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A Numerical Kirchhoff Simulator for GNSS-R Land Applications

Weihui Gu, Haokui Xu, and Leung Tsang*

Abstract—A distinct feature of GNSS-R land reflectometry is that random rough surfaces are
superimposed on many levels of elevations. The rms elevations are in tens of meters which are many
times larger than the microwave wavelengths at GNSS frequencies. Such multiple elevations were not
considered in the coherent model nor the incoherent model. In this paper, we studied the electromagnetic
scattering of this new rough surface scattering problem using Kirchhoff integral as first-principle. A
numerical Kirchhoff simulator is developed to calculate the electromagnetic scattering and the power
ratio in the specular direction. The integration is carried out over a footprint of 10 km by 10 km with
the specular point as the center. In integration the surface discretization is as small as 2 cm by 2 cm
so that a total of 2.5 × 1011 patches are used. Parallel computing is implemented requiring a moderate
amount of computer resources. The results of the power ratio of the numerical Kirchhoff simulator differ
from the results of both the coherent model and incoherent model. The results show that the phase of
the first Fresnel zone is random, and the power contributed by the first Fresnel zone is a small fraction
of that over the 10 km by 10 km. The power ratios of the numerical Kirchhoff simulations are much
larger than that of the incoherent model and smaller than the coherent model for small RMS heights.
The results show that the multiple elevations in land have large effects on GNSS-R specular reflections.

1. INTRODUCTION

Signals of opportunity from Global Navigation Satellite Systems (GNSS), such as Global Position System
(GPS), GLONASS, Galileo and TechDemoSat, have been used for a variety of Earth remote sensing
applications [1–6] including ocean altimetry, retrieval of oceansurface wind speeds, and monitoring the
soil moisture. GNSS-R are signals of opportunities as only receivers are required unlike monostatic
and bistatic radars. The proposal of using GNSS signals to perform scatterometry was first made in
1988 [1]. Five years later GNSS-Reflectometry (GNSS-R) was used for mesoscale ocean altimetry [2].
The first experiment demonstrating oceansurface wind sensing by GNSS-R was reported in 1998 [3]. The
feasibility of space borne GNSS-R from ocean, ice and land surfaces were demonstrated by UK-DMC [7].
An in-depth review of development of GNSS-R technology can be found in [8].

The Cyclone Global Navigation Satellite System (CYGNSS) constellation was launched by the
National Aeronautics Space Administration (NASA) in 2016 [9]. CYGNSS measures GPS signals over
both ocean and land surfaces at a 10–15 km spatial resolution with an average revisit time of 3–7 hours.
CYGNSS has been successful in monitoring near ocean surface wind speeds [10, 11]. Recent studies have
demonstrated the sensitivity of the spaceborne GNSS signals to soil moisture [12, 13]. The availability
of the GNSS-R data over land has motivated investigations for a variety of land applications [8, 14–16].
A distinct difference in GNSS reflectormetry is that the scattered direction is in the specular direction.

In the past, the studies of electromagnetic wave scattering by random rough surface were conducted
for profiles with a single elevation. Usually, the mean height equals, zero and the rms height is smaller
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than or up to 1 or 2 wavelengths. A distinct feature of the land scattering problem for GNSS-R from past
problems is that the random rough surfaces of microwave centimeter scale are superimposed on many
levels of elevation. The rms elevations are in meters and tens of meters which are many times larger than
the microwave wavelength at GNSS frequencies. Such scattering problems of multiple elevations have
not been studied in the past. Two models have been used for GNSS-R land applications. The coherent
model [17] and incoherent model [18], both are based on solutions from past rough surface scattering
problems. The coherent model is based on the Fresnel zone concept that assumes a single elevation of
rough surface scattering. It assumes a small centimeters rms height about a flat surface. The phases
of the scattered waves then alternate between 0 and pi between adjacent Fresnel zones. Such Fresnel
zones cannot be the case for land surfaces with DEM of tens of meters as a height of 5 cm already gives
a phase shift of pi. The incoherent model treats GNSS-R as a special case of bistatic incoherent radar.
Although GNSS-R land measurements have been taken over the last few years, it is difficult to resolve
the issues because the reflected power comes from an area of 10 km by 10 km with large variations of
elevations. A key point is how the large variations of elevations affect the specular reflections.

In this paper, we studied the electromagnetic scattering of the rough surface scattering problem
of multiple elevations using Kirchhoff integral as the first-principle. A numerical Kirchhoff simulator is
developed to calculate the electromagnetic scattering and the power ratio in the specular direction. The
integration is carried out over a footprint of 10 km by 10 km with the specular point as the center. In
integration the surface discretization is as small as 2 cm by 2 cm so that a total of 2.5 × 1011 patches are
used. Using the procedure, we keep track of the phase and amplitude of the scattered field from each
2 cm by 2 cm. Parallel computing is implemented requiring a moderate number of computer resources.
Frequency averaging is taken to smooth out the fluctuations due to random rough surface scattering.
The simulations of rough surface scattering are carried out using CYGNSS geometries at the frequency
of 1.575 GHz and using DEMs. The results of power ratio of the numerical Kirchhoff simulator differ
from the results of both the coherent model and incoherent model at small rms heights. The results
show that the phase of the scattered waves from the first Fresnel zone are random, and the power
contributed by the first Fresnel zone is a small fraction of the power ratio of the 10 km by 10 km. The
power ratios of the numerical Kirchhoff simulations are much larger than that of the incoherent models
and smaller than the coherent model for small RMS heights.

In Section 2, we review the coherent and incoherent models. In Section 3, we describe the numerical
Kirchhoff simulator and computer resources. Section 4 presents simulation results and discussions.

2. COHERENT AND INCOHERENT MODELS

The geometrical configuration of the GNSS-R is shown in Figure 1. The signal is sent from the
transmitter on the GNSS satellite at height ht and received by a receiver at quasi-specular direction at
height hr. The horizontal distance between the transmitter and receiver is L. The specular point is set
at the origin (0, 0, 0). Rt is the distance from transmitter to the specular point, and Rr is the distance
from the receiver to the specular point. Based on signal processing of the GNSS-R receiver, the powers
received are from the waves that are scattered from an area of 10 km by 10 km.

2.1. Coherent Model and Incoherent Model

In the coherent model, the ratio of received power Pr to the transmitted power Pt is

Pr

Pt
=

Gt

4π (Rpt + Rpr)
2

Grλ
2

4π
|Rlr|2 e−4k2h2cos2θ (1)

where Gt and Gr are the gains of the transmitter and receiver, respectively; Rlr is the Fresnel reflection
coefficient for land surface; l, r stands for left and right hand circular polarizations, respectively; k is the
propagation constant; θ is the incident angle; and h is the roughness of the surface. The coherent model
is from past model of rough surface scattering which assumes a single elevation, and the contributions
arise from Fresnel zones [20]. The attenuation caused by the surface roughness is the exponential term
e−4k2h2cos2θ. In the appendix, this formula in Equation (1) is derived rigorously by using plane wave
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Figure 1. Geometrical configuration of GNSSR.

expansions of spherical waves, taking ensemble average of the scattering waves in the presence of random
roughness and the method of stationary phase.

The incoherent model is also based on past scattering model and treats the GNSS-R as a special
case of bistatic radar scattering with the scattering angle in the specular direction. In the bistatic radar
equation, the received power ratio is

Pr

Pt
=

Gt

4πR2
pt

1
4πR2

pr

Grλ
2

4π
∫ γdA (2)

where γ is the bistatic scattering coefficient of incoherent waves. The formula in Equation (2) is
proportional to surface area. Based on geometrical optics approximation [19–21], the bistatic scattering
coefficient is

γ =
|Rlr|2
2s2

(3)

where s is the RMS slope of the surface, and Rlr is defined previously under Equation (1). It is well
known that surfaces with exponential correlation functions do not have RMS slope [21–24]. In the case
of Gaussian correlation function, s =

√
2h/l, where l is the correlation length of the rough surface [21].

The incoherent model ignores the contributions of the coherent waves.

2.2. Comparisons of Coherent and Incoherent Model

In Figure 2, we plot the power ratio using coherent and incoherent models in Equations (1) and (2),
respectively. The results are plotted as a function of RMS height h with correlation length l = 14.1h,
based on Gaussian correlation function. The area is A = 10km × 10 km. The results show large
differences of many decibels between the two models. At h = 0cm, the coherent model is 30 dB larger
than the incoherent model. The two curves intersect at about h = 4 cm. For larger RMS heights, the
incoherent model gives a much larger power than the coherent model.

3. KIRCHHOFF SIMULATOR

3.1. Kirchhoff Integral

In this paper, we study the scattering of random rough surfaces with multiple elevations as a new rough
surface problem by using the Kirchhoff integral as the first principle. From Huygen’s theorem, the
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Figure 2. Power ratio of coherent and incoherent models as a function of RMS height, with s = 0.1,
A = 10km × 10 km.

scattered field is calculated from the tangential electric and magnetic fields on the surface by [19]:

Ēs (r̄) =
∫∫

dS′
[
iωμ ¯̄G

(
r̄, r̄′

) · n̂′ × H̄
(
r̄′
)

+ ∇× ¯̄G
(
r̄, r̄′

) · n̂′ × Ē
(
r̄′
)]

(4)

where ¯̄G is the dyadic Green’s function; Ē and H̄ are the electric and magnetic fields, respectively; and
n̂′ is the surface normal. With Kirchhoff approximation. The surface fields are approximated by using
the tangent plane approximation.

We carry out integration of Equation (4) over a large area of 10 km by 10 km at microwave
frequencies. Let the surface be discretized into patches, α = 1, 2, . . . , NM , where subscript M stands for
microwaves. The patch size is 2 cm by 2 cm to account for microwave roughness and microwave phase
information. Thus 2.5 × 1011 microwave patches are used requiring parallel computations. The Dyadic
green’s function is

¯̄G (R) =
[(

3
k2R2

− 3i
kR

− 1
)

k̂k̂ +
(

1 +
i

kR
− 1

k2R2

)
I

]
eikR

4πR
(5)

where R = |r̄− r̄′| is the distance from source point r̄′ to observation point r̄. Since both the transmitter
and receiver are far away from the surface, far field approximation is applied to amplitude term. The
phase term is kept intact to account for phase effects. The approximated dyadic Green’s function is

¯̄G (R) ≈
(

¯̄I − k̂k̂
) eikR

4πR
(6)

With the local orthonormal system (p̂iq̂ik̂i) defined at each point on the surface,

q̂i =
k̂i × n̂′∣∣∣k̂i × n̂′

∣∣∣
p̂i = q̂i × k̂i

the surface incident field is decomposed into locally perpendicular and parallel polarization field. n̂′ is
the normal vector, and k̂i is the incident vector at that point. Detailed derivations can be found in [19].
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The result Kirchhoff integral is

Ēs (r̄) =
ik

4π

√
Ptη0

2π

∫∫
S′

dr̄′
eik(Rpt+Rpr)

RptRpr

(
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)
· F̄ (α, β) (7)
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)
q̂i

⎤
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where Rh and Rv are Fresnel reflection coefficients for perpendicular and parallel polarizations. The
notations follow [19].

3.2. Fresnel Zones

We briefly review the concepts of Fresnel zones which are later shown to be inadequate for rough surfaces
with many elevations of tens of meters. The Fresnel zone describes how a flat surface contributes to
the total scattered field when a surface is illuminated by a point source as shown in Figure 1. The
Fresnel zone denotes the phase term of the integrand by integer multiples of π. Let the distance of
direct transmission from transmitter to receiver be R, and the total propagation distance of a reflected
signal from the surface is Rpt +Rpr. The path difference δd between the signals from two different paths
is

δR=Rpt + Rpr − R (9)

Noting that R is a constant, for a given δR, the corresponding loci are ellipses on XY plane [20]. Let
δR0 be the path difference of reflection from the specular point, if δd increases from δR0 in step of nλ/2

δR=δR0+nλ/2 (10)

a family of ellipses are drawn, as shown in Figure 3. The heights of transmitter and receiver used are
ht = 2.02 × 107 m and hr = 5 × 105 m, and the horizontal distance between them is L = 6.8 × 106 m.
Along the x direction, the semi-major axes of the first few Fresnel zones are shown in Table 1.

Let an be the semi-major axes of the nth ellipse, then the width of the nth Fresnel zone is
Wn = an − an−1. In Figure 4, the X axis represents the distance from center to the edge, and Y

Table 1. Semi-major axes of first few Fresnel zone.

nth Fresnel zone 1 2 3 4 5
an (m) 337.23 476.91 584.09 674.45 754.06

0
X (m)

Figure 3. Fresnel Zone with ht = 2.02 × 107 m, hr = 5 × 105 m, r = 6.8 × 106 m.
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Figure 4. Semi-major axes difference of Fresnel zone.

axis is Wn. It shows that the width of Fresnel zones decreases from 336 m at center to 11 m at 5 km
away from the center.

3.3. Frequency Averages

In the simulations in this paper, frequency averages are taken to average the fluctuations. Suppose that
there are two different points a and b on the surface with total distance Rpt + Rpr being da and db,
respectively. The phase difference of the two points at two different frequencies is

Δφ0 = k0 (da − db) (11)
Δφ1 = k1 (da − db) (12)

The phase difference of the two frequencies is

Δφd=Δφ0−Δφ1= (k0−k1) (da−db) (13)

For a 10 km by 10 km area, Δd = (da − db) can be a large number which results from both the location
(horizontal) and elevation difference. For a 10 km by 10 km flat surface, the maximum Δd is 44 m, which
indicates a small difference in frequency and can create a large phase difference. We rewrite

Δφd=
f0−f1

f0

2π (da−db)
λ0

=
Δf

f0

2πΔd

λ0
(14)

Let Δd = 44 m, Δφd = π
2 , the corresponding Δf = 1.7 MHz. Frequency averages with sampling

Δf = 0.2 MHz are used for cases that have large height variation.

Pmf=
1
N

N∑
i=1

Pi(fi) (15)

Frequency averages are taken over 10 MHz bandwidth.

3.4. Land Surface Profile Descriptions of DEM and Microwave Roughness

The land surface is characterized by digital elevation model (DEM). We describe the height function
profile f(x, y) as follows:

f (x,y)=fDEM (x,y) +fmr (x,y) (16)

where fDEM(xy) is the elevation height based on DEM. The second term is random rough surface
height fmr where subscript mr stands for the microwave roughness. The DEMs are tens of meters.
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Without the DEM, the problem reduces to that of the past rough surface scattering problem with a
single elevation. The DEM data are from Advanced Space borne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model version 2 (GDEM2). The ASTER GDEM2 was
released by NASA and METI Japan in mid-October 2011, which covers the land surface between 83◦N
and 83◦S using 22702 1◦×1◦ tiles. Each 1◦×1◦ tile is composed of 3601 by 3601 pixels with patch size
approximately 30m× 30m at the equator. The pixel size varies with longitude and latitude and can be
calculated through Universal Transverse Mercator conformal projections. The small-scale surface height
fmr, with respect to DEM elevation height, is assumed to be a stochastic process which is characterized
by roughness h and correlation functions [21].

Table 2. Phase shift of height different δd.

Phase(2kd cos θi) 35.93◦ 179.67◦ 359.36◦

δd (cm) 1 5 10

In the DEM data, an elevation of di is given for the i patch, and i = 1, 2, . . . , ND, where ND is the
number of DEM patches. Note that we use the Roman numeral i to denote the DEM patch and use
the Greek index α for microwave patches. The raw elevation height di is rounded to the nearest meter.
A height difference of merely 10 cm will give a round trip phase shift of 2π, as shown in Table 2. We
find that rounding the DEM to 1 meter tends to give a bias to the phase. Thus, a noise term ni is add
to the raw DEM data. For (x, y) on the i patch

fDEM (x,y)=di+ni (17)
where di is the raw data given by DEM, and ni is the Gaussian random variable of zero mean and a
standard deviation of 10 cm. Note that fDEM(x,y) is constant for each patch, meaning that every DEM
patch is assumed to be flat. We call fDEM(x, y) by fDEM,raw if the noise term ni is set to zero.

3.5. Computation Resources

The computation in this paper is performed on FLUX, which is the shared Linux based high performance
computing cluster available to all researchers at the University of Michigan. The standard hardware of
Flux is:
(i) 109 Haswell architecture compute nodes, each configured with 24 cores (two 12-core 2.5 GHz Intel

Xeon E5-2680v3 processors) and 128 GB RAM.
(ii) 124 Ivybridge architecture compute nodes, each configured with 20 cores (two 10-core 2.8 GHz intel

Xeon E5-2680v2 processors) and 96 GB RAM.
(iii) 139 Sandybridge architecture compute nodes, each configured with 16 cores (two 8-core Intel Xeon

E5-2670 processors) and 64 GB RAM.
(iv) 88 Nehalem architecture computer nodes, each configured with 12 cores (two 6-core 2.67 GHz Intel

Xeon X5650 processors) and 48 GB RAM.
All the standard computer nodes are treated identically for purposes of Flux allocations and job
scheduling.

Simulation code is written in MATLAB and will be converted in the future into C for better
computation performance. Computation requirements for a single frequency are shown in Table 3.

Table 3. Computation resource used for different patch sizes.

Patch size Number of patches Cores used RAM used Time used (hours)
2 cm × 2 cm 2.5 × 1011 33 32 GB 40
5 cm × 5 cm 4 × 1010 33 16 GB 7
8 cm × 8 cm 1.56 × 1010 33 16 GB 4
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4. RESULTS OF NUMERICAL KIRCHHOFF SIMULATOR

Numerical results are illustrated for three different types of surface profiles.
(i) Microwave random roughness on single elevation: f(x,y)=fmr(x,y);
(ii) DEM only: f(x,y)=fDEM(x,y);
(iii) Microwave roughness superimposed on DEM: f(x,y)=fDEM(x,y)+fmr(x,y).
Profiles in (i) are used to show that the numerical Kirchhoff simulator will give results that agree with
past rough surface models. Case (iii) profiles represent reasonable approximations of real life land
surfaces

4.1. Microwave Roughness Only

We consider Gaussian rough surfaces with Gaussian correlation function [19]. The slope is s = 0.1, and
RMS heights vary from 1 to 7 cm. For each case, we used only a single realization of 10 km by 10 km.
The circles shown in Figure 5 are the KA simulator results. For small RMS height from 0 to 3 cm, the
KA simulator results agree with the coherent model. Starting from 4 cm rms height, incoherent power
starts to make significant contribution. At 4 cm rms height, coherent and incoherent models predict a
power ratio of −184.4 dB while the numerical Kirchhoff simulator is 3 dB higher. At 5 cm rms height,
the power ratio is dominated by incoherent effect. The fluctuations around incoherent model results
are due to incoherent effect at large rms heights. The fluctuations are averaged by taking frequency
averages within the bandwidth as discussed earlier. The coherent model assumes a single elevation with
rms height less than 4 cm. There is no such terrain. The real land profiles, based on DEM, are with
many elevations of meters and tens of meters. However, it is reasonable that the rms height at each
elevation is of centimeters. Thus we study later in Figure 10 this problem of microwave cm rms heights
superimposed on DEM of meters.

Figure 5. Single elevation results without DEM. The results with multiple elevations are shown in
Figure 10.

4.2. DEM Only: f(x,y)=fDEM(x,y)

A 10 km by 10 km area is chosen from 31◦N to 32◦N, 83◦W to 84◦W, where the DEM resolution is
26.5 m by 31.8 m. Thus the 10 km and 10 km surface corresponds to a 377 × 325 DEM patch array.
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Figure 6. Histogram of DEM elevation height within 10 km and 10 km area.

Each patch has an elevation height fDEM,raw. The histogram of the elevation height within the area is
shown in Figure 6. The elevation height ranges from 80 m to 163 m; the mean height is 121.6 m; and
the standard deviation is 10 m.

To avoid phase bias as discussed in Section 3.4, a random noise is added as shown in Equation (17).
We choose the scattered field from the specular point as reference phase φ0. The phase distributions of
patches are plotted. The patch is drawn in yellow if the patch phase is within ±90◦ from φ0. Otherwise,
the patch is drawn in blue.

Figure 7 shows the phase distributions of flat surface of area 1.6 km by 1.6 km. The Kirchhoff
simulator reproduces the Fresnel zone results as the regions with alternative yellow and blue colors
corresponding to different Fresnel zones [20]. The phase distribution of DEM with noise fDEM(x,y) =
di + ni is plotted in Figure 8. With fDEM(x,y) = di + ni, the phase becomes randomly distributed
indicating that the Fresnel zones of a flat surface disappear with the DEM. It is necessary to add the
noise because the DEM is rounded to 1 meter which is 4 times of the wavelength causing phase changes
of many pi’s. The addition of noise is to avoid phase bias due to rounding to 1 meter.

Figure 7. Phase distributions of flat surface showing Fresnel zones.
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Figure 8. Phase distributions of surface with raw DEM +noise showing that the Fresnel zone concept
is not valid.
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Figure 9. Power ratio as a function of area for flat and DEM surface at 1.575 GHz. For flat surface
first Fresnel zone is twice of the final value. For the multiple elevation is only 2.5% of total. More
multiple elevation results for the contribution of first Fresnel zone are shown in Table 5.

In Figure 9, we plot the power as a function of area around the specular point for the flat surface
and for the surface with DEM. For the flat surface case, the major contributions come from the first few
Fresnel zones. The coherent model is based on this concept of Fresnel zones. However, after including
the DEM, the coherence within each Fresnel zone is destroyed as shown by the orange curve. The major
contributions do not come from the first few Fresnel zones. The power gradually increases with the
area. Thus the results of the DEM case are completely different from the flat surface case giving totally
different interpretations.

4.3. Microwave Roughness Superimposed on DEM: f(x,y)=fDEM(x,y)+fmr(x,y)

These profiles can be assumed to be more representative of land surfaces. Three different DEM profiles
of area 10 km by 10 km are selected, and the detailed information is listed in Table 4. As described
earlier, the noise term ni is added to the raw DEM. For the microwave roughness, a single realization
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Table 4. Detailed information of DEM surface.

Patch size
(m × m) Patch array size Mean d (m) d range (m) Std d

DEM-1 26.53 × 30.81 377 × 325 120.67 [80, 163] 10.06
DEM-2 25.35 × 30.82 395 × 325 468.88 [402, 550] 20.79
DEM-3 30 × 30 333 × 333 111.46 [60, 167] 11.97

STD d First
Fresnel zone Northwest Northeast Southwest Southeast

DEM-1 5.53
31◦45′17′′N
83◦43′48′′W

31◦45′17′′N
83◦37′32′′W

31◦38′41′′N
83◦43′48′′W

31◦38′41′′N
83◦37′32′′W

DEM-2 7.59
35◦39′35′′N
98◦27′0′′W

35◦39′35′′N
98◦20′26′′W

35◦34′11′′N
98◦27′0′′W

35◦34′11′′N
98◦20′26′′W

DEM-3 5.76
31◦49′52′′N
83◦49′52′′W

31◦49′52′′N
83◦44′20′′W

31◦44′20′′N
83◦49′52′′W

31◦44′20′′N
83◦44′20′′E

Figure 10. The overall rms height for multiple elevations are more than 10 meters as shown in Table 4.
Each elevation has microwave roughness of centimeters. Results of Kirchhoff simulator, coherent model
and incoherent model.

of microwave random rough surface is used with slope s = 0.1. Frequency average is taken within the
10 MHz bandwidth.

The power ratios calculated from KA simulator are plotted as a function of h up to 7 cm in Figure 10.
The simulated results for h less than 4 cm are much greater than that of the incoherent model. The
results with rms beyond 4 cm are close to that of the incoherent model. Note that Figure 10 is for the
case of many elevations with the rms height elevations in meters. However, it is reasonable that the rms
height at each elevation is less than 4 cm. For small microwave RMS heights, the Kirchhoff simulator
gives results that are less or much less than the coherent model. The results in this figure show that
the assumptions of both coherent model and incoherent model are not valid. Table 5 gives the fraction
of power coming from the first Fresnel zone. The percentages are small for all three cases showing that
the Fresnel zone concepts are inadequate for land surfaces with DEM.

Given the surface profiles, the numerical Kirchhoff simulator uniquely gives the results under the
Kirchhoff approximation. The results, on the other hand, depend on the DEM descriptions. This is
also consistent with Maxwell equations as Maxwell equations give a unique answer when the geometry
of the surface profile is clearly defined.
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Table 5. Power contribution from First Fresnel zone to total (averaged over Band width).

Power from First Fresnel zone Total power in 10 km × 10 km Power ratio
DEM-1 1752 dB 1629 dB 5.9%
DEM-2 171.0 dB 158.2 dB 5.0%
DEM-3 171.7 dB 160.4 dB 7.4%

5. CONCLUSIONS

A distinct feature of GNSS-R land reflectometry is that the random rough surfaces are superimposed
on many levels of elevation with the rms elevations in tens of meters which are many times larger than
the microwave wavelength at GNSS frequencies. This is a new rough surface scattering problem as
past rough surfaces scattering [20, 25–27] only treat rough surfaces on a single elevation. We studied
this new problem using Kirchhoff integral as a first principle calculation. Using DEM without random
microwave roughness, the Fresnel phase zones are destroyed, and power contributions come from areas
much larger than the first few Fresnel zones. When microwave roughness is superimposed on DEM, the
simulation results are much larger than the incoherent model and smaller than the coherent model for
small RMS heights. In this study, the Gaussian correlation function is used. Numerical 3D solutions
of Maxwell equations (NMM3D) for rough surface scattering have been calculated [22–24, 28] using
exponential correlation functions. In past NMM3D simulations [22], we calculated both coherent and
incoherent waves. We are presently combining the NMM3D with the numerical Kirchhoff simulator to
develop a physical model for GNSS-R land applications. In the recent baseline active radar algorithm
for SMAP, microwave roughness up to RMS height of 5 cm with exponential correlation function is
used in the NMM3D data cubes [29]. Although the Kirchhoff approximation has limitations, the
numerical Kirchhoff simulator gives a baseline reference model accounting the phase variations due
to both elevations and microwave cm roughness.

APPENDIX A. COHERENT FIELD OF SPHERICAL WAVES SCATTERED BY
RANDOM ROUGH SURFACE

The coherent fields of random rough surface were derived for plane waves [19]. In this appendix we
derive coherent fields of spherical waves using spectral expansions and the method of stationary phase.
We consider scalar waves below. The method can be readily extended to vector spherical waves for
dielectric rough surface scattering. The geometrical configuration is as shown in Figure 1. The specular
point is at (0, 0). The horizontal separation between transmitter and receiver is L. The transmitter
and receiver heights are respectively at ht and hr. The transmitter is at (xt, 0, ht). The receiver is at
(xr, 0, hr), where

xt = − L

(hr + ht)
ht (A1a)

xr =
L

(hr+ht)
hr (A1b)

The distance between transmitter and specular point is

Rt =
ht

(hr+ht)

√
L2+(hr+ht)

2 (A2a)

The distance between receiver and specular point is

Rr =
hr

(hr + ht)

√
L2+(hr+ht)

2 (A2b)

and
Rt+Rr =

√
L2+(hr+ht)

2 (A2c)
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The incidence angle is

θi=cos−1

⎛
⎝ (hr+ht)√

L2+(hr+ht)
2

⎞
⎠ (A3)

In scalar Kirchhoff theory, we use Dirichlet boundary conditions. The rough surface coordinates are
(x′y′z′), where z′ = f(x′y′) is the roughness height function. The scattered field Es is obtained by
integration over the surface area

Es = −2
∫∫

dS′g0
∂Einc (r′)

∂n′

= −2
∫∫

dx′dy′g0

(
− ∂f

∂x′
∂

∂x′−
∂f

∂y′
∂

∂y′
+

∂

∂z′

)
Einc(r′) (A4)

where the incident field Einc(r′), in spatial and spectral domains, is

Einc = 4πE0Rt

exp
(

ik
√

(x′−xt)
2 +(y)2 +(z′−ht)

2

)

4π
√

(x′−xt)2 + (y)2 + (z′−ht)2

= 4πE0Rt
i

8π2

∫ ∞

−∞
dk′

x

∫ ∞

−∞
dk′

y

exp(ik′
x (x′−xt)+ik′

y (y′)+ik′
z(ht−z′))

k′
z

(A5)

The Green’s function, in spatial and spectral domains, is

g0 =
exp

(
ik
√

(xr−x′)2 +y′2+ (hr−z′)2
)

4π
√

(xr−x′)2 +y′2+(hr−z′)2

=
i

8π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

exp(ikx (xr−x′)+iky (−y′)+ikz(hr−f(x′,y′)))
kz

(A6)

In the above spectral expansions, kz =
√

k2 − k2
x − ky2 . Substitution in Eq. (A5) and performing

integration by Eqs. (A3), (A4), and (A6)

Es = −2
∫∫

dx′dy′
i

8π2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

exp (ikx (L+xt−x′)+iky (−y′) +ikz (hr−f (x′,y′)))
kz

4πE0Rt
1

8π2

∫ ∞

−∞
dk′

x

∫ ∞

−∞
dk′

y

(
[(k′

x−kx)]
(k′

z+kz)
k′

x+

[(
k′

y−ky

)]
(k′

z+kz)
k′

y+k′
z

)

exp(ik′
x (x′−xt)+ik′

y (y′)+ik′
z(ht−f(x′, )))

k′
z

(A7)

To calculate the coherent field, we take ensemble average over random roughness to calculate 〈ES〉.
Assuming that roughness is statistically homogenous, we have

〈
exp

(−i
(
k′

z + kz

)
f
(
x′, y′

))〉
= exp

(
−(k′

z + kz)
2h2

2

)
(A8)

where h is the RMS height of random rough surface. Next we use∫∫
dx′dy′ exp

(
i
(
k′

x−kx

)
+i

(
k′

y−ky

)
y′
)
= 4π2δ

(
kx−k′

x

)
δ
(
ky−k′

y

)
(A9)

where δ is the Dirac delta function. Using delta functions, the integrations
∫∞
−∞ dk′

x

∫∞
−∞ dk′

y are canceled.
Then

〈ES〉 = − i

8π2
4πE0Rt

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

exp (ikxL+ikz (hr+ht))
kz

exp
(−2k2

zh
2
)

(A10)
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We calculate the above spectral integral using the method of stationary phase. At the stationary phase
point,

kz=
(hr+ht)

L
kx=k

(hr+ht)√
L2+(ht+hr)

2
=k cos θi (A11)

Then

〈ES〉 = −E0Rt exp
(−2

(
k2cos2θi

)
h2

) exp
(

ik
√

L2+(hr+ht)
2

)
√

L2+(hr+ht)
2

(A12)

The absolute value squared is

|〈ES〉|2 = (E0Rt)
2 exp

(−4
(
k2 cos2 θi

)
h2

) 1
(Rt+Rr)

2 (A13)
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