|2) radiated by feeding x2(t) into the array, at a time instance where the wave
focusing occurs at Target 2. Figure 11(a) shows the spatial distribution of the electric fields (power
level) radiated by feeding x1(t) into the array, where it shows that wave focusing is still possible for
“unknown” Target 1.

The third target configuration includes both Target 1 and Target 2 as notch-embedded nonlinear
targets (circuit model from Figure 5) but with different notch-frequencies, and Target 3 as a conducting
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point target. The target locations remain the same as in Figure 8. For Target 1 and Target 2 the
LC elements are designed to resonate respectively at 6.1 GHz and 5.7 GHz. In Figure 12, the first four
singular values of Rs†(ω) are plotted. As expected, only two significant singular values associated with
Target 1 and Target 2 are observed in the plot as a result of PI. A frequency notch occurs in each of
the singular values, i.e., at 6.1 GHz for σ1(ω) and at 5.7 GHz for σ2(ω), which identifies σ1(ω) to be
associated with Target 1 and σ2(ω) associated Target 2, thereby discriminating one from the other. This
configuration may represent the case where all nonlinear targets in the environment are notch-embedded
and identifiable. Selective focusing on either of these identified targets can be done by generating x1(t)
or x2(t) and feeding them into the array. Figures 13(a) and 13(b) show the spatial distribution of the
electric fields (power level) radiated by feeding x1(t) and x2(t), respectively, at a time instance where
the wave focusing occurs at the intended targets.

5. DISCUSSION

The results from the numerical models considered above show that a resonant notch embedded in a
nonlinear target does consistently appear in the associated eigenvalue (singular values) from PI-DORT,
validating the basic feasibility of the proposed approach of embedding unique resonances as an effective
distinguishing feature for identifying multiple nonlinear targets from one another. Further investigation
should then involve experimental validation to demonstrate the practical utility of the concept. The
following are some important practical aspects that must be addressed:

1) Real antennas used in the array as opposed to point sources: Antenna elements must be designed
to have ultra-wide bandwidth, so as to cover both fundamental and second harmonic bands. Moreover,
antenna design must be carefully chosen that is free of any unwanted frequency characteristics (i.e.,
frequency notches or significant ripples), especially in the second harmonics band, which may cause
confusion in discerning the frequency response from nonlinear targets. Once the antennas are configured
into an array, the elements must be sufficiently spaced to work properly in the second harmonic band
without grating lobes. The previous experimental work on PI-DORT reported in [11] validates the
importance of antenna element design and element spacing.

2) Required transmit power for exciting harmonic responses from nonlinear targets: In order to
excite harmonic responses from a nonlinear target, the incident power at target must be high enough to
cause nonlinear behavior at the nonlinear junction. Therefore, in order to ensure detection of harmonic
responses from nonlinear targets at a given range, one needs to make sure to use sufficient transmit
power. Performing a calculation using the nonlinear radar equation [15] could help determine the
appropriate transmit power level to ensure detection of nonlinear targets at a given maximum detection
range.

3) Extended targets as opposed to point targets: Practical nonlinear targets have physical extent,
which may affect the spectral shape of the frequency response, and also generate additional eigenvalues
due to higher modes introduced in the target [11]. How such phenomena affect the resonant notches in
the spectrum of the eigenvalues must be evaluated.

4) Multiple scattering due to targets not well-resolved : Closely spaced targets may cause non-
negligible multiple scattering that results in additional eigenvalues, which could limit the performance
of DORT. An investigation into the effects of nonlinear target spacing on the ability to distinguish them
using embedded resonances may be necessary, in order to determine the limitations of the DORT-based
approach and find potential ways to overcoming them.

6. CONCLUSION

A method of distinguishing multiple passive nonlinear targets is proposed for DORT-based nonlinear
target detection and selective wave focusing, by embedding a resonant notch unique to each nonlinear
scatterer. We numerically validate that a uniquely embedded resonant notch in a nonlinear target
consistently appears in the corresponding eigenvalue of the TRO, allowing it to be a reliable distinct
feature for the given target. Therefore, the detected nonlinear targets can be identified and discriminated
before selective focusing. Further investigation into this technique holds promise towards smart wireless
power transfer, biomedical, and IoT applications.
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