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Abstract—Two unsupervised methods, fuzzy c-means (FCM) and k-means, as well as three supervised
methods, support vector machine (SVM), neural network (NN), and convolutional neural network
(CNN), are applied to classify sea-ice type of first-year ice (FYI), multi-year ice (MYI) and open water,
by using L-band polarimetric synthetic aperture radar (PolSAR) images in winter and advanced-melt
phases, respectively. Different input vectors, pending on different scenarios, are also proposed to increase
the accuracy rate. The efficacy of different algorithms in conjunction with different input vectors are
analyzed and related to the underlying physical mechanisms.

1. INTRODUCTION

The status of Arctic sea-ice coverage has been closely watched as a critical task of tracking global
warming and climate change. Variation of sea-ice thickness and extent over 2000–2012 was analyzed
by using satellite and airborne data [1, 2]. Sea ice can be roughly classified into first-year ice (FYI)
and multi-year ice (MYI) [3]. During the summer, FYI melts, MYI recedes, and two-year or three-year
sea-ice replace their predecessor. Existing MYI is usually thicker than FYI and is easier to survive
the summer [4]. The open water surrounding sea-ice absorbs more heat than the sea-ice itself, which
accelerates the melting process [2]. Recession of sea ice makes marine transportation across the Arctic
more attractive [2, 5]. However, misclassified thick MYI during the melting season may pose navigation
hazards [6].

Synthetic aperture radar (SAR) has been used to monitor and classify Arctic sea-ice [7, 8]. The
Canadian Ice Service (CIS) compiles sea-ice chart by using RADARSAT and other auxiliary data [9].
In [10], previous researches on sensing snow and sea ice with electromagnetic waves were reviewed.
Scattering models of MYI and FYI at different temperatures and roughness conditions were summarized.
Field measurements indicate that different types of sea ice cast different radar signatures. The
backscattering power varies with sea-ice type, surface roughness, snow cover and melting pool [11–
13].

The radar signature of sea ice appears different at different electromagnetic wavelengths. In C-
band polarimetric synthetic aperture radar (PolSAR) imaging, backscattering from FYI is dominated
by surface scattering, while that from MYI is dominated by volume scattering [10]. Field measurements
show that MYI is prone to enclose more air bubbles that FYI is, and shorter electromagnetic wavelength
is more sensitive to the air bubbles within the weathered surface layer [14]. Satellite observation of
landfast ice showed that the difference of σvv between MYI and FYI was greater than 3 dB during the
winter [13]. As compared to C-band imaging, the contrast between MYI and FYI is not as distinct in the
L-band. L-band and X-band waves are sensitive to roughness of dm-scale and cm-scale, respectively [15].
The backscattering power in C-band from frost-flower, which is of cm-scale, is on the same order as
that from MYI [5, 16], but the backscattering power in L-band from frost-flower is far weaker than that
from MYI.
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The pros and cons of using L-band and C-band radars for sea-ice monitoring were reviewed in [7].
Co-located PolSAR images in L-band and C-band were compared to study the difference of their radar
signatures [7, 17]. In [18], radar signatures of newly formed sea-ice in L, C and X-bands were presented.
Sea-ice deformation such as ridges, rubble fields or brash ice can be detected more accurately in L-
band than in C-band. Polarimetric features such as polarimetry entropy [19] and co-polarization ratio,
were used to classify among open water, new ice, smooth ice, and deformed ice. C-band PolSAR
backscattering data were validated by field measurements for sea-ice classification [20, 21] and proved
effective in identifying the extent of MYI in the winter [5].

Both supervised and unsupervised methods have been applied to classify pixels in PolSAR images
into different features. Examples of supervised methods include neural network (NN) [8], support vector
machine (SVM) [22], convolutional NN (CNN) [23] and autoencoder [24]. Examples of unsupervised
methods include Wishart classifier [25, 26], fuzzy c-means (FCM) [27, 28], as well as expectation
maximization algorithm with log-cumulants [29] and Wishart classifiers [25]. Gray-level co-occurrence
matrices (GLCMs) were used as input data to a supervised Bayesian classifier for analyzing sea-ice
texture [30] as well as to an NN algorithm for generating classified ice map [8]. In [22], an SVM classifier
was trained with input data of backscattering power and GLCM. In [31], preprocessed polarimetric
parameters were used as input data to an NN algorithm to classify sea-ice into open water (OW), young
ice, smooth FYI and rough FYI/MYI. In [32], a hybrid crop classifier on PolSAR images was proposed.
The input vector is composed of span, H/A/α decomposition parameters and GLCM-based features.
A two-hidden-layer forward NN was constructed and trained by using adaptive chaotic particle swarm
optimization (ACPSO). In [33], an 11-layer deep CNN was applied for PolSAR image segmentation on
L-band data over the San Francisco bay area and C-band data over Flevoland area.

In this work, we study the performance of some popular supervised and unsupervised methods
in classifying sea-ice type, with the input data of full-polarimetric ALOS PALSAR (L-band) images.
Several forms of input vector are proposed, by exploiting features embedded in L-band PolSAR images,
to increase the accuracy rate of sea-ice classification in the winter phase and the advanced-melt phase,
respectively. This work is organized as follows. The radar signatures of sea ice are briefly reviewed in
Section 2, the images and input vectors for classification are presented in Sections 3 and 4, respectively,
the classification methods are briefly reviewed in Section 5, the simulation results are discussed in
Section 6, and some conclusions are drawn in Section 7.

2. RADAR SIGNATURES OF SEA ICE

In this Section, general features of sea ice and its radar signatures in L-band and C-band are briefly
reviewed. There are three distinct types of scattering phenomena from sea surface [34]. The first one
is Bragg scattering from resonant capillary waves at moderate wind speed, the second one is burst
scattering from the wave crests just before break [34], and the third one is white-cap scattering from
very rough surface as wave crests break, at wind speed higher than 20 m/s [35]. The co-polarization
ratio of radar cross-sections (RCSs), σvv/σhh, of Bragg scattering from sea surface appears independent
of ocean-wave spectrum [36]. Newly formed sea-ice under calm weather condition tends to damp sea
waves, reducing the backscattering power [18].

In general, undeformed surface of FYI is flat, and the surface of MYI is rough [10]. The melting
water from sea ice freezes up after contacting the snow, forming a rough ice layer on top of snow, in the
early melting phase [37]. Refrozen melting pools formed in advanced-melt phase make the second-year
ice rougher than FYI.

The radar signatures of sea ice in C-band and L-band are different [5, 7, 13, 17]. The dominant
scattering mechanism of MYI is volume scattering in C-band and surface scattering in L-band [13].
The volume scattering comes from the upper layer of MYI, which has low salinity and encloses air
bubbles [10]. A C-band scattering experiment on FYI [38] reported that rough-surface scattering
dominates at low incidence angle, volume scattering from snow is less significant, and wet snow decreases
volume scattering.

The penetration depths within newly formed sea-ice in L-band and C-band are on the order
of centimeters to decimeters [18]. Layer of high-loss brine on top of newly formed ice prevents
electromagnetic wave from penetration [10]. The C-band radar signature of frost flower, which often
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appears on top of young ice, appears similar to that of MYI [16].

3. IMAGES FOR CLASSIFICATION

The states of sea ice can be categorized, in terms of radar signature, into five different phases, winter,
early melt, melt onset, advanced-melt, and freeze-up [39]. The images in the winter phase (dry snow-
pack on dry sea-ice, with surface temperature below −5◦C) and the advanced-melt phase (snow pack is
wet and melts rapidly) will be classified and analyzed in this work.

3.1. Winter Phase

Figure 1(a) shows the C-band image of σvv in Beaufort sea near Northwest Canadian coastline in
the winter phase. Two regions of interest (ROIs) are enclosed by red boxes and labeled by 1 and 2,
respectively. L-band full-polarimetry images are also available in these two ROIs. Table 1 lists the ice
concentration in zones A and B, respectively, from CIS sea-ice chart [40]. During these two days of data
acquisition, ice floes slightly moved south-eastwards. Note that the zone types shown in Fig. 1(a) and
the ice concentration listed in Table 1 were recorded on April 23 and April 30, 2007.

(a) (b)

Figure 1. C-band image of σvv : (a) In Beaufort sea near Northwest Canadian coastline, recorded on
April 27, 2007 (winter). ROI 1 and ROI 2 are enclosed by red boxes, purple and yellow curves mark
boundaries between zone A and zone B on April 23 and April 30, 2007, respectively, on Canadian Ice
Service (CIS) sea-ice chart [40]. (b) Between Melville Island and Banks Island, Canada, recorded on
August 11, 2009 (advanced-melt). ROI 3 is enclosed by red box, blue curves mark boundaries between
zone A’ and zone B’ on August 10, 2009, on CIS sea-ice chart.

Figure 2 shows the σvv images in L-band and C-band, respectively, in the winter phase. The C-band
images of σvv were taken with the Remote-Sensing Satellite-2 (ERS-2) of European Space Agency (ESA)
at UTC 06:16–06:18, April 27, 2007, and the data are retrieved from the ESA EO data collections [41].
The L-band images of σvv were taken with the Advanced Land Observing Satellite (ALOS) Phased
Array L-band Synthetic Aperture Radar (PALSAR) of JAXA/METI at UTC 06:23–06:25, April 26,
2007, and the ALOS PALSAR L1.1 data are retrieved from the Alaska Satellite Facility [42].
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Table 1. Ice concentration in zones A, B, A’ and B’ [40].

zone A zone B
FYI(a) MYI(b) FYI(a) MYI(b)

concentration 8 2 5 5

zone A’ zone B’
FYI(a) thick FYI(c) open water thick FYI(c)

concentration 1 9 5 5

sum of concentrations is 10 in one zone. (a): ice thickness 30–70 cm, (b): old ice, (c): ice thickness
> 120 cm.

(a) (b)

(c) (d)

Figure 2. L-band image of σvv in (a) ROI 1 and (b) ROI 2. C-band image of σvv in (c) ROI 1 and (d)
ROI 2. Data not available in light-blue areas.

Table 2 lists some system parameters of the ALOS PALSAR and ERS-2, respectively. The
geometrical area of both ROI 1 and ROI 2 is 29 km × 65 km. Both images in Figs. 2(a) and 2(b)
are composed of 624 horizontal rows, with 4,608 pixels in each row. The size of each pixel is 46 m (row
width) ×14 m.

It is observed that ridges appear more clearly in L-band images than in C-band images, consistent
with the observations in [7]. The boundary of MYI appears more clearly in C-band images than in
L-band images, consistent with the observations in [13]. By comparing the two areas enclosed by red
curves in Figs. 2(a) and 2(c), we observe that the σvv appears dark in L-band and light in C-band,
probably caused by the frost flower on ice.

Figure 3 shows some properties of the L-band image in ROI 1. Fig. 3(a) shows the probability
density function (PDF) in the H/〈α〉 plane, where different zones are characterized by different scattering
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Table 2. Parameters of ALOS PALSAR [43] and ERS-2 [44, 45].

unit ALOS PALSAR ERS-2
polarization hh/vh/hv/vv vv

noise equivalent sigma zero (NESZ) dB −29 −23
center frequency GHz 1.270 5.3

wavelength m 0.2379 0.056
bandwidth MHz 14 15.55

incidence angle degree 8–30 20.1–25.9
ground swath km 30 100

mechanisms [46]. It appears that most of the scatterers belong to Bragg surface and random surface,
respectively. Fig. 3(b) shows that the polarimetry entropy of FYI is relatively higher than that of MYI.
High polarimetry entropy implies low scattering signal-to-noise ratio (SNR), and the pixels with SNR
< 6 dB [47] are marked black in Fig. 3(c). An oil-spill sea surface reveals similar characteristics of weak
scattering, low SNR or high entropy [48].

(a) (b) (c)

Figure 3. Properties of L-band image in ROI 1, (a) PDF in H/〈α〉 plane, (b) polarimetry entropy H,
(c) pixels with SNR < 6 dB are marked black.

3.2. Advanced-Melt Phase

Figure 1(b) shows the C-band image of σvv between Melville Island and Banks Island, Canada, in
advanced-melt phase. The ROI is enclosed with red box and labeled by 3. L-band full-polarimetry
image is also available in ROI 3. Table 1 lists the ice concentrations in zones A’ and B’ on August 10,
2009, from CIS sea-ice chart [40]. The ERS-2 (C-band) image was taken at UTC 05:00 August 11, 2009,
and the ALOS PALSAR (L-band) image was taken at UTC 04:33 August 11, 2009.

Figure 4 shows the L-band image of σvv in ROI 3, of which the geometrical area is 29 km× 121 km.
The image is composed of 624 horizontal rows, with 8,509 pixels in each row. The size of each pixel is
46 m (row width) ×14 m.

Figure 5(a) shows the PDF of the L-band image in the H/〈α〉 plane, where two clusters are observed.
By inspecting Fig. 4, we observe open-water areas in the right-half image but none in the left-half one.
Hence, we split the image of Fig. 4 into left half and right half. Figs. 5(b) and 5(c) show the PDFs in
the H/〈α〉 plane, of the left-half image and the right-half image, respectively. There are two distinct
types of scatterer in the right-half image, corresponding to sea ice and open water, respectively.

Figure 5(d) shows the polarimetry entropy of the whole image, with low-entropy pixels and high-
entropy pixels mapped to the two clusters of PDF, respectively, in Fig. 5(a). About 50% of pixels on the
right-half image represent open-water area, which are expected to have relatively low entropy. Fig. 5(f)
shows the PDF in the (H,σvv/σhh) plane, where two distinct clusters are observed, consistent with the
observation that open water and sea ice can be clearly separated in this plane [18].
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Figure 4. L-band image of σvv in ROI 3, C-band image not available to the right of orange line.

(a) (b) (c)

(d) (e) (f)

Figure 5. Properties of L-band image in Fig. 4, (a) PDF of whole image in H/〈α〉 plane, (b) PDF of
left-half image in H/〈α〉 plane, (c) PDF of right-half image in H/〈α〉 plane, (d) polarimetry entropy H,
(e) co-polarization ratio σvv/σhh, (f) PDF of whole image in (H,σvv/σhh) plane.

Figure 6 shows the co-polarization ratio σvv/σhh of open water versus incidence angle [36], which
is consistent with Fig. 5(e) that areas with σvv/σhh > 2 are very likely open water.

3.3. Reference Ground-Truth

The backscattering coefficients (BSCs) have been used to classify MYI and FYI. It was reported that
the measured σvv of smooth FYI was lower than −15 dB, and that of rough FYI and second-year ice
was about −13 dB [11]; σvv of snow-free MYI was higher than −10 dB, and the difference of σvv between
snow-covered FYI and snow-free MYI was larger than 3 dB [12]. The satellite observation of landfast
ice showed that the difference of σvv between MYI and FYI was larger than 3 dB in the winter [13].
Typical look angle of scattered field in measurements is about 25◦.

C-band PolSAR images were proved effective in identifying MYI in the winter. In [20], features and
freezing process of sea ice in Barents sea were presented. Aerial observations, meteorological and ice
measurement data were collected in a field campaign to validate the classification of sea-ice type based on
C-band backscattering data of ERS-1. In [21], field measurement with C-band scatterometer and visual
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Figure 6. Co-polarization ratio σvv/σhh versus incidence angle [36], relative permittivity of sea water
is εr = 76 − j48 [49] at 1.413 GHz and 35 psu of salinity.

observation confirmed that C-band SAR images from ERS-2 and RADARSAT could effectively classify
flaw polynya, new ice, FYI and MYI. In [7], co-located C-band SAR images were used to confirm the
sea-ice classification by using L-band SAR images, based on previous studies in [20, 21]. The relation
between C-band backscattering power and sea-ice type was reviewed by summarizing data from the
literature, including open water, nilas, young ice, level FYI, deformed FYI and MYI [8].

Based on these discussions, a flowchart of preparing the reference ground-truth is proposed, as
shown in Fig. 7. Three classification labels, OW, FYI and MYI, are chosen. The following rules are
applied in sequence.
1) Check sea-ice type in the ROI from sea-ice chart.
2) If water exists, classify a pixel into open water or FYI, by using H and σvv/σhh derived from L-band

image.
3) If water does not exist, use relative backscattering power of C-band image to classify into FYI or

MYI. Classify a pixel into MYI if the power is strong and FYI if the power is weak.
4) If the backscattering power of a pixel appears strong in C-band but weak in L-band, indicating

coverage with frost flower, then classify the pixel into FYI.

Figure 7. Flowchart of preparing reference ground-truth.

4. INPUT VECTORS

The K-distribution has been used to characterize the texture of PolSAR data [46] (Ch. 4.11). The
covariance matrix ¯̄C of a pixel can be decomposed into a product of speckle PDF ( ¯̄W ) and texture PDF
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(τ) as [50]

¯̄C =

⎡
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√

2〈ShhS∗
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⎤
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where ¯̄W follows a Wishart distribution.
The first three log-cumulants of covariance matrix ¯̄C of a target pixel are defined as [51]

κ1{ ¯̄C} = μ1{ ¯̄C}, κ2{ ¯̄C} = μ2{ ¯̄C} − μ2
1{ ¯̄C}

κ3{ ¯̄C} = μ3{ ¯̄C} − 3μ1{ ¯̄C}μ2{ ¯̄C} + 2μ3
1{ ¯̄C}

representing mean, variance, and skewness, respectively, in the log domain [52], which have been used
to classify different ground or sea-surface features. Here, μn{ ¯̄C} = 1

M

∑M
�=1

[
ln

(
det{ ¯̄C�}

)]n
[51], where

¯̄C� is the covariance matrix associated with a pixel in the neighborhood of the target pixel. In this work,
a neighborhood is composed of M = 9 pixels, with three rows in the range direction and three pixels in
each row.

Different land covers, like ground, vegetation, and roof in urban area, form distinct clusters in the
(κ3, κ2) plane [53]. Oil-spill and sea water form distinct clusters in the (κ1, κ2) plane, but less distinct
clusters in the (κ3, κ2) plane [54]. The PDF of Polynya, brash/pancake ice and white floe in C-band
polarimetric images formed different clusters in the (β1, β2) plane [55]. The analysis on PDF of PolSAR
images was simplified in the (κ3, κ2) plane than in the (β1, β2) plane [52]. The surface properties of FYI
and MYI are more complicated than sea water in L-band images, hence log-cumulants are considered
as constituents of input vector for FYI/MYI classification.

GLCM features have been used for sea-ice classification [8, 22, 30]. Commonly used GLCM features
include f1 (energy), f2 (contrast), f3 (homogeneity) and f4 (entropy). The contrast feature f2 measures
the intensity contrast around the target pixel, which could be useful in classifying FYI and MYI, as
deformed FYI reveals black-and-white chequered texture of high contrast while plain FYI and MYI
reveal low contrast.

Classifiers like NN, SVM, FCM, and k-means cannot generate texture information by themselves.
Including texture information of images may increase the accuracy rate of these classifiers. As shown
in Figs. 3(a) and 5(a), most scatterers are clustered to a small zone, implying that they are dominated
by the same type of scattering mechanism and are difficult to separate by using the information in ¯̄C
alone. The GLCM features are included to enhance the classifiers. Here, we propose two types of input
vector,

[κ1, κ2, f2]t (2)
[κ1, κ2, f2,H, σvv/σhh]t (3)

which include information of texture and scattering mechanism. These input vectors will be used for
classification methods NN, SVM, FCM and k-means. Fig. 5(f) shows that open water can be clearly
identified in the H-σvv/σhh plane, hence the input vector of (3) is expected to perform better when
open water exists.

In deep-learning models for PolSAR terrain classification [23, 24, 56], all elements in the covariance
matrix ¯̄C of a pixel are rearranged into a 9-element input vector as

C̄ =
[
|Shh|2, |Shv|2, |S2

vv |,Re{ShhS∗
hv}, Im{ShhS∗

hv},Re{ShhS∗
vv}, Im{ShhS∗

vv},

Re{ShvS
∗
vv}, Im{ShvS

∗
vv}

]t

(4)

To reduce the complexity of CNN while retaining important polarimetric information, an alternative
input vector is defined as

[κ1, κ2]t (5)
where GLCM features are not included because the CNN is expected to learn the texture in the training
phase.
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5. REVIEW OF CLASSIFICATION METHODS

Typical supervised method takes a large quantity of training data to achieve acceptable accuracy
rate [57]. On the other hand, unsupervised methods do not require training data at all, making them
useful when ground-truth data are difficult to acquire. In this work, sea ice will be classified with
supervised methods (NN, CNN and SVM) and unsupervised methods (k-means and FCM), respectively.
The accuracy rate of these methods will be compared and analyzed.

5.1. Supervised Methods

In [8], an NN method was proposed to classify sea ice into water, level FYI, deformed FYI and MYI,
by using GLCM features as the input vector. The NN was composed of three layers, containing 9,
6 and 3 neurons, respectively. In [58], an NN was proposed to classify pixels of C-band and L-
band images, respectively, into open water, thin ice/calm water and sea ice. The ground-truth was
manually determined on backscattering power and texture features. The input vector contains σhh,
σhv, autocorrelation of σhv (a GLCM texture feature), incidence angle and σhv/σhh. The proposed NN
was composed of three layers, with 5 neurons in the input layer and 3 neurons in the output layer.

Figure 8 shows the schematic of a conventional NN, which is composed of three fully-connected
hidden layers, containing 20, 30, and 10 neurons, respectively. It processes one pixel at a time in both
the training phase and the testing phase.

Figure 9 shows the schematic of CNN used in this work, which is modified from SegNet [59], where
conv-n (3, 3) means a convolutional layer which is composed of n filters of size 3 × 3, followed by a
ReLU activation function and batch normalization; maxpooling means choosing the maximum value

Figure 8. Schematic of conventional NN.

Figure 9. Schematic of CNN [59].
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from every 2× 2 pixels; upsampling means duplicating a single pixel into 2× 2 pixels; and softmax is a
convolutional layer composed of two 1 × 1 filters, followed by a softmax function. The total number of
trainable parameters is 10,818. In the training phase, the classified image is compared with the reference
ground-truth to update the trainable parameters. The number of layers and the parameters in each
layer are adjusted by running numerous simulations on the training data. The current structure is the
optimal one tailored for this set of sea-ice data. We observe that the error increases if fewer layers are
used, and the reduction of error is marginal if more layers are included.

In [22], GLCM features were derived from C-band image, including mean, correlation, homogeneity,
and variance of σhh. A ten-dimensional input vector, including GLCM features and backscattering
power, was used to train an SVM classifier. The variation of backscattering power at different incidence
angles was equalized before deriving the GLCM features [30]. In this work, we choose an SVM [60]
with a radial basis kernel e−γ‖x̄−x̄′‖2

, where γ > 0. Both γ and the penalty parameter are optimized
by using grid search [60]. In the training phase, we randomly pick 30% of all the pixels to reduce the
computational load.

5.2. Unsupervised Methods

When FCM is applied to classify PolSAR images, a proper distance metric is more critical than the
algorithm itself [27]. In [28], FCM with an input vector [H,A, 〈α〉, span]t was proposed for land-use
classification, where A is anisotropy and span is the total backscattering power. In this work, the
objective function in the FCM is defined as [61]

N∑
n=1

C∑
m=1

ur
nm

∑
p∈Nn

wp‖x̄p − μ̄m‖2 or (6)

N∑
n=1

C∑
m=1

ur
nm

∑
p∈Nn

wpd(¯̄xp, ¯̄μm) (7)

where N is the total number of pixels, with one pixel represented by one input vector; C is the number
of cluster centers; ‖x̄p − μ̄m‖ is the Euclidean distance between input vector x̄p and cluster center μ̄m,
and

d(¯̄xp, ¯̄μm) = ln det{¯̄μm} − ln det{¯̄xp} + Tr{¯̄μ−1
m · ¯̄xp}

is the revised Wishart distance [27]. Wishart distance was used to measure the similarity between two
covariance matrices [25], assuming that each covariance matrix follows a complex Wishart distribution.
In [25], a modified clustering algorithm was applied to classify sea ice by using the covariance matrix of
pixels, with Wishart distance metric. It was found that FYI cannot be classified in L-band images and
ridge cannot be classified in C-band images. In [62], an agglomerative clustering method was applied to
C-band full-polarimetry images to classify sea ice. It was shown that choosing different distance metrics
could significantly affect the outcome of clustering.

The objective function in Eq. (6) is used if the input vector of Eqs. (2), (3) or (5) is chosen,
and Eq. (7) is used if the input vector of Eq. (1) is chosen [62]. In the objective function, unm is
the degree-of-membership between the nth input vector x̄n and the mth cluster, under the constraint

C∑
m=1

ur
nm = 1. The weighting exponent is set to r = 2; Nn is the set of pixels surrounding pixel n;

wp = 1√
2πσ

e−‖η̄p−η̄n‖2/(2σ2) is the spatial weighting factor which defines the influence of an adjacent
pixel; η̄p is the position of pixel p in terms of row index and column index; σ = (ws − 1)/4; and ws is
the window size of Nn, which is set to ws = 3. The values of μ̄m and unm are updated as [61]

μ̄m =
N∑

n=1

∑
p∈Nn

wpu
r
nmx̄p

/ N∑
n=1

∑
p∈Nn

wpu
r
nm

unm =
∑

p∈Nn

wpapm

/ C∑
h=1

∑
p∈Nn

wpaph
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where

anm =

⎛
⎝ ∑

p∈Nn

wp‖x̄p − x̄m‖2

⎞
⎠

1/(1−r) / C∑
h=1

⎛
⎝ ∑

p∈Nn

wp‖x̄p − x̄h‖2

⎞
⎠

1/(1−r)

or

anm =

⎛
⎝ ∑

p∈Nn

wpd(¯̄xp, ¯̄μm)

⎞
⎠

1/(1−r) / C∑
h=1

⎛
⎝ ∑

p∈Nn

wpd(¯̄xp, ¯̄μh)

⎞
⎠

1/(1−r)

pending on Eq. (6) or Eq. (7) is used.
The k-means method searches for k centers (in μ̄) by minimizing an objective function [63]

N∑
n=1

‖x̄n − μ̄m‖2 or
N∑

n=1

d(¯̄xn, ¯̄μm)

where N , x̄n, μ̄m and d(¯̄xn, ¯̄μm) are the same as in FCM. The input vector x̄n is assigned to cluster cn

as
cn = arg min

m
‖x̄n − μ̄m‖2

and the center of the mth cluster is updated as

μ̄m =
N∑

n=1

unmx̄n

/ N∑
n=1

unm

where unm = 1 if x̄n is classified into cluster m, and unm = 0 otherwise. In the FCM, the nth pixel
is assigned a probability unm in connection with the mth cluster. In the k-means method, a pixel is
classified into the closest cluster.

6. SIMULATIONS AND DISCUSSIONS

Before applying the classifiers to L-band images in a given ROI, the reference ground-truth in the ROI
is generated by following the flowchart in Fig. 7. Each of the L-band images in Figs. 2(a) and 2(b)
(winter phase) is composed of 624×4, 608 pixels, and that in Fig. 4 (advanced-melt phase) is composed
of 624 × 8, 509 pixels.

The dimensions of the input vectors in Eqs. (4) and (5) are Ni = 9 and Ni = 2, respectively. Before
applying CNN, the original images in Figs. 2(a) and 2(b) are reformatted to 512 × 4, 608 pixels by
nearest-neighbor interpolation. The reformatted images in ROI 1 and ROI 2, respectively, are divided
into 36 subimages, each containing 256 × 256 pixels. In the training phase, 36 subimages in ROI 1 are
used to update the trainable parameters. In the testing phase, all the subimages from ROI 1 and ROI
2, respectively, are classified with the trained CNN. Finally, all the classified subimages are stitched up
for visual inspection and error analysis.

6.1. Results of Images in ROI 1

Figure 10 shows the classified images in ROI 1 with different methods. It is observed that the output
image of CNN, in Fig. 10(a), displays fewer speckles than those of the other methods. It was mentioned
in [59] that the CNN schematic in Fig. 9 tends to produce smooth spatial distribution of output labels,
as compared to other CNN schematics. Label smoothing technique like Markov random field [64] can
be applied to remove speckles in Figs. 10(b)–10(e).

Figure 11 shows the classified images of NN, with input vectors of Eqs. (2), (4) and (5), respectively.
The classified images with FCM and k-means are similar to those with NN, hence are not shown. When
the GLCM feature is not used, Figs. 11(b) and 11(c) show that the boundary of large ice floe is easily
recognized, but speckles appear everywhere.

Table 3 lists the classification results in ROI 1. Three types of input vector in Eqs. (2), (4) and (5)
are used for comparison. The input vector of Eq. (3) is not used because ROI 1 is covered by sea ice
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(a) (b) (c)

(d) (e) (f)

Figure 10. Classified images of (a) CNN, (b) NN, (c) SVM, (d) FCM and (e) k-means. (f) is reference
ground-truth, green: FYI, brown: MYI, winter phase, with input vector of (2).

(a) (b) (c)

Figure 11. Classified images of NN with (a) input vector of (2), (b) input vector of (4) and (c) input
vector of (5).

only, without open water, as listed in Table 1, and both polarimetry entropy H and co-polarization
ratio σvv/σhh are not useful in separating MYI and FYI.

When input vector of Eq. (4) is used in FCM and k-means, the two cluster centers fall almost
on each other at the end of iterations, suggesting that the input vector of Eq. (4) is not suitable for
MYI/FYI classification with FCM or k-means. The dash marks in some entries of Table 3 indicate no
results.

In general, supervised methods perform better than unsupervised ones. The performance of FCM
is similar to that of k-means. The FCM can separate MYI and deformed FYI more accurately than
k-means does because the former has the flexibility to assign a pixel to different clusters. Among the
supervised methods, CNN outperforms NN and SVM in accuracy rate, with the same input vector.

The accuracy rates of NN, SVM, FCM, and k-means, with input vector of (2), are about 10%
higher than their counterparts with input vectors of Eqs. (4) and (5). This implies that GLCM feature
f2 is useful in separating FYI and MYI, possibly because the contrast feature f2 has relatively higher
value on highly deformed FYI than MYI and plain FYI. Including texture feature in the input vector
improves the accuracy rate for all the classification methods studied in this work, consistent with other
sea-ice classification studies [8, 22].

The CNN is expected to find the texture features implicitly, making it attractive in computer
vision [65]. The accuracy rates of CNN with input vectors of Eqs. (2), (4), and (5) are similar, which
confirms with the self-learning capability of CNN in exploiting the texture information to classify MYI
and FYI.
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Table 3. Classification results in ROI 1 (winter).

[κ1, κ2, f2]t
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted
MYI 39.0 3.7 36.0 7.4 37.9 9.6 37.0 14.8 33.0 20.5
FYI 2.6 54.7 5.6 51.0 3.8 48.7 4.6 43.6 8.6 37.9

accuracy rate (%) 93.7 87.0 86.6 80.6 70.9

[κ1, κ2]t
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted
MYI 38.2 4.1 35.3 17.1 37.5 19.9 33.7 18.4 33.0 20.7
FYI 3.4 54.3 6.3 41.3 4.2 38.4 7.9 40.0 8.7 37.6

accuracy rate (%) 92.5 76.6 75.9 73.7 70.6

C̄ or ¯̄C
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted MYI 38.9 3.9 29.7 16.3 29.5 18.9 − − − −
FYI 2.8 54.4 11.9 42.1 12.2 39.4 − − − −

accuracy rate (%) 93.3 71.8 68.9 − −

6.2. Results of Images in ROI 2

Figure 12 and Table 4 show the classification results of ROI 2 in Fig. 2(b). Part of Fig. 12(f) is labeled
unknown because no co-located C-band image is available in that part, and using only L-band image
of σvv is not effective to classify sea-ice type [7]. The image of ROI 2 in Fig. 2(b) is used to test the

(a) (b) (c)

(d) (e) (f)

Figure 12. Classified images of (a) CNN, (b) NN, (c) SVM, (d) FCM and (e) k-means. (f) is reference
ground-truth, supervised classifiers trained in ROI 1 and tested in ROI 2, green: FYI, brown: MYI,
black: unknown ice type, winter phase, with input vector of (2).
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Table 4. Classification results in ROI 2 (winter).

[κ1, κ2, f2]t
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted
MYI 50.1 12.0 49.1 13.0 50.0 15.6 40.5 11.5 34.9 11.5
FYI 1.4 36.5 2.4 35.5 1.5 32.9 10.9 37.1 16.6 37.0

accuracy rate (%) 86.6 84.6 82.9 77.6 71.9

[κ1, κ2]t
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted
MYI 50.3 12.8 48.6 22.0 49.7 25.5 34.7 11.8 32.0 12.0
FYI 1.2 35.7 2.9 26.5 1.7 23.1 16.8 36.7 19.5 36.5

accuracy rate (%) 86.0 75.1 72.8 71.4 68.5

C̄ or ¯̄C
CNN NN SVM FCM k-means

ground-truth
MYI FYI MYI FYI MYI FYI MYI FYI MYI FYI

predicted MYI 48.4 7.1 40.3 16.5 48.8 29.2 − − − −
FYI 3.1 41.4 11.1 32.1 2.7 19.3 − − − −

accuracy rate (%) 89.8 72.4 68.1 − −

classifiers trained with the image of ROI 1 in Fig. 2(a). It is observed that the accuracy rate in an entry
of Table 4 is a little lower than its counterpart in Table 3, because the testing ROI is different from the
training ROI in the former.

It is observed that the accuracy rate of CNN with input vector of Eq. (4) is 3% higher than those
with Eqs. (2) and (5). Also notice the difference among these classified images within the blue boxes in
Figs. 13(a), 13(b) and 13(c). Some information is lost when using input vectors of Eqs. (2) and (5). The
GLCM feature f2 does not improve the performance of CNN as the accuracy rates with input vectors
of Eqs. (2) and (5) are similar. By recapitulating the results shown in Fig. 10, we conjecture that the
higher accuracy rate in ROI 1 is due to overfit rather than the contribution of GLCM feature f2.

(a) (b) (c)

Figure 13. Classified images of CNN with (a) input vector of (2), (b) input vector of (4) and (c) input
vector of (5).

6.3. Results of Images in ROI 3

Figure 14 shows the classified images in ROI 3 with the input vector of Eq. (3). The images show similar
characteristics to their counterparts in Figs. 10 and 12. Fewer speckles appear in the classified images
of NN and SVM, and the accuracy rates of these two classifiers are comparable to that of CNN.
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(a) (b) (c)

(d) (e) (f)

Figure 14. Classified images of (a) CNN, (b) NN, (c) SVM, (d) FCM and (e) k-means. (f) is reference
ground-truth, supervised classifiers trained in ROI 3 and tested in ROI 3, green: FYI, yellow: open
water, advanced-melt phase, with input vector of (3).

Table 5. Classification results in ROI 3 (advanced-melt).

[κ1, κ2, f2]t
CNN NN SVM FCM k-means

ground-truth
OW FYI OW FYI OW FYI OW FYI OW FYI

predicted OW 12.1 1.3 10.1 3.1 9.9 2.9 14.3 27.1 12.5 23.9
FYI 2.9 83.7 4.7 82.1 4.8 82.2 0.8 57.8 2.6 61.0

accuracy rate (%) 95.8 92.2 91.9 72.1 73.5

[κ1, κ2, f2,H, σvv/σhh]t
CNN NN SVM FCM k-means

ground-truth
OW FYI OW FYI OW FYI OW FYI OW FYI

predicted OW 14.1 0.6 12.9 1.2 12.8 1.2 14.9 15.7 14.6 35.8
FYI 1.0 84.3 1.9 84.0 2.0 84.0 0.2 69.2 0.5 49.1

accuracy rate (%) 98.4 96.9 96.8 84.1 63.7

C̄ or ¯̄C
CNN NN SVM FCM k-means

ground-truth
OW FYI OW FYI OW FYI OW FYI OW FYI

predicted
OW 13.9 0.6 12.7 1.9 7.5 1.8 1.1 3.0 3.0 0.8
FYI 1.2 84.3 2.1 83.3 7.6 83.1 13.9 81.9 12.0 84.2

accuracy rate (%) 98.2 96.0 90.6 83.0 87.2

Table 5 lists the classification results in ROI 3. The accuracy rates are similar to their counterparts
in Tables 3 and 4. The accuracy rates of both FCM and k-means, with input vector of Eq. (4), are
reasonable. Choosing the input vector of Eq. (3) improves the accuracy rate of all classification methods,
except k-means. Fig. 5(f) shows two distinct clusters, indicating that open water can be identified in
the H-σvv/σhh plane. The accuracy rates with the input vector of Eq. (3) is 3–12% higher than their
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counterparts with the input vector of Eq. (2).
The accuracy rate by using k-means method with the input vector of Eq. (3) is 10% lower than

that with the input vector of Eq. (2). When a reduced version of Eq. (3), [f2,H, σvv/σhh]t, is input to
k-means, the accuracy rate remains close to that with Eq. (3). Note that k-means classifies 12/15 of
OW to FYI, as listed in Table 5.

Figure 15 shows the classified images in ROI 3 by using the input vector of Eq. (4). Recapitulate
that two obvious clusters are observed in Fig. 5(a), corresponding to water and FYI, respectively.
However, the classified images in Figs. 15(a), 15(b) and 15(d) by using k-means and FCM with 2
clusters, respectively, do not fully reveal the ground-truth. Fig. 15(a) shows that 95.8% of pixels are
classified into FYI. Figs. 15(a) and 15(b) also imply that k-means delivers different results with different
initialization of cluster centers.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 15. Classified images in ROI 3 by using input vector of (4). (a) k-means with 2 clusters,
cluster centers initialized as in [63], (b) k-means with 2 clusters, cluster centers are randomly selected,
(c) k-means with 3 clusters, cluster centers initialized as in [63] or randomly selected, (d) FCM with
2 clusters, r = 2, unm randomly initialized, (e) FCM with 3 clusters, r = 2, unm randomly initialized,
(f) FCM with 3 clusters, r = 1.1, unm randomly initialized, (g) FCM with 3 clusters, r = 1.1, unm

initialized according to the results of k-means, (h) ground-truth from Fig. 14(f), with high-entropy
region marked red.

By further comparison of Figs. 15(a) and 15(b) with Fig. 5(d), we observe that the high-entropy
pixels near the right border of ROI 3 belong to minority. Fig. 5(a) is reproduced in Fig. 16, with three
clusters enclosed by red curves. The first and the second clusters have significant PDF, while the third
cluster (high-entropy outlier) is less obvious. The high-entropy area in Fig. 5(d) overlaps with the area
with lowest backscattering power, as shown in Fig. 4.

We conjecture that by applying k-means to classify images embedding three clusters into two
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Figure 16. Clusters of (1) water, (2) sea ice and (3) high-entropy outlier.

clusters, the results become sensitive to initialization, as shown in Figs. 15(a) and 15(b). Fig. 15(c)
shows the classified image by applying k-means with randomly initialized cluster centers. The classified
image reveal three different labels and is less sensitive to initialization. Fig. 15(e) shows the classified
image by applying FCM with three clusters. It is observed that the FCM cannot separate FYI from
water because the memberships are close, namely, un0 � un1 � un2 � 1/3. Note that k-means can be
viewed as a special case of conventional FCM with unm ∈ {0, 1} and r = 1 in the objective function.

The FCM with r closer to one implies less fuzziness between clusters, rendering its behavior closer
to k-means. The weighting exponent of r = 2 in (7) may be too large when applying FCM with input
vector of (4). Figs. 15(f) and 15(g) show the classified images by using FCM with r = 1.1, where
randomly initialized unm is used in Fig. 15(f), and the k-means results are used to initialize unm in
Fig. 15(g). Both classified images look similar to the reference ground-truth shown in Fig. 15(h). The
initialization of unm in Fig. 15(g) is implemented as

unm =
{

0.6, m = Kn

0.4/(M − 1), otherwise

where Kn ∈ {0, . . . ,M − 1} is the classification result of k-means and M is the number of clusters.
By taking a closer look, only two labels are visible in Fig. 15(f) because two of the three cluster

centers almost overlap with each other. On the other hand, three labels clearly appear in Fig. 15(g),
which implies that proper initialization is important. Table 6 lists the accuracy rates associated with
Figs. 15(c), 15(e) and 15(g), respectively.

Table 6. Classification results in ROI 3 by using FCM and k-means, with input vector of Eq. (4).

3 clusters, and ¯̄C
k-means FCM, r = 2 FCM, r = 1.1

ground-truth
OW FYI FYI’ OW FYI FYI’ OW FYI FYI’

predicted
OW 3.6 0.6 0.1 0.8 2.1 0.4 11.6 0.2 0.1
FYI 11.5 83.8 0.2 14.3 82.4 0.0 1.0 81.1 0.0
FYI’ 0.0 0.0 0.2 0.0 0.0 0.0 2.6 0.9 0.4

accuracy rate (%) 87.6 83.5 93.4

In summary, when applying k-means and FCM with input vector of Eq. (4) to classify OW/FYI,
the high-entropy outlier cannot be neglected. The weighting exponent r in Eq. (7) should be close to
unity, and proper initialization of membership is important.
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7. CONCLUSION

Two unsupervised methods (FCM and k-means) and three supervised methods (SVM, NN and CNN)
have been applied to classify sea-ice type (MYI and FYI) and open water by using L-band PolSAR
images in winter and advanced-melt phases, respectively. Different input vectors, pending on different
scenarios, have also been proposed to increase the accuracy rate. GLCM feature f2 has significant effect
on all the methods except the CNN. By applying the NN method to images in the winter phase, using
an input vector including GLCM feature f2 results in 87% of accuracy rate, more than 10% higher
than using the other two input vectors. The boundary of MYI appears more clearly, and speckle effect
becomes less significant by including GLCM feature f2. The CNN method has higher accuracy rate
than the other methods, especially when the covariance matrix is used as the input vector. By including
H and σvv/σhh in the input vector to classify images in the advanced-melt phase, the accuracy rates
with NN, SVM and FCM are increased by 5–12%. By applying the FCM to classify images into three
clusters instead of two, with properly tuned weighting exponent and the results of k-means as initial
memberships, the accuracy rate is increased to 93.4%.
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