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A New Approximation for Calculating the Attraction Force
in Cylindrical Permanent Magnets Arrays and Cylindrical

Linear Single-Axis-Actuator

Naamane Mohdeb*, Hicham Allag, and Tarik Hacib

Abstract—New accurate approximation is proposed using integral expressions for evaluating the
magnetic force between cylindrical permanent magnet arrays. The magnetic field distribution is
calculated analytically by using Coulombian model. In this paper, every cylindrical magnet is divided
into elementary cuboidal magnets. The accuracy can be controlled by regulating the value of elementary
cuboidal permanent magnets “N”. The approximation can also be used to calculate the force interaction
in the cylindrical linear single-axis-actuator. We confirm the validity of magnetic force calculation by
comparing it with other methods and measurements. The calculation results are in very good agreement
with measured values, which indicates the feasibility of our approximation.

1. INTRODUCTION

In some applications, such as eddy current dampers, magnetic refrigerators, micropumps, the calculation
of interaction force, torque and field is very important [1–4].

The benefit for these applications is that magnetic forces act without physical contact over larger
distances than electrostatic, piezoelectric or other schemes [5, 8, 9]. In the literature related to permanent
magnets, calculations of forces between magnets of various shapes and geometries have their relevance in
the context of several applications. For investigating the magnetic force between two sets of cylindrical
permanent magnets (Fig. 1), the force engendered between two parallel magnets should be calculated
firstly.

Figure 1. A scheme of two sets of cylindrical magnets.

The analytical expression of the attractive force between two arrays of cylindrical permanent
magnets was derived from the derivative of the total magnetostatic interaction energy with respect
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to the axial coordinate [5, 6]. Calculating the force is a very complex procedure, as it depends on the
form, magnetization, and orientation of the magnets.

Several expressions for the force between cylindrical magnets have also been published in previous
literature [7–17], and they did not make use of exact solutions in any form and are more complex than the
expression to be presented in the current work. The magnetic field produced by a cylindrical permanent
magnet can be determined with the same analytical formulation as the one used for a cylindrical thin
coil [9].

The Green formula was used to derive the analytical equations for magnetic field generated by
cylindrical coil, and the correlation between the cylindrical coil and axially magnetized permanent
magnet of annular shape is achieved [18, 19]. Agashe and Arnold presented analytical formula
based on the assumption of uniform magnetization in the axial direction while using a magnetic
field approximation for a cylindrical magnet [14]. The analytical expressions are complex and
computationally more expensive than the closed form expression given by Furlani et al. [15–17].
Ravaud et al. [9] have given elliptic integrals without any simplification for magnetic parameters such
as field, force, torque, and stiffness in cylindrical magnets and coil.

The interactions between cylindrical magnets are established by multiple integrals in polar
coordinates. In this paper, we use new approximation to solve this problem. For calculating the magnetic
field created by cylindrical magnets, analytical expressions will be proposed by us. The expressions can
be used to calculate the force between two sets of magnets in a computationally efficient way. Also,
these analytical expressions will be used to evaluate the magnetic interactions in cylindrical linear single
axis-actuator.

2. PROBLEM FORMULATION

Figure 2 shows that the magnetic configuration consists of two magnets with axial polarization. The
dimensions of the system are shown in Fig. 2. 2a and 2A are the radii of magnet 1 and magnet 2. 2C
and 2c are the thicknesses of the magnets. The cylinder shown in Fig. 2 is uniformly magnetized in the
z direction.

Figure 2. Two cylindrical magnets with parallel magnetization.

2.1. Magnetic Vector Potential and Magnetic Flux Density of Cylindrical Magnets

The modeling of magnets can be based on Coulombian method, and the Coulombian approach replaces
the magnet by two surfaces distribution of fictitious magnetic charge with surface density σ∗ = M ·
n [20], where M is the magnetization, and n is the unit vector normal to the surface. Fig. 3 shows a
rectangular permanent magnet with uniform magnetization in the z-direction.

For circular surface, we can approximate circle with several rectangles. We will approximate the
graph by dividing the interval into “n” subintervals, each of width, Δx = (2a)/n. The rectangle height
is established by evaluating the values of f(c), as shown for the typical case x = c, where the rectangle
height is f(c).

In Fig. 4, we approximate the surface using inner rectangles (each rectangle is inside the curve).
We can then find the region of each of these rectangles and add them up, and this will be an estimate
of the region.
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Figure 3. Model of the permanent magnet by the Coulombian approach.

Figure 4. Approximating area under a curve using rectangles.

Figure 5. Decomposition of the circular surface in rectangular element.

Using several rectangles will give us an exact approximation of the circular surface. The size of the
rectangular elements is 2a× 2b, and “hi” is the center of each element.

To calculate the magnetic force magnetic between cylindrical magnets, we should first calculate
the scalar magnetic potential resulting from one of the circular surfaces (Fig. 5) and any given point P
(arbitrary observation point) [23–25]. The potential can be calculated by the formula:

ϕe(R) =
1

4πμ0

∫∫
S

σ

Re
dSe (1)

Re =
√

(α− hex − xe′)2 + (β − hey − ye′)2 + (γ − hez − z′)2 (2)

where Reij is the distance between the source point (x′e, y′e, z′) in rectangular element and observation
point P (α, β, γ.) The coordinate marked by “e” is related to the source. With suitable substitutions
for dSe, the following equation for scalar magnetic potential is obtained:

ϕe(R) =
1

4πμ0

∫ a

−a

∫ b

−b

σ

Re
dx′edy

′
e (3)

If we substitute R then Eq. (2) becomes

ϕe =
1

4πμ0

∫ Ue

−Ue
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e +W 2
dUedVe (4)
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where
Ue = (α− hex) − xe

′

Ve = (β − hey) − y′e
W = (γ − hez) − z′

Re =
√
U2
e + V 2

e +W 2

(5)

The total scalar potential becomes

ϕt =
σ

4πμ

N∑
e=1

1∑
i=0

1∑
j=0

(−1)i+j · ϕe (6)

where

ϕe = −Ue ln (Re−Ve)−Ve ln (Re−Ue)Warctg
(
UeVe
ReW

)
(7)

By adding the field created by the two surfaces, we obtain the field created by an elementary cuboidal
magnet (Fig. 6). The system of magnet is shown in Fig. 6, in which the cylindrical magnet is replaced
by cuboidal shape composed of N cuboidal magnets.

Figure 6. Elementary decomposition of cylindrical magnet in cubic elements.

The total magnetic field is always calculated from the gradient:

Bxt =
J

4π

N∑
e=1

1∑
i=0

1∑
j=0

1∑
k=0

(−1)i+j+k log(Re − Ve) (8)

Byt =
J

4π
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i=0
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j=0
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k=0

(−1)i+j+k log(Re − Ue) (9)

Bzt =
J

4π
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(−1)i+j+karctg
(
UeVe
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)
(10)

where

Ue = (α− hex) − (−1)ia

Ve = (β − hey) − (−1)j b

We = (γ − hez) − (−1)kc

Re =
√
U2
e + V 2

e +W 2
e

(11)

In Fig. 7, we present the magnetic flux density created by cylindrical magnet for the number of
subdivisions: N = 4 and N = 40.
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(a) (b)

Figure 7. The magnetic flux density in XY plane for (a) N = 4 elements, (b) N = 40 elements.

The permanent magnet shape is set to be cylinder, in which bottom diameter d = 1mm, height
h = 10 mm, and residual flux density Bm = 1.15 T. The cylinder center is the origin, and the central
axis of the permanent magnet is z-axis (the positive direction is the direction of N pole). The magnetic
flux density distribution of permanent magnet according to the number of decomposition N is shown
in Fig. 7. When increasing the number of elements one arrives at the exact geometry of cylindrical
magnet, which shows that this approach has a remarkable efficiency. The accuracy with the method
can be controlled by adjusting the value of N .

The comparison between the magnetic field calculation and the measured values when the sensors
move along the z-direction is shown in Fig. 8.

B
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Figure 8. Magnetic induction Bz obtained from measurement and our results.

2.2. Analytical Calculation of the Magnetic Field Created by Annular Permanent
Magnet

In this section, we compare the results determined by our approximation of magnetic field strength
created by an annular permanent magnet, whose magnetization is in the z-direction, using results from
those obtained in [18]. Using superposition principle (Fig. 9), the magnetic field created by annular
permanent magnet can be calculated more easily with our 3D approximation.

In Fig. 10 we show the radial components of magnetic field as a function of the radial distance of the
observation point for a given altitude with z = 3mm. Fig. 10 shows that the results are in agreement
with integral expression.



218 Mohdeb, Allag, and Hacib

Figure 9. Modeling of permanent magnet annular Superposition principle.
H

r 
[A

/m
]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

r [m]

-1

Figure 10. Field radial component versus the radial distance r of the observation point; D = 3 mm,
Ri = 25 mm, Ra = 28 mm.

2.3. Calculation of Interaction Forces between Cylindrical Magnets

For the calculation of interaction forces between two cylindrical magnets, we divided the first and second
into (N,M) elementary cuboidal magnets. The interaction energy between two elementary magnets t
and s, as shown in Fig. 11, is given by

Et,s =
JJ ′

4πμ

1∑
p=0

1∑
q=0

(−1)p+q·
∫ B

−B

∫ A

−A

∫ b

−b

∫ a

−a

1
R
dxdydXdY (12)

From the interaction energy, the force components can be obtained by
�Fs,t = g �rad(Es,t) (13)

For the three components of force,
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The intermediate variables appearing in Eq. (17) are

Ust = α+ (A (s+ 1) − 2iΔx2s (s)) − (a (t+ 1) − 2jΔx1t (t))

Vst = β + (−1)pB(s) − (−1)lb (t)

Wst = γ + (−1)q C− (−1)kc
Δx1s (s) = ((A (s+ 1) −A (s))/2
Δx2t (t) = ((a (t+ 1) − a (t))/2

Rst =
√
U2
st + V 2

st +W 2
st

(18)

As shown in Fig. 11, the dimensions of the first elementary cuboidal magnet are a, b, and c, and its
polarization is J . For the second elementary magnet, the dimensions are A, B and C. Its polarization
is J ′, and the coordinate of its center is α, β, and γ. Δx1s and Δx2t are the widths of the first and
second elementary magnets.

Figure 11. System of two rectangular elements.

The upper magnet moves in translation along the y-axis above the lower fixed magnet. The total
magnetic force is given by:

Fmagnet=
N∑
s=1

M∑
t=1

Fs,t (19)

where N and M are the number of first and second elementary magnets, respectively.
To verify the validity of the analytical results, the force between two magnets was calculated.

Fig. 12 shows the force distribution, and we notice that the force in the direction is in a sinusoidal form
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Figure 12. Force components for t = 10 mm, r = 10 mm and x = 10 mm.
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whose positive part is in the negative direction of the movement. This phenomenon repeats itself but
in the opposite direction because of the symmetry of displacement. On the other hand, the force along
the axis ‘oz’ reaches the maximum value when the two magnets are in quadrature. The force along the
axis ‘ox’ is always zero.

Figure 13 shows variation of the force versus axial distance between the two cylindrical magnets.
We can see that the calculation describes the experimental behavior fairly well.
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Figure 13. Force between the two cylindrical magnets versus the axial axis.

2.4. Attraction Magnetic Force Determination between Two Sets of Cylindrical Magnets

Permanent magnets may be grouped into arrays to adjust their mutual interaction and consequently, the
force acting upon them [5]. Recently, permanent magnet arrays have been utilized in many applications;
among others: eddy current dampers magnetic refrigerators and micropumps [5–7].

In this section, we determine the magnetic force among three sets containing 2× 2, 4× 4, and 6× 6
magnets, axially magnetized permanent magnets with alternating orientation of magnetization within

(a) (b) (c)

Figure 14. A Scheme of three sets of cylindrical magnets; R = 2 mm and t = 8 mm.

Table 1. Comparison of magnetic force (magnet set 4 × 4).

Force (N) Measurement Our results
F (z =0) 9.550 9.400

F (z = 0.5e − 3) 5.110 5.493
F (z = 10e − 3) 0.320 0.295
F (z = 14.8e − 3) 0.100 0.118
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Figure 15. Calculated data for attraction force between three magnet set (2× 2), (4× 4) and (6× 6).

the arrays (Fig. 14). Fig. 15 shows calculated data for the attraction force between three magnet sets
(2 × 2), (4 × 4), and (6 × 6) for various vertical displacements.

Comparison of results for the normalized levitation magnetic force of two cylindrical permanent
magnets, obtained using the presented approach and the measurements values versus z-axis for
parameters R = 3mm and t = 1.5 mm, are given in Table 1.

2.5. Magnetic Field and Force in Cylindrical Single-axis Actuator

The force formula between cylindrical magnets can also be used to evaluate the force between thin coils
and magnet. The fastest way to calculate forces in the cylindrical linear single-axis actuator [21, 26–
28] is to use the Lorenz force calculations, as the estimation of the magnetic field of the coils is not
necessary [21, 22]. The structure is shown in Fig. 16(a). The coil is modeled by four straight bars, as
shown in Fig. 16(b), where each bar is defined by dimensions 2a× 2b× 2c.

(a) (b) (c)

Figure 16. (a) System composed of a permanent magnet and thin coil. (b) The coil is replaced by
four bars). (c) Bar-shaped volume current density.

The total magnetic force acting on the thin coil is given by

�FT =
∫
Vc

�Jc × �BdV c (20)

�FT =
∫
Vc

(
Jx
Jy
0

)
×
(
Bxt
Byt
Bzt

)
dXdY dZ (21)

where Vc is the volume of the bar-shaped volume. Jc is the current density in bar-shaped volume, and
B is the field created by a cylindrical magnet.
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By representing the coil as four overlapping straight beams (Fig. 16(b)), the magnetic force has
been obtained analytically. The force is derived for the bar-shaped volume shown in Fig. 16(c), with
volume current density J and dimension (2A× 2B × 2C).

The coil moves in translation along the z direction. The interaction force between the coil and
cylindrical magnet is given by Eqs. (22)–(25).

The current in x-direction (Fig. 17(a))
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∑
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The current in y-direction (Fig. 17(b))
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The forces are obtained with the intermediate variables which are given by

ϕn =
∫∫∫

arctg
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with

U = α+ (−1)iA− (a (t+ 1) − 2jΔx1t (t))

V = β + (−1)k B− (−1)lb (t)
W = γ + (−1)pC− (−1)qc

Δx1t (t)) = ((a (t+ 1) − a (t))/2

(29)
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(a) (b)

Figure 17. PM and massive conductor in (a) x-direction, (b) y-direction.

Table 2. Design parameters for magnet coil system.

Dimensions Quantity Value
I Coil current 0.2 A
Rc Outer radius of primary coil 18 mm
rc Inner radius of primary coil 14 mm
Lc Length of primary coil 10 mm
Nc Number of turns of primary coil 120
α Distance between coil and magnet in x-direction 0 mm
β Distance between coil and magnet in y-direction 0 mm
γ Distance between coil and magnet in z-direction variable
Rm Magnet radius 7.5 mm
Br Magnet remanence 1 T
Lm Magnet length 10 mm

-3
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

z [m]

-1.5

Figure 18. The magnetic induction intensity of force magnetic on the z-axis.

The force acting on the rectangular coil is then equal to the sum of the Lorentz force acting on
each of the four volumes. The integrals expression is set up under mathematica environment. The
dimensions of the four volumes are shown in Table 2.

An expression for the force between thin coils and magnet has also been published by Robertson et
al. It is more complex than the expression to be presented in the current work. In a related work, Xu et
al. [27] presented a simplification equation for the axial force between magnet and thin coils, for which
further application of their results is required to calculate the forces between coils with many turns,
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Figure 19. Axial force ‘Fz’ obtained from measurement and our approximation in different positions.

such as for the system examined here. Here, we calculate the distribution of Lorentz force acting on
thin coil.

In Fig. 18, has a zero force when it is axially centered with the magnet. In z-direction, a restoring
force is applied by the magnet in the opposite direction of displacement. Fig. 18 shows the interaction
force acting on the thin coil obtained from our approximation. Also calculation results have been
confirmed by measurement values (Fig. 19). The measurement and simulation results are in very good
agreement with calculation that indicates the feasibility of approximation formulas.

3. CONCLUSION

An accurate approximation method for magnetic force calculation between cylindrical magnets sets
containing cylindrical magnets and the interaction magnet-thin coil has been presented in this paper.
The validity of the method has been verified by the measurement values. The accuracy with the novel
approximation can be controlled by regulating the value of elementary cuboidal permanent magnets
“N”. Results obtained by the new approximation between interaction magnetic force calculation and
measurement values are in excellent agreement with the each other.
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