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Electromagnetic Filters Based on a Single Negative Photonic
Comb-Like Structure

Youssef Ben-Ali1, Zakaria Tahri1, 2, and Driss Bria1, *

Abstract—This work describes a theoretical study of filters using a defect in one-dimensional photonic
comb-like structure. This photonic comb-like structure is constituted by finite or infinite segments
which have negative permeability and grafted in each site by a finite number of lateral branches (play
the role of the resonators), which consists of a negative permittivity. Numerical results exhibit the
permissible bands which are separated by gaps (forbidden band). These gaps originate not only from
the periodicity of the system but also from the resonance states of the grafted lateral branches. We study
the effect of the presence of a resonator defect on the transmission behavior, phase, and phase time.
The electromagnetic band structure shows that there is a defect mode in the gap. The transmission
rate and the reduced frequency of this mode are related to the variation of defect length. Similarly,
we calculate, for the first time, the quality factor evolution of this defect mode when the defect length
varies. This structure can be used as a new optical filter in the microwave range with a high factor of
quality and of transmission.

1. INTRODUCTION

Left-handed material (LHM), in which the electric permittivity ε and magnetic permeability μ are
simultaneously negative at certain frequencies, has attracted tremendous attention in scientific and
engineering communities [1–3]. These materials provide numerous unusual properties and phenomena
because of their special interaction with incident radiation, which are applied to some important
fields [4–9]. Recently, the tunneling of light through single negative (SNG) meta-materials has attracted
a lot of attention because of their importance in different fields [10–15]. These mediums (SNG)
are experimentally realized in previous studies [16–18]. For example, many plasmas (such as noble
metals including gold and silver in infrared and visible regions) which exhibit the electric negative
characteristic or gyrotropic (gyromagnetic) materials (such as ferromagnetic materials) show magnetic
negative characteristic. Therefore, particular efforts have been purposed in exploring how some of the
exciting phenomena and applications predicted and studied in (LHMs) can be transferred into SNGs [19–
21]. In general, there are two types of SNG materials. The first one, called the epsilon-negative (ENG)
material, which has a negative real part of the complex permittivity and a positive real permeability
(ε < 0 and μ > 0). The second one, called the mu-negative (MNG) materials, has a negative real part
of the complex permeability and a positive real permittivity (ε > 0 and μ < 0) [22–24].

Three previous papers [25–27] proposed a model of a one-dimensional (1D) photonic comb-like
structure (also called star waveguide) exhibiting electromagnetic bands separated by large gaps (zeros
of transmission). This system is composed by an infinite 1D segment (the backbone) along which
a finite site of resonators are grafted periodically. The gaps originate both from the periodicity of
the system and the resonance states of resonators [28], and these gaps occur at particular frequencies
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related to the length and physical characteristics of the side branch. These frequencies are broadened
into gaps when several side branches are grafted at equidistant nodes along the waveguide. Using these
gaps, the electromagnetic waves can be controlled and manipulated effectively, so gaps materials have
been found to have a wider range of applications [25–28]. When left-handed materials are introduced
into these systems, some unusual band gaps can also be found [29–32]. Recently, a metallic comb-
like waveguide structure was studied, showing the possibility of achieving high transmission through
negative-permittivity chain with the scale of a wavelength [33]. Another work manages to achieve
complete tunneling through MNG media by using the comb-like structure [34]. A defect is one of the
elements for which the star waveguide structure is developed and can filter a given frequency very
effectively out of different frequencies. In our recent work, we show for the first time that the presence
of a resonator defect in the LHM comb-like structure can give rise to localized states (defect modes)
inside the band gaps. These states are very sensitive to the defect length, number of sites, position
of defect, and number of defective resonators [35]. These defect modes can be used to design filters,
demultiplexing, etc. [28].

In this work, we show that a one-dimensional photonic comb-like structure (the segment constituted
by an MNG material and the resonator constituted by a material ENG) which contains a finite number
N ′

0 of resonators defect can be used as a filter for application in telecommunication field [36]. The
purpose of this paper is to calculate for the first time the evolution of the quality factor Q (the ratio of
the central frequency and the full width at half-maximum of the transmittance modes) of defect modes
in the photonic comb-like structure which contains ENG and MNG materials. It is worth pointing out
again the conditions of validity of the model. In all our calculations we have assumed that the cross
section of the segment is small compared to its linear dimension, that is, the segment may be considered
as a one-dimensional medium.

2. MODEL AND FORMALISM

2.1. Dispersion Relation through an Infinite Photonic Comb-Like Structure

We consider the structure (Fig. 1(a)) which consists of infinity of segments of length d1 along the
direction x. The position x in a cell between the sites n and n+1 is represented by the pair (n, x) where
x is a local coordinate such that 0 � x � d1. To calculate the Green function of the infinite structure,
we need to determine the elements of the function g−1

si of a segment (i = 1) of length d1 in each cell
(n, x) for any n such that −∞ � n � +∞ and the Green function of a length resonator d2 (i = 2) in

(a)

(b)

Figure 1. (a) One-dimensional photonic comb-like filter constituted by a periodicity of MNG segment
of length d1, grafted in each site N by a finite number of ENG lateral branches of length d2 with N ′ = 6.
(b) Same as (a) except that there is a defect at the side branch at site J of the length d0 with the defect
lateral branch number is N ′

0 = 6. The segment and the side branches (resonators) are constituted by
the coaxial cables (transmission lines) [25].
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each site n. These surface elements are denoted respectively g−1
s1 (M1;M1), which are a matrix (2 ∗ 2) in

the interface space M1 = {0; d1} and the element gs2(0; 0) = gs2(d1; d1).
The inverse matrix of the one segment located between the space {0; d1} is given in [25]:

←→
g−1
si (MiMi) =

⎛
⎜⎝
−FiCi

Si

Fi

Si

Fi

Si
−FiCi

Si

⎞
⎟⎠ (1)

while gs2(0; 0) = gs2(d1; d1) depends on the choice of the boundary conditions on the end of the branches,
for the case where H = 0. This quantity is given by:

g−1
s2 (0, 0) = −S2F2

C2
(2a)

with:

Ci = cosh (αidi) and Si = sinh (αidi) (2b)

αi = j
ω

c

√
εiμi (2c)

Fi =
αi

μi
(2d)

j =
√−1 (2e)

In the interface space of the infinite comb structure, the inverse of the matrix of the Green

function
←→
g−1∞ (MiMi) is an infinite tridiagonal matrix formed by the superposition of the elements←→

g−1
si (MiMi) (i = 1; 2). This matrix is written as follows:

←→
g−1
∞ (MiMi) =

⎛
⎜⎜⎜⎜⎜⎝

. . . . . . . . .
v w v

v w v
v w
. . . . . .

⎞
⎟⎟⎟⎟⎟⎠

(3a)

with:

v =
F

S
(3b)

w = −2F1
C1

S1
−N ′S2F2

C2
(3c)

Using the theorem of the Bloch, we deduce the dispersion relation in the form:

−2F1
C1

S1
−N ′S2F2

C2
+

F1

S1

(
ejkd1 + e−jkd1

)
= 0 (4a)

from where:

cos (kd1) = C1 +
1
2
S1S2

N ′F2

F1C2
(4b)

The system is periodic in the direction x, and the Fourier transform
←→
g−1 [(k;M ;M)] of the infinite

tridiagonal matrix in a segment of length d1 is written as follows:
←→
g−1 [(k;M ;M)] = −2F1

C1

S1
−N ′S2F2

C2
+

F1

S1

(
ejkd1 + e−jkd1

)
(5a)

where k is the reciprocal wave vector.
From where: ←→

g−1 [(k;M ;M)] = 2
F1

S1
[−η + cos(kd1)] (5b)
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with η is given by:

η = C1 +
1
2
S1S2

N ′F2

F1C2
(5c)

The bulk bands of the comb-like structure are obtained from the poles of the Green function by the
following relation:

cos (kd1) = η (6)

The inverse Fourier transform of ↔g [(k;M ;M )] is given by:

↔
g

[(
n, n′)] =

S1

F1

t|n−n′|+1

t2 − 1
(7a)

where the integers n and n′ represent the sites on the infinite comb-like (−∞ � n, n′ � +∞), and
parameter t is given by [25]:

t = ejkd1 (7b)

2.2. Coefficient of Transmission through a Finite Comb-Like Structure

In this section, we consider the quasi-one-dimensional photonic comb-like structure. This composite
system is constructed out of a finite comb-like structure cut out of the infinite periodic system of
Fig. 1(a), which is subsequently connected at its extremities to two semi-infinite leading lines. The finite
comb-like structure is therefore composed of N resonators (medium 2) of length d2 grafted periodically
with a lattice spacing d1 on a finite line (medium 1). For the sake of simplicity, the semi-infinite leads
are assumed to be constituted of the same material as medium 1. The system of Fig. 1(b) is constructed
from the infinite comb-like structure (Fig. 1(a)). In the first step, one suppresses the segments linking
sites n = −1 and n = 0, and sites n = N and n = N + 1. In the second step, a defect is created
inside the structure by a change of a lateral branch of length d2, permittivity ε2, and permeability μ2

located at site J by another resonator of length d0, permittivity ε0 = ε2, and permeability μ0 = μ2.
The disturbance states are Ms = {−1, 0, J,N,N + 1}.

The inverse surface Green’s function
←→
g−1
t (MsMs) of the structure comb-like structure containing

a defect for the condition H = 0 is the following 5 ∗ 5 square matrix defined in the interface domain
constituted in sites −1, 0, J , N , N + 1.

←→
g−1
t (MsMs) =

⎛
⎜⎜⎜⎝

A 0 0 0 0
0 B 0 0 0
0 0 C 0 0
0 0 0 D 0
0 0 0 0 D

⎞
⎟⎟⎟⎠ (8a)

with:

A = −N ′F2S2

C2
− F1C1

S1
, B = −F1C1

S1
, C = N ′

0

F0S0

C0
and D = −N ′F2S2

C2
− F1C1

S1
(8b)

The cleavage operator
↔
V (MsMs) =

←→
g−1
t (MsMs) −

←→
g−1∞ (MsMs) is the following 4 ∗ 4 square matrix

defined in the interface domain constituted of sites −1, 0, J,N,N + 1:

↔
V (MsMs) =

⎛
⎜⎜⎜⎝

E F 0 0 0
F G 0 0 0
0 0 H 0 0
0 0 0 E F
0 0 0 F E

⎞
⎟⎟⎟⎠ (9a)

with:
E =

F1C1

S1
, F = −F1

S1
, G =

F1C1

S1
+ N ′F2S2

C2
and H = N ′F2S2

C2
−N ′

0

F0S0

C0
(9b)

Or:
←→
g−1∞ (MsMs) is the inverse Green function of the infinite system (see Equation (3a)).
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The knowledge of the elements of the response function in the interface space of the infinite comb-

like structure
←→
g−1∞ (MsMs) and those of the cleavage operator

↔
V (MsMs) allow us to deduce the elements

of the response function of the finite structure necessary for the calculation of the transmission coefficient.

The surface response operator
↔
A (MsMs) is written as follows:

↔
A (MsMs) =

∑
Ms

↔
V (MsMs)

↔
g (MsMs) (10)

The function ↔g (MsMs) is computed from Equation (7a):

↔
g (MsMs) =

S1

F1

t

t2 − 1

⎛
⎜⎜⎜⎜⎝

1 t tJ+1 tN+1 tN+2

t 1 tJ tN tN+1

tJ+1 tJ 1 tN−J tN+1−J

tN+1 tN tN−J 1 t
tN+2 tN+1 tN+1−J t 1

⎞
⎟⎟⎟⎟⎠ (11)

The parameter t is given in Equation (7b)

The operator
↔
Δ(MsMs) is given by the following relation:

↔
Δ(MsMs) = I(MsMs) +

↔
A (MsMs) (12)

After calculating the operator
↔
Δ(MsMs), let us write this operator in space M0 = {0, J,N}.

↔
Δ(M0M0)

=

⎛
⎜⎜⎜⎜⎝

1 + σ
(

F1C1
S1

+ N ′ F2S2
C2

+−F1
S1

t
)

σtJ
(

F1C1
S1

+ N ′ F2S2
C2

+−F1
S1

t
)

σtN
(

F1C1
S1

+ N ′ F2S2
C2

+−F1
S1

t
)

σtJ
(
N ′ F2S2

C2
−N ′

0
F0S0
C0

)
σt

(
N ′ F2S2

C2
−N ′

0
F0S0
C0

)
+ 1 σt

(
N ′ F2S2

C2
−N ′

02
F0S0
C0

)
tN−J

σtN
(
−F1

S1
t + F1C1

S1

)
σtN−J

(
−F1

S1
t + F1C1

S1

)
1 + σ

(
−F1

S1
t + F1C1

S1

)

⎞
⎟⎟⎟⎟⎠

(13a)

with
σ =

S1

F1

t

t2 − 1
(13b)

The Green function of surface
↔
d (M0M0) for a finite comb-like structure is defined in space M0 by the

following equation:
↔
d (M0M0) =↔g (M0M0)

↔
Δ

−1

(M0M0) (14)

with
↔
Δ

−1

(M0M0) being the inverse of the operator
↔
Δ(M0M0).

We deduce the truncated matrix
←→
dtr (M0M0) in the space M ′

0 = {0, N}. The inverse of this matrix
is written in the form: ←→

dtr

−1 (
M ′

0M
′
0

)
=

[
A11 A12

A21 A22

]
(15)

where elements A11, A12, A21, and A22 are, respectively, (1,1), (1,3), (3,1), and (3,3) elements of the

inverse matrix of
↔
d (M0M0).

Finally, the Green function of a finite photonic comb-like structure
←→
dh

−1

(M ′
0M

′
0) located between

two semi-infinite media is:
←→
dh

−1 (
M ′

0M
′
0

)
=

[
A11 − F1 A12

A21 A22 − F1

]
(16a)

with F1 being the Green function of the semi-infinite medium.
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Then ←→
dh

(
M ′

0M
′
0

)
=

1
(A11 − F1) (A2 − F1)−A21A12

[
A22 − F1 −A21

−A12 A11 − F1

]
(16b)

The transmission coefficient through the structure is given by the following relation [25]:

T = −2F1

←→
dh (s, e) = 2F1

1
(A11 − F1) (A22 − F1)−A21A12

A12 (17)

with e: The interface between the first substrate (Medium 1) and photonic comb-like structure.
s: The interface between the second substrate 2 (Medium 1) and photonic comb-like structure.

The transmission coefficient can be written in an explicit complex form as:

T = α + jβ = |T | ejϕ (18)

where α is the real part of the transmission, β the imaginary part, |T | the amplitude of the transmission
coefficient, and ϕ = arctan(β/α) the phase of transmission. The first derivative of ϕ with respect to the
pulsation represents the time taken by the wave to cross the structure before being transmitted. This
quantity is called phase time τ and defined by:

τ =
dϕ

dw
(19)

Let us notice that our numerical calculations are done with the help of the FORTRAN compiler.
Equation (1) up to Equation (13b) are analytically obtained; however, we have numerically calculated↔
d (M0M0) matrix, given by Equation (14). The last one is the product of the two matrices ↔g (M0M0)

and
↔
Δ

−1

(M0M0). Numerically, we truncate the matrix
↔
d (M0M0) in matrix (2 ∗ 2), and we limit

our structure by two semi-infinite media. Finally, we numerically deduce the relation of transmission
coefficient of Eq. (17), which allows us to determine the phase in Eq. (18) and the phase time in Eq. (19).

3. RESULTS AND DISCUSSIONS

In this work, we study the effect of the introduction of a defect at the resonator level on 1D photonic
comb-like structure (see Figure 1(b)). In our calculations, we illustrate the electromagnetic band
structure, transmission coefficient, phase, and phase time for a comb-like structure. This structure
is constituted by resonators which have a permittivity dielectric ε2(ω) = 1 − 1.332

Ω2 dependent on the
frequency and a positive magnetic permeability μ2 = 1. So, the segment is constituted by a positive
dielectric ε1 = 2, and the magnetic permeability μ1(ω) = 1 − 1.332

Ω2 is dependent on the frequency [34].
The segment length is d1, and the resonator length is d2 with D = d1 being the period of the structure.
The dielectric and magnetic characteristics of the defect are the same as that for the resonator, but the
length is denoted as d0 which is different from d2, and the number of defect resonators grafted is noted
by N ′

0.
We investigate and discuss the structure of the band gap with the various parameters of length

d0, of the number of defective resonators N ′
0 and the number of sites N . The reduced frequency is

Ω = ω
√

(ε1)d1/(c), with c being the speed of light and ω the frequency (s−1).
We focus our attention on the frequency regions where the permeability μ1(ω) of the MNG media

and the permittivity ε2(ω) of the ENG media are simultaneously negative, which is when Ω is varied
from 0 to 1.33.

3.1. Confined Modes of a Single Resonator

Now, we are interested in the confined modes (branches) of a single ENG resonator of medium 2 of
length d2, extending in the region x3 = 0, embedded between two semi-infinite RHMs made of material
1 (Air). Fig. 2(a) represents the variation of reduced frequency of the single resonator versus length
d2. We note from this figure that the branches of a single resonator are decreased in frequency with
the increase of resonator length d2, and these branches have a cutoff frequency where their propagation
is impossible below this cutoff frequency. The appearance of these branches, which is very sensitive
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(a) (b)

Figure 2. (a) represents the reduced frequency Ω versus the length of one resonator d2. (b) represents
the transmission coefficient versus the reduced frequency Ω for d2 = 1D.

to the length d2, is due to the interaction between the modes of a single resonator and the waveguide
input. So, we deduce that the periodicity of the structure comes from the interaction of the modes of
each resonator with the other neighbors. Fig. 2(b) shows the variation of the transmission as a function
of the reduced frequency Ω for the single resonator length d2 = 1D. These curves present minima
(transmission zero) and maxima transmissions. The phenomenon of transmission zero is related to the
resonances associated with the finite additional path offered to the electromagnetic wave propagation.
The frequencies corresponding to the maxima of these curves give the modes (discrete modes) of the
single resonator. This result is similar to that found by Vasseur et al. except that they used right-handed
materials [25]. The modes of the single resonator are very wide (their quality factor is very low), hence,
we need to study a periodic structure containing several resonators.

3.2. Electromagnetic Band Structure of a Perfect Comb-Like Structure

In this section, we analyze and compare properties of the band structure and the transmission coefficient
for a perfect comb-like structure without defect when d0 = d2, N = 8, N ′ = N ′

0 = 1, d1 = 1D, and
d2 = 0.5D. Fig. 3(a) shows the first three dispersion curves (black lines) in the band structure of an
infinite comb-like structure. One can observe a first gap (gap is located in the white regions and between
two red lines) before the first passband (regions where there are black lines), the second gap between
the first and the second passbands, the third gap between the second and third passbands, and another
gap after the third passband. The real part of the reduced wave vector (kd1) is in very good agreement
with the transmission through a finite sized comb-like structure (Fig. 3(b)). The latter originates both
from the periodicity of the structure, related to the length d1, and from the resonant behavior of the
lateral branches, related to the length d2. In particular, the resonators give rise to zeros of transmission
through the waveguide at frequencies such that cos(ωd2

√
ε1/c) [27]. Fig. 3(c) indicates the variation

of the phase versus the reduced frequency Ω. One can notice that the phase increases monotonically
almost of π in band gap. Fig. 3(d) shows the variation of the phase time versus the reduced frequency
Ω. We note in Fig. 3(d) that the phase time of a few discrete modes is very high. We also observe that
there are four gaps; the gaps are seen as zero transmission ranges in the transmission coefficient.
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(a)

(b)

(c)

(d)

Figure 3. (a) Band structure of the infinite comb-like structure (reduced frequency Ω as a function of
the reduced Bloch wave vector kd1). (b) The transmission spectrum through a finite comb-like structure.
(c) and (d) respectively are the phase and phase time spectrum in the same situation of the curve (b).

(a) (b)

(c) (d)

Figure 4. (a) shows the phase as function of reduced frequency Ω without defect, (b) is a curve zoom
of (a). (c) shows the phase as a function of reduced frequency Ω with the presence of defect, (d) is a
zoom of (c).

3.3. Effect of Defect on the Phase

In this subsection, we briefly study the effect of the presence of the defect on the phase behavior with
J = 5, N ′ = N ′

0 = 1, N = 8, d1 = 1D, and d2 = 0.5D. Fig. 4 shows the variation of the phase versus
the reduced frequency. One can notice that when there is no defect in the structure (Fig. 4(a)), the
phase increases monotonically in the band gap (this result is very clear in Fig. 4(b), but when a defect
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is introduced into the structure with d0 = 2d2, the phase exhibits a jump of π around the position of
the defect mode then a fall of −π due to the transmission zero (Fig. 4(d)).

3.4. Transmission and Phase Time as a Function of the Parameter N

The introduction of a defect inside a perfect star waveguide structure leads to confined resonance modes
(defect modes) owing to the change of the interference behavior of electromagnetic EM waves, whose
frequencies depend on both the relative permittivity and/or the length of the defect. In this section,
we study the transmission spectrum and phase time of the defect modes versus reduced frequency Ω
for different values of N with N ′ = N ′

0 = 1, J = 5, d0 = 2d2, d1 = 1D, and d2 = 0.5D. The results
of transmission are presented in the left of Fig. 5, and the result of phase time variation is represented
in the right of Fig. 5 for three different values of N , namely N = 8 (a), N = 10 (b), and N = 14
(c). For case (a) when N = 8, we observe that there is a defect mode in the second gap with a small
transmission, and another mode is in the third gap with a high transmission, so we note the absence
of the defect modes in the first and fourth gaps. According to the left panel, one can notice that the
frequencies of the defect modes are totally independent of N , whereas their intensities of transmission
coefficient decrease progressively with increasing N (Fig. 5(c)). This phenomenon (the decrease of the
intensities) appears in contradiction with the fact that, by increasing N , the localization degree of these
modes around the defect increases, and therefore the peaks associated with the defect modes are narrow
(the quality factor of these defect modes increases). However, this behavior can be explained by the
loss of the energy of the mode (attenuation of the structure) that leads to a widening of the peaks
due to the absorption phenomenon, but also leads to a decrease in the transmitted intensity due to an
enhancement of the reflected intensity. Despite this limitation, the transmission peaks of defect modes
present an important transmission and very narrow bandwidth, which permits a selective transmission
of frequency particularly for N = 8 and N = 10 (The constructive effect of the electromagnetic wave
can explain the reason that the transmission of defect modes is important in these two cases). Similarly,
we note that the position of the gaps is independent of the value of N ; this result is different from that
found by Wang et al. [37].

(a) (b)

(c) (d)

(e) (f)

Figure 5. Transmission spectrum (left panel) and phase time (right panel) versus reduced frequency
Ω for different values of N , namely (a) N = 8, (b) N = 10, and (c) N = 14.
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According to the right panel of Fig. 5, the phase time associated with the defect modes is
increased when N increases because the defect modes become more localized, and the trapping time
of electromagnetic wave increases (contrary to the amplitude of the defect modes in the transmission
spectra of the right panel).

We focus our attention on the high mode located in the third gap.

3.5. Transmission and Phase Time as a Function of the Parameter N ′
0

In the present paper, we study the effect of number of defective grafted lateral branches N ′
0 on the

transmission behavior of defect modes and their phase time with d0 = d2, J = 5, N = 8, d1 = 1D
and d2 = 0.5D. The results of transmission are presented in the left panel of Fig. 6, and the result
of phase time variation is represented in the right of Fig. 6 for three different values of N ′

0, namely
N ′

0 = 1, N ′
0 = 3, and N ′

0 = 4. According to the left panel of Fig. 6, one notices that the transmission
factor in the permissible bands is depressed as N ′

0 increases, while the transmission of defect modes is
almost independent from N ′

0. Furthermore, we note that the defect modes move towards high frequency
when N ′

0 increases. Similarly, we observe that the defect modes become narrower with the increase of
N ′

0. Therefore, it can be deduced that the quality factor Q of these modes increases substantially
with the increase of N ′

0 (the degree of localization of defect modes around of defect is increased with
N ′

0). Therefore, we deduce that there is a dependency between the defect modes and the number of
resonators defect grafted. The shifting behavior can be explained by the fact that when N ′

0 increases, the
frequencies of defect modes must increase accordingly to keep the phase unchanged. Correspondingly
the value of frequency must be increased. This result is the same as the one founded by Vasseur et al.
when they studied right-handed materials [38].

(a) (b)

(c) (d)

(e) (f)

Figure 6. Transmission spectrum (left panel) and phase time (right panel) versus reduced frequency
Ω for different values of N ′

0, namely (a) N ′
0 = 1, (b) N ′

0 = 3, and (c) N ′
0 = 4.
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As shown in the right panel of Figure 6, it is clearly seen that the phase time intensity of the defect
modes is almost constant when N ′

0 = 3 or 4. This intensity is greater than the intensity when N ′
0 = 1.

The results also show that the phase time quality factor is increased with the increase of N ′
0.

The result of this paragraph will provide theoretical foundation for designing narrow-band filter
with high performance.

3.6. Transmission and Phase Time as a Function of the Parameter J

In this part, we study the effect of the defect position variation J inside the structure on the behavior of
the transmission of defect modes and their phase time when d0 = 2d2, N = 8, N ′ = N ′

0 = 1, d1 = 1D,
and d2 = 0.5D. According to the left panel of Fig. 7, one can notice that when the defect is inserted
far from the middle of the structure, the amplitude (transmission) of the localized modes decreases
progressively. Indeed, the transmission of the defect mode is decreased when the defect lies in the site
J = 5 (there are four resonators to the left of the defect and three to its right), and practically it
vanishes when the defect branch is inserted in the site J = 7 (there are six resonators to the left of
the defect and one to its right) or J = 3 (there are two resonators to the left of the defect and five to
its right). This decrease may be explained qualitatively as follows: when the defect is inserted in the
middle of the comb-like structure, the structure behaves as two identical segments with N/2 resonators
connected with a resonator defect. Because of the symmetry of the system, constructive interferences
occur and lead to the enhancement of the amplitude of the transmission. However, when the defect
branch lies far from the middle of the comb-like structure, the structure behaves as two linked segments
with different numbers of resonators. Each of the linked segments contributes in its own way to the
transmission of the comb-like. Thus, destructive effects are responsible for the decrease in amplitude
when the defect is moved away from the middle of the comb-like structure.

According the right panel of Fig. 7, the same thing happens to the amplitude of the defect modes
in the transmission spectra of the left panel of Fig. 7. The phase time and quality factor associated
with the defect modes are very high when the defect is located in the middle of the structure (J = 5).
Indeed, the intensity of the peaks in the phase time is related to the lifetime of the resonances and it
reflects the time spent by the electromagnetic wave inside the defect before its transmission. Therefore,

(a) (b)

(c) (d)

(e) (f)

Figure 7. Transmission spectrum (left panel) and phase time (right panel) versus reduced frequency
Ω for different values of J , namely (a) J = 3, (b) J = 5, and (c) J = 7.
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when the defect is located in the middle, the defect modes overlap around this position, hence these
modes have a good quality factor, and the trapping time of electromagnetic wave is high.

The comparison of Figs. 5, 6, and 7 shows that the frequency of the defect mode does not depend
on the defect position J and the number of cell N of the structure; however, the frequencies are very
sensitive to the number of defective resonators N ′

0. In the rest of this work, we study the influence of
the variation of defect length on the behavior of the defect modes.

3.7. Band Structure as a Function of the Parameter d0/D

In this section, we address the problem of the existence of localized branches of defect and structure
in the forbidden bands (gaps) of the photonic structure resulting from the presence of a defect lateral
branch inside a comb-like structure. Fig. 8 gives the frequencies of the localized branches versus d0/D
when a defect is introduced into a finite or infinite comb-like structure with d1 = 1D and d2 = 0.5D.
The gray areas represent the perfect infinite comb-like band structure when bulk bands exist (structure
branches); these areas are separated by forbidden bands (white areas). The red branches represent the
discrete modes of a single resonator; these discrete modes can fall into the forbidden bands or in the
bandwidths and can also interact with different branches in the structure. The black branches represent
the reduced frequency variation for a finite comb-like structure containing a defect. Firstly, we can see
that the branches located in the passbands are varied with length d0/D. We also note that there are
three band gaps with the absence of defect branches in the second band gap which is located between
Ω = 0.29 and Ω = 0.6. For the first band gap located between Ω = 0 and Ω = 0.2055 (curve c), we
notice that the defect branch increases in frequency with the increase of d0/D until it becomes a branch
of the structure. On the other hand at the third band gap which lies between Ω = 1.06 and Ω = 1.163
(curve b), their reduced frequency Ω is decreased by increasing d0/D. So, we can deduce that these
structures can create defect branches which increase or decrease in frequency by the increase of defect
length d0/D, which is not the case of our previous work [35, 39].

In summary, we can say that we can introduce resonant branches inside a band gap by introducing
a geometric defect. We can also define the order of the band gap where we are looking for the defect

(a) (b)

(c)

Figure 8. (a) represents the variation of the reduced frequency Ω versus the defect length d0/D. (b)
is the zoom of the area located between Ω = 1 and 1.2. (c) represents the zoom of the area located
between Ω = 0 and 0.25.
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branches. From a general point of view, to achieve a photonic filter, it is necessary to design a
structure in which the transmission coefficient has well-defined characteristics and are very sensitive
to electromagnetic waves and relatively isolated to allow detection over a sufficiently wide frequency
range Ω, and it has a high quality factor Q.

Now, we take the defect branch that corresponds to the region (b) of the previous Fig. 8, and
we study the effect of the variation of d0/D on the evolution of transmission and the quality factor.
Fig. 9(a) shows that the transmission of the defect branch (a) in the previous figure is decreased with
the increase d0/D from 0.75 until 0.86; this shows that there is dissipation inside the defect branch
(loss of energy of a defect branch), but from d0/D = 0.86, the transmission starts to increase up to
d0/D = 1 where T = 0.9743, which shows that the dissipation inside the defect branch disappears in
this defect length rang. Fig. 9(b) clearly shows that the quality factor is increased when d0/D is varied
between d0/D = 0.75 and d0/D = 0.77. This result displays that our defect branch is selective with
a high quality factor Q = 173 when d0/D = 0.77. After this value of defect length, the quality factor
decreases with the increase of d0/D and tends to Q = 80 for d0/D = 1. This behavior is due to the
increase of the width at half maximum of the transmission peaks.

(a) (b)

Figure 9. (a) represents the variation transmission for defect branches in area (a) in Fig. 8 as a function
of the defect length d0/D. (b) represents the variation of quality factor Q for these defect branches.

(a)

(b)

Figure 10. Transmission spectrum as a function of reduced frequency Ω when the structure is perfect
(curve a) and when we create the defect at the lateral branch level (b) with d0/D = 0.25, N ′ = N ′

0 = 1,
N = 8 and J = 4.
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Due to the comb-like design and good coefficient of transmission and quality factor, these results
demonstrate the potentiality of meta-material based filters in applications requiring wide band and
ultra-wideband.

Also note that creating the defect inside the structure by using the boundary condition (E = 0)
can obtain the defect modes inside the band gaps. This result is very clear in Fig. 10 when a defect
mode exists around Ω = 0.98 with their quality factor Q = 130.

In practical applications, one usually inclines to design a narrow filter with large band gaps which
can modulate the defect mode in a larger frequency range with very high transmission and high quality
factor. One could achieve this just by changing the defect length and/or the number of resonators
grafted defect in each site.

4. CONCLUSION

Using the interface response theory, we have investigated the propagation of electromagnetic waves
in 1D comb-like photonic structure. This comb-like structure is constituted by a periodicity of MNG
segment and grafted in each site by a finite number of ENG resonators. The presence of resonators
defect in these comb-like structure gives rise to localized modes (defect modes) inside the band gaps.
These defect modes appear as peaks of high amplitude in the transmission spectrum. We have shown
that the transmission of defect modes and their phase time is higher when the defect is located in the
middle of the structure. Similarly, we find that the defect modes become very narrow when increasing
the number of defect resonators grafted (the same thing for phase time). The transmission of these
modes is diminished when the number of sites N is increased. The electromagnetic band structure
shows that there are defect modes in a well-defined frequency range that decreases as the defect length
increases, and their transmission and quality factor are very sensitive to the variation of defect length
d0/D.
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