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A 3D Stokes Framework for Wireless Depolarized Channels

Marcia Golmohamadi* and Jeff Frolik

Abstract—In severe multipath channels, depolarization of wireless signals has been shown to be a
three dimensional effect. This work herein presents and applies a 3D Stokes vector framework for such
depolarization. Empirical data are used to illustrate the capabilities of this framework (specifically,
polarization purity indices and direction of propagation) to describe depolarization behavior for three
different wireless channels.

1. INTRODUCTION

Wireless communication is becoming evermore pervasive with the advent of machine-to-machine (M2M)
and other Internet of Things (IoT) systems. This pervasiveness leads to systems being deployed in
environments that are less than ideal for wireless communications (e.g., about and/or within industrial
machinery). Such environments can consist of a variety of surfaces that block and/or reflect the wireless
signals thus introducing non-line-of-sight (NLOS) and/or multipath conditions, respectively. These
conditions can cause not only fading in a channel but also depolarize the transmitted signal [1]. For
point-to-point wireless communication systems with a strong line of sight (LOS), it is reasonable to state
that there are only two relevant polarizations (e.g., vertical/horizontal linear or left/right hand circular
polarization) which lie in the 2D plane normal to the direction of propagation. However, cluttered
environments can lead to depolarization in a third dimension [2]. Thus, we contend and show herein,
one should consider a 3D polarization framework versus a 2D one.

Electromagnetic wave polarization characterization in two dimensions is well studied. However,
the description of electromagnetic waves in three dimensions, where in general there is no specific
propagation direction, is still an open question which needs careful consideration [3, 4]. A well-
defined polarization model will build a basis for understanding the input-to-output polarization
behavior in wireless channels. Cross-polarization discrimination (XPD) has been used for polarization
characterization [5], but this metric is not capable of fully interpreting polarization properties of
electromagnetic waves. Thus, in this work we consider a Stokes vector framework. A 2D Stokes
vector framework has been used to model polarization behavior in multipath channels before [6], but
employing a 3D framework has received little attention. The 3D framework was been applied for
analyzing propagation within reverberation chambers [7]. Herein, we extend this initial contribution by
characterizing frequency-dependant polarization effects and the propagation direction in 3D and apply
this framework to empirical data.

In this paper, we present, in Section 2, analytical frameworks by which 2D and 3D depolarization
are described using a spectral polarization matrix. Further, we present and analyze empirical data, in
Section 3, for three different environments finding their polarization indices and also their variations of
propagation direction. The contributions of this work are summarized in Section 4.
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2. POLARIZATION FRAMEWORK

In this section, we review the 2D polarization framework and then extend it to the third dimension.
At a fixed point in space, the electric field of an electromagnetic wave outlines a polarization ellipse
perpendicular to the propagation direction. In an ideal environment (i.e., anechoic chamber), the
polarization ellipse remains in a fixed plane and maintains its shape, whereas in a multipath environment
not only the shape of polarization ellipse changes but also its plane and consequently direction
of propagation vary over time/frequency/space. In the latter case, as our data will show, a 2D
representation is no longer sufficient.

2.1. 2D Framework

A 2D coherency matrix, or polarization matrix, contains all information about autocorrelation and
cross-correlation of the electric field components that are assumed to be contained in the x, y plane.

In this work, we consider the matrix elements in the space-frequency domain and call it the spectral
polarization matrix which can be written as [8]

Φ2D =
[〈Ex(r, f)Ex(r, f)∗〉 〈Ex(r, f)〈Ey(r, f)∗〉
〈Ey(r, f)E∗

x(r, f)〉 〈Ey(r, f)Ey(r, f)∗〉
]

(1)

where, Ex and Ey are orthogonal components of the electric field vector at frequency f and position r
and the asterisk denotes complex conjugation. The operator 〈 〉 indicates that averaging of the signal has
to be performed over the ensemble that characterizes the statistical properties of the field. Henceforth,
we omit the explicit dependence on r and f . The spectral polarization matrix is non-negative definite
Hermitian and consequently it is diagonalizable.

Any 2× 2 diagonal representation of the spectral polarization matrix can be written as the sum of
fully polarized ρp = diag{1, 0} and completely unpolarized ρ2u = 1

2diag{1, 1} matrices [9], that is

Φ2D = (λ1 − λ2)ρp + 2λ2ρ2u (2)

where, λ1 and λ2 are eigenvalues of the matrix Φ2D. The degree of polarization in a 2D framework, P , is
a metric to measure depolarization extent in an environment and is defined as the ratio of the intensity
of the fully polarized part of the field to the total intensity of the field [3]. P can also be obtained from
Stokes parameters that will be described shortly.

P =
Tr((λ1 − λ2)ρp))

Tr(Φ2D)
=

λ1 − λ2

λ1 + λ2
=

√
3∑

i=1
〈si〉2

〈s0〉 (3)

where, Tr denotes the trace operation. Furthermore, the 2× 2 identity matrix (σ0) and the three Pauli
spin matrices (σ1, σ2, σ3) form a basis in which the spectral polarization matrix can be expanded as
follows [10].

Φ2D =
1
2

3∑
j=0

〈sj〉σj (4)

In this expansion, the coefficients, sj , are the Stokes parameters. These parameters provide a convenient
framework of representing polarization state of a wave and form a complete set that characterize any
fixed-plane electromagnetic wave. The 2D Stokes vector, S2D, is defined as follows [11],

S2D =

⎡
⎢⎣
s0

s1

s2

s3

⎤
⎥⎦ =

⎡
⎢⎣

|Ex|2 + |Ey|2
|Ex|2 − |Ey|2
ExE∗

y + EyE
∗
x

−i(ExE∗
y − EyE

∗
x)

⎤
⎥⎦ . (5)

The first parameter of Stokes vector, s0, is the intensity of the electromagnetic wave. The other three
parameters, s1, s2, and s3 describe the polarization state of the wave.

2D Stokes parameters can be geometrically represented in Poincare sphere. For example, pure
linear polarizations lie on the equator of the sphere, where vertical and horizontal polarizations
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are on diametrically opposite sides of the sphere. Any inner point of the sphere corresponds to a
partially polarized wave. The origin represents a completely unpolarized wave that has the following
characteristics: S2D = [I, 0, 0, 0]T (where I is the intensity of the field) and P = 0 (i.e., λ1 = λ2).

2.2. 3D Framework

In the presence of severe multipath, the polarization state of electromagnetic waves cannot be fully
realized within a 2D framework (as we demonstrate in Section 3). Therefore, we now present the 3D
spectral polarization matrix to describe wireless depolarization more generally [12].

Φ3D =

⎡
⎣〈ExE∗

x〉 〈ExE∗
y〉 〈ExE∗

z 〉
〈EyE

∗
x〉 〈EyE

∗
y〉 〈EyE

∗
z 〉

〈EzE
∗
x〉 〈EzE

∗
y〉 〈EzE

∗
z 〉

⎤
⎦ (6)

where the electric field vector has three orthogonal components along x, y, z axes. Unlike the 2D
framework, Φ3D cannot be described as the sum of only two components of a fully polarized and a
fully unpolarized wave, as we had in Eq. (2). However, prior work [3] has shown that the diagonal
representation of Φ3D can be decomposed into three parts instead. Namely, fully polarized component
ρp = diag{1, 0, 0}, fully 2D unpolarized ρ2u = 1

2diag{1, 1, 0} and fully 3D unpolarized components
ρ3u = 1

3diag{1, 1, 1}.
The decomposition of 3D spectral polarization matrix can be presented as

Φ3D = (λ1 − λ2)ρp + 2(λ2 − λ3)ρ2u + 3λ3ρ3u (7)

where, λ1, λ2 and λ3 are eigenvalues of the 3D spectral polarization matrix, Φ3D. Subsequent work [13]
proposed two polarization indices, P1 and P2, such that P1 defines stability of polarization ellipse and
P2 represents stability of propagation direction or stability of polarization plane. P1 is the ratio of the
intensity of the fully polarized part of the field to the total intensity and P2 is the ratio of components
that have a fixed propagation direction (fully polarized and 2D unpolarized parts) to the total density
of the field

P1 =
Tr((λ1 − λ2)ρp)

Tr(Φ3D)
=

λ1 − λ2

λ1 + λ2 + λ3
(8)

P2 =
Tr((λ1 − λ2)ρp + 2(λ2 − λ3)ρ2u)

Tr(Φ3D)
=

λ1 + λ2 − 2λ3

λ1 + λ2 + λ3
(9)

In the 3D framework, the 3× 3 identity matrix (ω0) and eight Gell-Mann matrices (ω1 . . . ω8) form
a basis for the 3D spectral polarization matrix such that [11]

Φ3D =
1
3

8∑
j=0

〈Λj〉ωj (10)

where, the nine real coefficients Λj are the generalized Stokes parameters of the 3D Stokes vector
(S3D) [11]

S3D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ0

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

Λ8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|Ex|2 + |Ey|2 + |Ez|2
3/2(ExE∗

y + EyE
∗
x)

i3/2(ExE∗
y − EyE

∗
x)

3/2(|Ex|2 − |Ey|2)
3/2(ExE∗

z + EzE
∗
x)

i3/2(ExE∗
z − EzE

∗
x)

3/2(EyE
∗
z + EzE

∗
y)

i3/2(EyE∗
z − EzE

∗
y)√

3/4(|Ex|2 + |Ey|2 − 2|Ez |2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Some analogies can be made between 2D and 3D Stokes parameters. Λ0, which is the intensity of the
wave, is analogous to s0 in the 2D framework. Λ1, Λ2, and Λ3 in the 3D formulation are analogous to
s2, s3, and s1, respectively, in 2D. Furthermore, the pair of (Λ4,Λ5) and (Λ6,Λ7) can be compared to
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(s2, s3) in different plane coordinates. Furthermore, it has been shown that the direction of propagation
(V) can be defined from 3D Stokes parameters as follows [8]

V = (−Λ7,Λ5,Λ2), φ = arctan
Λ5

−Λ7
, θ = arccos

Λ2

|V| (12)

from which we find the azimuth (φ) and elevation (θ) angles of the vector V and will apply them to our
empirical cases presented in Section 3. The generalized degree of polarization in 3D framework, P3, is
dependent on two purity indices, P1 and P2, and can be calculated from 3D Stokes parameters [13].

P3 =

√
8∑

i=1
〈Λi〉2

√
3〈Λ0〉

=

√
1
4

(
3P 2

1 + P 2
2

)
(13)

The value of P3 for a fully polarized wave is 1 and for a 2D unpolarized wave, which has a well-
defined propagation direction, is equal to 0.5. P3 is 0 for a wave with completely random direction of
propagation.

3. EXPERIMENTAL RESULTS

Leveraging the formulation presented in Section 2, we now characterize the three distinct environments
using polarization indices and arrival directions obtained from the 3D Stokes framework. To the best
of the authors’ knowledge, applying this 3D framework to data collected over frequency and space and
to compare/contrast wireless environments has not been presented to date.

3.1. Methodology

The three surrogate environments represented an ideal (no multipath) environment, an office setting,
and a highly reflective factory setting. To emulate an ideal setting, the testing was conducted in a
compact anechoic chamber. The second environment was a non-line-of-sight condition within a lab.
A compact (0.9m × 0.9m × 0.3 m) reverberation chamber was utilized to create the highly reflective
scenario.

A vector network analyzer (VNA) was used to measure path loss between the two antennas.
Specifically, S21 was measured, that is the signal power at Port 2 of the VNA (receive antenna) relative
to the power at Port 1 (transmit antenna). S21 measurements were made at 551 frequencies between
2.40 GHz and 2.48 GHz. To emulate the random placement of the transmitting device, the transmit
antenna was mounted on a linear track that allowed positioning to one of 50 repeatable locations in
1 cm (i.e., < λ/10) increments.

3.2. Summary of Results

To obtain the results presented herein, we created spectral polarization matrices for each of the 50
locations by averaging over the 551 S21 measurements. Using this approach we find clear distinctions
between the resulting parameters for the three different environments.

Figure 1 shows the two purity indices, P1 and P2, calculated along 50 positions in the three
environments. We clearly see the non-ideal environments depolarize the signal. Significantly, P2 is
much less than unity indicating that the depolarization is indeed three dimensional. The mean value of
purity indices over 50 positions and generalized degree of polarization are presented in Table 1. In the
anechoic chamber where there is no multipath components, the shape and plane of polarization ellipse
remains constant over frequency variations and resulting in values very close to 1 for P1, P2, and P3

parameters. In the reverberation, by contrast, P1 very low indication the polarization ellipse changes
significantly over frequency. Furthermore, P2 is very low, an indication that plane of polarization rotates
randomly along frequency. In addition, P3 is less than 0.5 (the one obtained for fully 2D unpolarized
wave) that again confirms 3D nature of electromagnetic wave propagation in the chamber. The indices
for the office indicate this is the intermediate case. In this scenario, on average, 26% (1 − P2) of the
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Table 1. Degree of polarization.

Framework mean (P1) mean (P2) mean (P3)
Anechoic 0.97 0.99 0.97

Office 0.36 0.74 0.49
RC 0.24 0.48 0.40
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Figure 1. Polarization indices for the three demonstration environments. (a) Ideal surrogate. (b)
Office surrogate. (c) Factory surrogate, reverberation chamber (RC).

total intensity of the wave behaves completely randomly along frequency and is spread uniformly in 3D
sphere. This percentage is attributed to the part of the 3D polarization matrix with equal eigenvalues.

The direction of propagation was calculated from Stokes parameters, using equation Eq. (12), for
the measured frequencies in the band from 2.40 to 2.48 GHz. The results are presented Fig. 2. Since
there is little depolarization in the anechoic chamber, the received direction is in original transmitted
plane and the depolarization angle is approximately zero. In addition, as direction of propagation is
almost fixed over the frequency, this confirms the result presented for P2 ≈ 1 in Table 1. However,
in the office setup, the rotation of polarization plane along frequency band is evident. This rotation
becomes even more prominent in reverberation chamber which indicates that this environment is more
frequency-dependent than the office, as the data in Table 1 confirm. The rotations in the latter two cases
is an indicator that the receiver’s polarization should include all three planes in order to compensate for
such depolarization effects. Recently, tripolar antennas have been developed in order to mitigate such
severe multipath and depolarized channels [14, 15].
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Figure 2. Azimuth and elevation angles of direction of propagation over frequency band of 2.40–
2.48 GHz at one position.

4. CONCLUSION

In this work, we presented a Stokes vector-based analytical framework to study depolarization in
three dimensions. We applied this framework to empirical data in order to compare and contrast
depolarization seen in three distinct environments. For environments with significant multipath, our
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calculated parameters show that depolarization is indeed a three dimensional effect. As wireless IoT
systems become more pervasive and are deployed in evermore cluttered environments, these results can
help determine if antenna systems that are tripolar are warranted. If so, then employing 3D polarization
diversity in these scenarios would considerably improve link reliability as compared to the traditional
dual polarization, 2D diversity approaches.
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